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We discuss the influence of electric fields on spin waves in simple ferromagnets produced by the flexoelec-
tric interaction. Such terms produce a frequency shift that is linear in both the applied electric field and the
wave vector of the spin waves. Above a certain critical electrical field, ferromagnetism is unstable. We discuss
the nature of the conical cycloidal state that appears above the critical field for a ferromagnet with uniaxial
anisotropy and exchange.
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I. INTRODUCTION

An issue of fundamental interest is the influence of elec-
tric fields on magnetically ordered materials. Interest in such
phenomena is very active currently because of potential ap-
plications to devices.

Many years ago, it was noted that magnetoelectric phe-
nomena are present in materials within which both time-
reversal symmetry and parity are not good symmetry
operations.1 Since then, magnetoelectric phenomena of di-
verse sorts have been studied both in ferromagnets and anti-
ferromagnets. For instance, Rado and co-workers2 observed
an electric-field-induced shift in the ferromagnetic resonance
frequency of lithium ferrite. In a recent discussion, Sousa
and Moore3 presented a theoretical description of electric-
field effects on spin waves in the multiferroic material
BeFeO3.

It is of interest to inquire if electric fields can influence
the properties of simple ferromagnets, where inversion sym-
metry is present. While electric fields cannot couple to the
uniform magnetization in such materials, they can interact
with its spatial gradients. The first prediction of the influence
of the effect of an electric field on the properties of simple
ferromagnets was presented some decades ago when it was
argued that in the itinerant 3d ferromagnets, application of an
electric field will shift the frequency of finite wave-vector
spin waves by virtue of the Doppler shift associated with the
drift velocity imparted to the moment bearing 3d electrons
by the electric field.4 Very recently, the experimental mea-
surement of such a Doppler shift has been reported,5 with
magnitude rather close to that predicted. Subsequent authors
have presented more complete theoretical descriptions of this
effect.6,7

It is the case that couplings one may refer to as flexoelec-
tric interactions are also present in simple ferromagnets, as
noted by Bar’yakhtar et al.8 These also couple electric fields
to gradients in the magnetization and are necessarily present
in insulating as well as metallic ferromagnets. Their presence
results in a nonzero electric polarization within domain walls
of Neèl character,8 and they also influence materials in which
the magnetization is spatially varying, such as spiral
magnets.9

One of us has demonstrated that in the presence of suffi-
ciently strong electric fields applied parallel to the magneti-

zation, flexoelectric interactions render the uniform ferro-
magnetic state unstable with respect to nucleation of a Neèl
domain wall.10 In the present paper, we explore the influence
of this coupling on spin waves in ferromagnets. We find a
frequency shift that is linear in both the wave vector of the
spin wave, and the applied electric field. This is, thus, a
frequency shift very similar in nature to the Doppler shift
mentioned above. However, the Doppler shift assumes its
maximum value when the electric field and wave vector of
the spin wave are parallel to each other and vanishes when
they are perpendicular. In contrast, the flexoelectric induced
shift is maximum when the electric field and wave vector are
perpendicular to each other and to the easy axis, and it van-
ishes when the two are parallel. Thus, it will be possible to
distinguish experimentally between the two sources of fre-
quency shift. A measurement of the flexoelectric induced
shift would be most valuable since it would provide one with
information on the magnitude of the phenomenological cou-
pling constants which that the theory.

We also show that application of a sufficiently large elec-
tric field perpendicular to the magnetization renders the uni-
form ferromagnetic state unstable. This critical field is larger
by a factor of � than the critical field discussed in Ref. 10.
For a uniaxial ferromagnet, in the absence of an applied Zee-
man field, the new high-field state is cycloidal in character,
with the magnetizaion in the plane which contains the elec-
tric field. This plane is perpendicular to the easy axis. Appli-
cation of an external Zeeman field along the easy axis leads
to a conical cycloidal state with net magnetization along the
easy axis. We note that in Ref. 11, the role of flexoelectric
terms in producing a similar state in the antiferromagnet
BiFeO3 was discussed. However, BiFeO3 does not have in-
version symmetry; the point we wish to make in the present
paper is that even in the simplest ferromagnets where inver-
sion symmetry is present, sufficiently strong electric fields
can drive a transition to a conical cycloidal state.

In Sec. II, we introduce the flexoelectric couplings and
discuss their influence on spin waves. We note in this section
that ferromagnetism is unstable above a stated critical field.
Section III explores the character of the new high-field state,
and concluding remarks are in Sec. IV.

II. SPIN WAVES

We write the flexoelectric coupling as VE=VE
�1�+VE

�2�,
where
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VE
�1� = b1� d3r�E� · M� �r������ · M� �r��� , �1a�

and

VE
�2� = b2� d3rE� · �M� �r�� � ��� � M� �r���� . �1b�

Here b1 and b2 are phenomenological constants. We shall
assume we have a ferromagnet with an easy axis parallel to
ẑ, and we shall take the spatially uniform electric field to lie

in the xz plane. Thus E� =E�x̂+E�ẑ. We then find

VE
�1� = b1E�� d3rMz	 �Mx

�x
+

�My

�y



+ b1E�� d3rMx	 �My

�y
+

�Mz

�z

 , �2a�

and

VE
�2� = − b2E�� d3r	Mx

�Mz

�x
+ Mz

�Mx

�z



− b2E�� d3r	My
�Mx

�y
+ Mz

�Mx

�z

 . �2b�

We have used the identity �d3rM���M� /�x��
= �1 /2��d3r�M�

2 /�x�=0 to cast the results in the form dis-
played in Eq. �2�.

To explore that nature of spin waves, we use as the
Hamiltonian the form H=H0+VE, where H0 contains ex-
change, anisotropy, and dipole interaction terms. In this sec-
tion we shall not require the precise form of H0. We shall
obtain the equation of motion of the magnetization density
operator M�.

This is given by i�Ṁ�= �M� ,H�, and one may generate
the various contributions to the equations of motion through
use of the commutator �M��r�� ,M��r����= i�0����M��r��	�r�
−r���. Here �0 is the magnetic moment in each unit cell of the
crystal. After the commutators are evaluated, the equations
of motion for Mx and My are then linearized in the spirit of
spin-wave theory.

After linearization, one finds the following simple result:

�Mx,y�r��,VE� = − i�0bE�MS
�Mx,y

�y
, �3�

where b=b1+b2. After the equations of motion are gener-
ated, one then seeks plane-wave solutions of the form
Mx,y�r��=mx,y exp�ik� ·r�− i
t� to find


̃mx,y = �mx,y,H0� , �4�

where the symbol �mx,y ,H0� stands for the terms in the equa-

tions of motion generated from H0, 
̃=
−�bE�MSky, and
�=�0 /� is the gyromagnetic ratio.

It then follows, independently of the detailed structure of
H0, that the spin-wave frequency in the presence of the elec-
tric field is given by


E�k�� = 
0�k�� + �bE�MSky , �5a�

a result we also write as


E�k�� = 
0�k�� − �bk� · �E� � M� S� . �5b�

As discussed in the introduction, the flexoelectric terms lead
to a term in the dispersion relation linear in the wave vector.
We see that in contrast to the Doppler shift present in the
metallic ferromagnets, the coefficient of the linear term has
its maximum value when the propagation direction of the
spin wave is perpendicular to the electric field �and also per-
pendicular to the easy axis�. We recall that the Doppler shift
	
D�k�� is given by 	
D�k��=v�d ·k�, where the drift velocity of
the moment bearing carriers v�d is parallel to the electric field,
which drives the current in simple ferromagnets such as con-
sidered here. Estimates of the mobility of the moment bear-
ing electrons are found in Ref. 4. The estimate in this paper
provides a Doppler shift within a factor of 2 of that observed
in permalloy by the authors of Ref. 5.

To proceed further, we require a specific form for 
0�k��.
We follow Ref. 10 by choosing

H0 =� d3r�A2 �
�

�� M�2 −
a

2
Mz

2 − h0Mz� . �6�

The z axis is, thus, the easy axis, and we have added a Zee-
man field h0 parallel to the easy axis. We then have


E�k�� = ��h0 + aMS + AMsk
2 − bMSE�ky� . �7�

We have chosen the sign of E� so that the linear term has
negative slope when ky �0.

If we chose the wave vector in the y direction, then the
dispersion curve has a minimum shifted away from ky =0 by
the amount km=bE� /2A; the minimum value of the spin-
wave frequency is given by


m = ��h0 + aMs −
b2E�

2 MS

2A
� . �8�

At a certain critical electric field E�
�c�=

2�A�a+h0/MS��1/2

b , the fre-
quency 
m is driven to zero. We provide a schematic illus-
tration of the nature of the dispersion relation in Fig. 1. For
applied electric fields greater than this critical field, we have
spin waves with negative excitations energies, and the ferro-
magnetic state is unstable. In Sec. III, we will describe the
new high-field state.

It is interesting to compare the critical field above with
that discussed in Ref. 10, where it was demonstrated that
application of an electric field parallel to the magnetization
will produce an instability of the uniform ferromagnetic
state, with the high-field state one in which a Neèl wall
forms spontaneously. When we set h0=0, the critical field
described in this paper is larger than that in Ref. 10 by a
factor of �.

We remark that if our simple ferromagnet has a crystal
structure which admits optical phonons, then in the presence
of an electric field there also will be linear terms in the wave
vector in their dispersion relation. This is a direct conse-
quence of the fact that the presence of the spontaneous mag-
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netization breaks time-reversal symmetry, while application
of an electric field leads to a breakdown of inversion sym-
metry. Thus, in the presence of an electric field 
opt�k��
�
opt�−k��, just as for spin waves. This asymmetry is
brought about by two kinds of terms in the energy: the stan-
dard magnetoelectric term, which mixes the oscillating elec-
tric polarization p� of the optical phonon, and the magnetic
polarization m� of the spin waves. These terms have the form

Cme
�1��M� ·m� ��E� · p��+Cme

�2��M� · p���E� ·m� �, and then there are flexo-

electric terms analogous to those in Eq. �1�: Cflex
�1� M� · �p� � ���

�m� ��+Cflex
�2� �M� ·m� ��� · p� . In these expressions, M� is the static

magnetization. Straightforward but lengthy calculations pro-
duce the linear terms in wave vector in the optical phonon
spectra. The expressions are complex and involve the several
coefficients just displayed; at this point there is little motiva-
tion to present the analysis or final expressions. However, it
may be possible to observe the electric-field-induced linear
terms in the optical phonon-dispersion relation directly by a
technique such as the Raman scattering of light, so we wish
to point out the existence of these terms.

III. HIGH-FIELD STATE

In this section, with electric field applied in the x direc-
tion, we suppose that all the magnetization components M�

depend only on the coordinate y. Then upon noting the iden-
tity �dyMx��My /�y�=−�dyMy��Mx /�y�, we may arrange the
expression for VE to have the form

VE =
bE�

2
� d3r	Mx

�My

�y
− My

�Mx

�y

 . �9�

We seek extrema of the total energy after writing the mag-
netization components in the form Mx=MS sin ��y�cos �y�,

My =MS sin ��y�sin �y�, and Mz=MS cos ��y�. The energy
per unit area e of this state may then be written as e
=MS

2�dyU�y�, where, after using the energy of the uniform
ferromagnetic states as the zero of energy, we have

U�y� =
A

2
�� ��

�y
�2

+ sin2 �� �

�y
�2�

+ �bE�

2
sin2 �

�

�y
+

a

2
sin2 � + 2

h0

MS
sin2�

2
� .

�10�

We minimize this energy for a state in which ��y�=�0 and
�y�=kEy, where �0 and kE are independent of y. One finds

kE = −
bE�

2A
, �11a�

and

cos �0 =
h0

h0 + hc�E��
, �11b�

where

hc�E�� =
b2MS

4A
�E�

2 − �E�
c �2� . �11c�

In Eq. �11c�, E�
�c� is the critical field introduced in Sec. II,

above which ferromagnetism is unstable. We assume in this
section that E��E�

�c�. The energy density U associated with
this state is given by

U = −
1

2MS

hc�E��2

h0 + hc�E��
. �11d�

In the absence of an applied Zeeman field �h0=0�, we have a
cycloidal state wherein the magnetization lies in the plane
perpendicular to the easy axis. Application of a Zeeman field
parallel to the easy axis tilts the magnetization out of plane,
and we have then a conical cycloidal state. The sense of
rotation of the transverse components of the spin, as one
looks down on the xy plane from above, is controlled by the
sign of the parameter b for E� applied in the +x direction. As
the Zeeman field is increased, we achieve nearly ferromag-
netic alignment of the spins when h0 is large compared to
hc�E��.

The phase transition considered above is a type of
commensurate-incommensurate �CI� transition: the commen-
surate state with magnetization parallel to the easy axis
changes to the conical cycloidal wave with the finite wave
vector kE given by Eq. �11a�. On the other hand, the CI
considered in Ref. 10 belongs to a different type of CI �Ref.
12�: when the electric field reaches the critical value Et a
single Neèl domain wall appears. As the electric field in-
creases, a lattice of domain walls develops, and these evolve
with further increase in the field to a simple cycloidal wave.

IV. FINAL COMMENTS

In Ref. 10, it was demonstrated that in the presence of an
electric field applied parallel to the easy axis, the ferromag-

k
ck

ω
⊥E = 0= 0

⊥E0 <0 < < ⊥E
(c)(c)

⊥E = ⊥E
(c)(c)

FIG. 1. A schematic illustration of the effect of the flexoelectric
terms on the spin-wave dispersion relation in the ferromagnetic
state. The wave vector is in the y direction, perpendicular to the
magnetization, and the electric field E� is perpendicular to the x
axis. In the absence of the electric field, E�=0, we have the clas-
sical dispersion relation quadratic in wave vector, with a gap pro-
duced by the combination of the anisotropy and Zeeman field. The
electric field leads to a linear term in wave vector, with negative
slope and a minimum in the dispersion curve at a nonzero value of
the wave vector. When the electric field is increased to the critical
value above which ferromagnetism is unstable, we have a “soft spin
wave” at the wave vector kc.

INFLUENCE OF ELECTRIC FIELDS ON SPIN WAVES IN… PHYSICAL REVIEW B 78, 184422 �2008�

184422-3



netic state is unstable with respect to nucleation of a Neèl
wall in the presence of flexoelectric coupling for electric
fields larger than a certain critical field. We have shown here
that a field applied perpendicular to the easy axis also renders
ferromagnetism unstable; with Zeeman field absent, the
transverse critical field is larger than the longitudinal critical
field by a factor of � for the particular model of an easy axis
ferromagnetic examined in the two papers. For electric fields
below the transverse critical field, we find the flexoelectric
coupling produces a term linear in wave vector in the spin-
wave dispersion relation so there is an off-center minimum
in the dispersion relation for propagation in the plane perpen-
dicular to the easy axis, and also perpendicular to the in
plane component of the applied electric field.

A measurement of the linear term in the dispersion rela-
tion in the low-field state would be of great importance be-
cause this would supply us with the value of the central
parameter of the theory, the flexoelectric coupling constant
b=b1+b2. At the time of this writing, we have no knowledge
of the value of this parameter in any material. The depen-

dence of the spin-wave dispersion relation on electric field
offers direct access to this important parameter. It would be
of considerable importance for such a measurement to be
carried out.

A geometry which could be utilized is readily realized in
the laboratory. One can envision a film magnetized in plane,
with the wave vector of the spin wave also in plane and
perpendicular to the easy axis. An electric field perpendicular
to the film surfaces may be generated through suitable elec-
trodes on the film surfaces. It is probable that the frequency
shift will not be large. In this regard, the measurements re-
ported in Ref. 4 are of great interest. The frequency shift
produced by the Doppler effect is quite small, 0.3%, but
nonetheless it is clearly measurable.
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