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Quantum phase transitions of the asymmetric three-leg spin tube
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We investigate quantum phase transitions of the S =% three-leg antiferromagnetic spin tube with asymmetric
interchain (rung) exchange interactions. On the basis of the electron tube system, we propose a useful effective
theory to give the global phase diagram of the asymmetric spin tube. In addition, using other effective theories
we raise the reliability of the phase diagram. The density-matrix renormalization-group and the numerical
diagonalization analyses show that the finite spin gap appears in a narrow region around the rung-symmetric
line, in contrast to a recent paper by Nishimoto and Arikawa, [Phys. Rev. B 78, 054421 (2008)]. The numerical
calculations indicate that this global phase diagram obtained by use of the effective theories is qualitatively
correct. In the gapless phase on the phase diagram, the numerical data are fitted by a finite-size scaling in the
c¢=1 conformal field theory. We argue that all the phase transitions between the gapful and gapless phases

belong to the Berezinskii-Kosterlitz-Thouless universality class.
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I. INTRODUCTION

The spin tube,'~!¢ i.e., the spin ladder with the periodic
boundary condition along the interchain (rung) direction, is
one of interesting magnetic systems which is expected to
exhibit some exotic phenomena due to special topology such
as the carbon nanotube and the magnetic frustration. Actu-
ally, several theoretical works®3%!112 have shown that the
S =% three-leg antiferromagnetic spin tube has a spin gap, in
contrast to the corresponding three-leg spin ladder with the
open boundary condition along the rung. Moreover, it has
been predicted in the field theoretical method'>!'* that both
the gapless and gapful vector-chiral long-range orders
emerge in certain parameter regions of the three-leg tube in a
magnetic field. Recently some candidates for the spin nano-
tubes have been synthesized; a three-leg tube
[(CuCl, tachH);CI]Cl, (Ref. 1), a nine-leg tube Na,V;0;
(Ref. 2), and a four-leg tube Cu,Cl,-DgC,SO, (Refs. 3 and
4). Tt is therefore expected that novel, intriguing phenomena
will be detected in these materials.

Let us here focus on the S :% three-leg antiferromagnetic
spin tube that is the simplest tube with geometrical frustra-
tion. Since the unit cell consists of three spins with S=% in
this tube, the Lieb-Schultz-Mattis theorem'” suggests that the
spin gap must be accompanied with at least doubly degener-
ate ground states. In fact, previous numerical analyses®!'!!2
have confirmed such doubly degenerate S=0 ground states
due to the spontaneous breaking of the translational symme-
try along the leg direction. The ground states have a valence-
bond-type (superposition of spin-singlet pairs) order.®'? Here
if one of the three rung coupling constants is changed, the
following two models are reproduced as limiting cases: the
three-leg spin ladder and the decoupled system of a single
chain and a two-leg ladder. These two systems are believed
to possess a gapless excitation. Therefore, the S :% three-leg
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system, where one of the three rung couplings is varied,
would undergo a quantum phase transition from the gapless
state to the gapful symmetry-broken one. A recent numerical
work!! has suggested that the gapful phase is extended to a
finite (although narrow) region when the rung-coupling
asymmetry is introduced. Unfortunately, however, the feature
of the transition was not so clarified because the system size
used in Ref. 11 was too small. On the other hand, a recent
density-matrix renormalization-group (DMRG) approach,'?
assuming a special power-law form of the finite-size correc-
tion, has concluded that the transition is of the first order and
the system is always gapless except for the symmetric three-
leg spin tube. Such a discontinuous transition, however, has
not been reported so far in any realistic systems. In addition,
from the viewpoint of the effective theory, the occurrence of
such a transition must require a highly fine tuning of param-
eters. Thus the phase diagram and the critical properties of
the quantum phase transitions in the three-leg spin systems
are still controversial.

Motivated by the above situation, in this paper, we study
the wide ground-state phase diagram and the universality
classes of the quantum phase transitions in S:% three-leg
antiferromagnetic spin tube with the rung-coupling asymme-
try. We first propose a simple effective theory to explain the
quantum phase transitions between gapful and gapless
phases on the basis of the Hubbard model on the tube lattice
and the non-Abelian bosonization.'®-? This effective theory
enables us to draw a global phase diagram by counting the
number of Fermi points. We find one gapful phase and three
gapless phases in the phase diagram, and predict that the
gapless phases are all described by a level-1 SU(2) Wess-
Zumino-Witten (WZW) field theory,'®2 which is a c=1
conformal field theory (CFT). Besides this effective theory,
using other analytical strategies, we consider the strong-
rung-coupling regime and the weak-rung-coupling regime
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FIG. 1. Structure of the three-leg asymmetric spin tube (1).

with a strong rung distortion (i.e., asymmetry) in the phase
diagram. In the former regime, two of three gapless phases
are predicted by using a known effective theory.'? In the
latter regime, we prove that a finite gapless phase definitely
exists.

We subsequently perform the numerical diagonalization
and the DMRG calculation combined with some finite-size
scaling analyses on the basis of the above effective theories.
Applying the CFT approach?'~2* to our numerical data, we
argue that the quantum phase transitions belong to the
Berezinskii-Kosterlitz-Thouless (BKT) universality
class.?»> A numerically quantitative phase diagram is pre-
sented and is consistent with that of the effective theories.

This paper is organized as follows. In Sec. II, we define
the Hamiltonian of an asymmetric three-leg spin tube model.
In Sec. III, we draw a qualitative but global ground-state
phase diagram by means of an effective theory based on the
half-filled Hubbard model on the tube lattice. Employing an-
other approach based on the non-Abelian bosonization, we
precisely show the existence of a gapless phase in the weak-
rung-coupling regime with a strong asymmetry. Moreover,
we discuss the gapful phase in the strong-rung-coupling re-
gime. Section IV is devoted to the numerical analyses for the
spin tube. We plot a scaled gap calculated by the DMRG
method to confirm the phase diagram obtained by the effec-
tive theories. We further analyze the numerical data obtained
in the exact diagonalization on the basis of the finite-size
scaling in the c=1 CFT. We provide the summary and short
discussions in Sec. V.

II. MODEL

We consider the S=% asymmetric three-leg spin tube,
shown in Fig. 1, described by the Hamiltonian

3L 2 L L
H=J,2 2 Si i Sije +,2 2 SiiSiv1y +J2 835815
i=1 =1 i=1 j=1 =1
(1)

where §,»’ j 1s the spin-% operator and L is the length of the
tube in the leg direction. The exchange coupling constant J;
is for the neighboring spin pairs along the legs, while J, and
J! are the rung coupling constants. All the exchange interac-
tions are supposed to be antiferromagnetic (namely, posi-
tive). The ratio a=J//J, stands for the degree of the asym-
metry of the rung couplings. We will vary a and J; to
investigate the quantum phase transitions. Throughout this
paper, we fix J, to one.

The present model includes three typical models as limit-
ing cases; (a) @=0: the three-leg spin ladder, (b) a=1: the
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symmetric spin tube, and (c) a—: the single chain plus
rung dimers. Since the system is gapless in the cases (a) and
(c), while gapful in the case (b), at least two quantum phase
transitions should occur with increasing « from O to infinity.
As we already mentioned, the one-site translational symme-

try along the leg (S; ;— S, ;1) is spontaneously broken in the
symmetric spin tube at least in the strong-rung-coupling
regime.%!2

III. EFFECTIVE THEORIES

In this section, we study the spin tube (1) by constructing
its low-energy effective theories. In Sec. III A, we draw a
phase diagram in the whole coupling-constant space («,J;).
To this end, we develop a simple effective theory for the spin
tube from the corresponding Hubbard model on the tube lat-
tice, where the SU(2) spin-rotational symmetry is preserved
automatically. This effective theory allows us to find three
gapless phases and one extended gapful phase. Next, utiliz-
ing other theoretical schemes, we carefully investigate two
special regimes J,<J/ <J; and J,>J|, respectively, in Secs.
I B and III C.

A. Global phase diagram derived from the Hubbard model on
the tube lattice

Here, we provide a systematic method to draw global
phase diagrams of one-dimensional antiferromagnetic quan-
tum spin systems. It is well known that any S =% Heisenberg
model is obtained from the corresponding half-filled Hub-
bard model in the limit of strong on-site Coulomb interac-
tions. In one dimension, the spin configurations of the low-
energy states in the Heisenberg model qualitatively agree
with those in the half-filled Hubbard model even with a weak
Coulomb interaction. Furthermore, the phases in the weak
Coulomb regime often smoothly connect to those in the
strong Coulomb regime in one-dimensional electron systems.
Relying on these arguments, we construct the low-energy
effective theory for the spin tube (1) from the corresponding
Hubbard model. To discuss the wider parameter space, first
we diagonalize the kinetic parts of the Hubbard Hamiltonian
including both the leg and rung hopping terms.?®->® Then, we
take account of the on-site Coulomb interaction as the per-
turbation, with the help of the non-Abelian bosonization and
CFT. As one will see later, the number of Fermi points is
essential to determine whether or not the Coulomb interac-
tion open a spin gap.

Since we consider the electron tube instead of the original
spin tube, our results in this subsection should be regarded as
a qualitative argument. However, the approach from the elec-
tron tube can be applicable to the wide parameter space
(a,J}), in contrast to the other conventional methods. For
example, the nonlinear sigma model is not usually reliable
for frustrated magnets including the present spin tube. It is
dangerous to apply the Abelian bosonization to any SU(2)-
symmetric magnets.”’> Moreover, a standard non-Abelian
bosonization method, taking into account rung couplings per-
turbatively (we will use it in Sec. III B), is of course valid
only in the weak-rung-coupling regime.
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Now, let us begin with the definition of the Hubbard
model on the three-leg tube lattice. The Hamiltonian,

H=Hhop+Hinl’ (2)

consists of the hopping part

L 3

Hyop = 22> (tCps1i.oCniso+ si+1,icjz,i+1,a'cn,i,a' +H.c.),
n=1 i=1 o=7,]

3)

and the on-site interaction part

L 3
Hint = UE 2 nn,i,Tnn,i,l’ (4)

n=1 i=1
where n,,; ,= clm Cnio and U>0 is the repulswe coupling
constant. The electron operators c,,; , and ana satisfy the
periodic boundary conditions for both the leg and the rung
directions,

Cn+Lio = Cnijos Cnjitd,o = Cnii,o»

and anticommutation relations,

O 6. jO,

0,7

{Cmto" an}

{cm,i,m cn,j,r} = 0’ {Cz;,i,cr’cjt,j,f} =

The hopping parameters are given by >0, s; ,=5,3=5>0,
and s3;=8s>0. The strong coupling expansion shows that
this model at the half-filling case is reduced to the Heisen-
berg model with J,=41>/U, J,=4s*/U, and a= 3.

By performing the suitable unitary transformation, the
hopping Hamiltonian can be mapped to the following diag-
onal form:

3
Hyop= 2 2 2 E(Kd]; (i (5)
koi=1 o=1,]

where the wave number k is summed over 2777 =k=2m. The
operators dy ; , and d,ii,g are defined by

diio= /—E E e_lk"Oian,j,m (6a)
n 1 j=1
| L
di, ,=—=> E e*0ch o (6b)
” VL= j=1

which satisfy the standard anticommutation relations

{dk i,0 dl] 7—} 5k 1 (r T

{dk,i,m dl,j, 4=0, {dl:i,a’ d;-,j,T} =0. (7)

The explicit form of the orthogonal matrix is
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1 1
0%
v v

0= s
u, Uy Uy
u._ U_ U_

1 Ca
Ur=—", UV+=—0, ni=\2+ci,
ni ni
3B+ VB +8
= — . (8)

BE+2+ BB +8

The energy eigenvalues of the one-electron states are

E, (k) =— Bs + 2t cos k, (9a)
E,(k) = %(ﬂs —sVB+8+4tcos k), (9b)
E;(k) = Bs +sVB2+8+41cos k). (9¢)

Note that a degeneracy E 1(k)=E,(k) appears at =1 due to

the translational (S i —>Sl+1 ) and the parity (S | ,<—>S; j) sym-
metries along the rung direction.

For the half-filled case, 3L one-electron states should be
occupied by electrons with up and down spins. As a result,
the ground state of the hopping Hamiltonian has one, two or

three pairs of the Fermi points (kj,lgj) just on the Fermi sea,
depending on the parameters s/¢ and . Since the low-energy
excitations are given by the particle-hole creations around
these Fermi points, they may be represented by using the
Dirac fermions, the left mover ;,(x) and the right one

%’U(x), which are defined from the electrons around the jth
pair of Fermi points. If the jth band has no Fermi points in

the half-filled case, we should neglect ¢; ,(x) and ij‘g(x). On
this understanding, we approximate the original electron op-
erators in terms of the Dirac fermions as follows:

3
- - 1k .x/a kxla
Coio~ Va2 O [e™¥ 0y, o (x) + 3 ,(1)],  (10)
j=1

where a is the lattice spacing with dimension of length and
x=an is the continuous position coordinate.

For this free Dirac fermion system, we take into account
the effects of the on-site Coulomb interaction (4) as the per-
turbation and we use the non-Abelian bosonization tech-
niques. Following naively the field-theory argument in Ref.
30, one can expect that when the number of Fermi-point
pairs is odd (even), the spin excitations are gapless (gapped)
in the half-filled Hubbard tube. In particular, in the cases of
one or two Fermi-point pairs, we can explicitly determine
whether or not a spin gap exists as follows.

First, we consider the case of one pair of Fermi points

kl——7T and kl—— In this case, interaction (4) is approxi-
mated as the sum of an Umklapp interaction and two mar-
ginal ones,
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Hiy ~ f dx[g10(x) — g,0,(x) — g305(x) + - -],

where g, 3 are positive coupling constants proportional to
U. The Umklapp term is expressed as

0,(x) = '/’l,T(X)T'yzll,l(x)TJ/I,T(x)J/l,l(x), (11)

and the marginal interaction between the U(1) charge cur-
rents is given by

0,(x) = ¢ (x) ¢ (%) gy (x) Ty (),

where 1="(4}1 1, ¢). It is known that the bosonized form
of ®;, contains only the charge degrees of freedom and they
open a charge gap when g, is positive. Then, the remaining
spin degrees of freedom are described by the gapless level-1
SU(2) WZW theory.'8-20 This phenomenon, i.e., the charge-
spin separation, is well known in the single Hubbard chain
model. For this WZW theory, the third interaction,

03(x) = () T - () T, (12)

is known to be marginally irrelevant if g;>0. The coupling
constant g3 is hence renormalized to be zero in the low-
energy limit. Except for the above interactions O, ;(x),
there is no relevant operator with the invariance under the
one-site translation along the leg,

lpl,o’(x) - elklllll,o'(x)a lZl,o'(x) - el]zl lr_bl,a'(x)7 (13)

as in the case of the Heisenberg chain. The spin excitations,
therefore, remain gapless.
On the other hand, when there exist two pairs of the Fermi

points, (k,k;) and (k,,k), the fate of the spin excitations is
different from the above scenario. In this case, the spin sector
in the hopping part of the Hubbard tube is described by a
level-2 SU(2) WZW theory, which is derived from two de-
coupled Dirac fermions.’! The Coulomb interaction yields
several perturbations for this theory. For example, applying
the non-Abelian bosonization rule,'® we find that an interac-
tion derived from Eq. (4),

1 () T 1 () () T (1), (14)

contains a relevant perturbation for the level-2 WZW model,
and it is invariant under the translational operation

Uiol) = e (), P0(x) — eNigh o). (15)

Particularly for S=1, the number of possible relevant opera-
tors with the translational invariance is increased, because of

the coincident Fermi points k; =k, and k;=k,. Therefore, we
conclude that any gapless spin excitation generally has no
chance to survive except particularly rare cases [e.g., when
the coupling constant of Eq. (14) is zero].

Since for the case of three Fermi-point pairs, the interac-
tions among three Dirac fermions, generated from Eq. (4),
are fairly complicated, it is difficult to analyze them and
judge whether or not the spin excitation can survive as gap-
less. However, as we already stated, it can be expected from
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FIG. 2. Phase diagram obtained from the effective Hubbard
model (2). In the strong-coupling limit (U/t,U/s> 1), the horizon-
tal axis 3% and vertical one (s/7)% can be regarded as a and J,/J;,
respectively. The effective theory claims that the phases (IT) and
(IV) are gapless and the phase (III) is gapful. The phase (I) is
possibly gapless.

Ref. 30 that the spin excitation is presumably gapless in this
case of three Fermi-point pairs.

From these arguments, we can draw the ground-state
phase diagram of the half-filled Hubbard tube as shown in
Fig. 2. The phase (I) has three pairs of the Fermi points, the
phases (IT) and (IV) have one pair, and the central phase (IIT)
has two pairs. Therefore, we can predict that the phases (II)
and (IV) have gapless spin excitations, whereas the phase
(IIT) possesses a spin gap. If (s/7)? and 2 are, respectively,
replaced with the coupling ratio J;/J, and the asymmetric
parameter « in Fig. 2, one may interpret the phase diagram
as that of the § =% three-leg spin tube (1). Although we have
treated the on-site interaction (4) perturbatively, we have as-
sumed that the weakly interacting case (U/t,U/s<<1) is
smoothly linked to the strongly interacting one, which is
nothing but the spin tube (1).

We here note that the gapful phase (III) is predicted to be
extended around the line B=1 for a finite s/¢. In the limit
s/t— o, both the left- and right-side phase boundaries of the
region (IIT) converge to B=1. This narrowing of the phase
(IIT) is consistent with the numerical results'">1? in the strong-
rung-coupling limit J,/J; —%. We will discuss this limit in
more detail in Sec. III C.

Finally, we briefly argue the universality classes of the
phase transitions at two phase boundaries, (IT)-(IIT) and (III)-
(IV). For the level-1 SU(2) WZW model in the phases (II)
and (IV), the most relevant perturbation is the marginal
current-current interaction,'®2° Eq. (12), which is invariant
under the translational and spin-rotational operations. Since
it possibly becomes marginally “relevant” when parameters
are finely tuned and then g; becomes negative, we speculate
that the transition from the phases (1) or (IV) to (D) is
caused by this marginal term. Therefore, the transitions are
expected to be in the BKT universality class. This specula-
tion may be naturally accepted if we recall the following two
known results of the S =% zigzag Heisenberg chain, namely,
the spin chain with the nearest- and the next-nearest-

184415-4



QUANTUM PHASE TRANSITIONS OF THE ASYMMETRIC...

neighbor interactions:3? (i) When the next-nearest-neighbor
hopping is sufficiently small in the half-filled electron system
on zigzag lattice, one obtains one pair of Fermi points. The
spin excitations are therefore described by a level-1 SU(2)
WZW model, like the phases (IT) and (IV). (ii) It has been
numerically shown?? that when the next-nearest-neighbor in-
teraction is increased in the zigzag spin chain, the BKT tran-
sition takes place and the ground state changes into a dimer-
ized state from a Tomonaga-Luttinger liquid described by a
level-1 SU(2) WZW model. On the basis of this speculation,
we numerically analyze the phase transitions between (II)-
(1) and (I1)-(IV) in Sec. IV.

B. Gapless phase for J,<J, </,

In Sec. IIT A, we have obtained a qualitative phase dia-
gram of the spin tube (1) as shown in Fig. 2. However, some
subtle points still remain, and particularly it is doubtful
whether or not there is the gapless phase (I). To partially
resolve these issues, we here focus on the extreme situation
J,<J.<J;, (a=J]/J,>1), which corresponds to the right
lower regime in Fig. 2. In this regime, we prove the exis-
tence of the gapless phase (I) and discuss the phase transition
between the gapless phase (I) and the gapful phase (III).

Before embarking on our analysis, we sketch the scenario
of this subsection. We introduce three level-1 SU(2) WZW
theories for the three decoupled Heisenberg chains,'®?0 and
then we treat their rung couplings as the perturbation, be-
cause the weak-rung-coupling regime J,,J; <J; is consid-
ered now. The first and the third chains are coupled to each
other with J. which is much stronger than two remaining
couplings J,. It is well known that the J. coupling involves a
relevant interaction with conformal dimensions (%,%) in the
two coupled WZW models [see Eq. (20)], and it produces an
energy gap.*? On the other hand, like the case of one Fermi-
point pair in Sec. IIT A, the WZW model for the second chain
has the marginal irrelevant current-current interaction,

)\ZCI)Z’ (16)

with a finite negative coupling constant A, <0. The operator
®, is equivalent to Eq. (12), if we use the Dirac fermions

(#1.4-.4) to describe the second chain. The negative sign
makes Eq. (16) irrelevant and the second chain is gapless. A
weak rung coupling J, between this WZW model and the
massive theory for the two coupled chains must give a cor-
rection to the coupling constant \,. If J, is sufficiently small,
the sign of N, <0 would not change and the gapless excita-
tion is preserved. These arguments convince us that the gap-
less phase (I) definitely exists. Furthermore, we expect the
phase transition from the gapless phase (I) to the gapful
phase (IIT). Namely, if J, exceeds a critical value, the cou-
pling constant N\, might change to be positive. In this case,
the marginal operator (16) becomes relevant, which produces
an excitation gap. This transition between the phases (I) and
(II) is nothing but of the BKT type,”*?> as in the zigzag
Heisenberg chain.??

Now, let us calculate the correction to \, in an explicit
way to confirm the above sketch. We represent the partition
function of the three coupled WZW models through the path
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integral formalism. Note that the SU(2) spin-rotational sym-
metry is conserved automatically in the language of the
WZW models, i.e., the non-Abelian bosonization. The three
WZW models can be represented in six Dirac fermions
WV, .(z,2) [i=1,2,3 and a=1,|] and three ghost bosons
¢0i(z,7)[i=1,2,3]. Here, z=v7+1x and Z=v7—1x are the chi-
ral coordinates (7: imaginary time) and the index i denotes
the chain number of the spin tube (1). We employ this free-
field representation.>*-3¢ The Lagrangian density for the de-
coupled three chains is given by

3
LozD=22| 2 (‘Pza IV, .+ \I,Zagq,i,a) - d@ide; |,
i=1 | a=1.]

(17)
where we have decomposed the Dirac fermions into the lin-
ear combination of the left mover W; ,(z) and the right mover

V. (@) as V¥, (2,2)=V, (2)+V, (2).>” The nonvanishing
two-point correlation functions of these fields, calculated
from this free Lagrangian (17), are

51"511/
(W, ()T g(w)) = ~=2£, (18a)
/ =W
\7, ATy 5[1'5a§
(W 4(2) I\I,j,ﬁ(w» = . (18b)
() = e . (150)

The anomalous correlation of the ghost bosons should be
noted. These ghost fields kill the charge degrees of freedom
and extract the gapless spin degrees of freedom in the Dirac
fermions. The primary field givﬁ(z,z) with the conformal di-
mension (i,i) in the ith level-1 SU(2) WZW theory is rep-
resented in terms of these free fields:

giaﬁ(z,f) =W, (2) 'l'q_;i,ﬁ(z)eup;(z@'
Furthermore, the spin operators are represented as
Sinla = J(z2) + (= 1)'Ni2.9),

in which the smooth and the staggered parts are given by

J(z.9) = \Pjgwi + ifj‘gq—q, (19a)
]\71'(2,2) = Co(q’jg\l—,ielwi + HC) N (19b)

with W="(¥;,,¥; ). Here C, is a nonuniversal constant.
Applying Egs. (18a)—(18c), one can evaluate the asymptotic
forms of several correlation functions for the field g, 5 and

>

the spins S;,. Among the spin-rotational and the
translational-symmetric operators, the most relevant cou-
pling between the ith and the jth WZW models is

D;(2.2) = Ni(2.2) - Ny(z.). (20)

with the conformal dimensions (%,%). As we already men-
tioned, this relevant term ®3,(z,z) produces the energy gap
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in the two strongly coupled WZW models. The WZW model
for the second chain interacts with these coupled WZW mod-
els via the weak rung coupling ®,(z,z) and P,5(z,z). The
explicit form of the marginal operator (16) of the second
WZW model is

Lo O
Dy(z,2) = \Ifsz\Ifz : \PQE\PZ. (21)

From these materials, the total Lagrangian density for the
asymmetric spin tube under the condition J,<J| <J, is writ-
ten as

L(z,2) = L(2,2) + N31D31(2,2) + N 2P 2(2,2) + Np3P13(2.2)
+ 0 Dy(2,2) + -+, (22)

where the coupling constants are N3;%J., Nj;=N\y3%J,, and
N\, <0. Therefore, the partition function is written in the path
integral over Grassmann and boson fields as

= f [l ¥, , DV DY, , DV De,

2
Xexp[— f ;i—;ﬁ(z,z_.)} .

Under the condition J,<<J<<J|, the low-energy physics
must be governed by the second chain weakly coupled to the
other two chains. To obtain its effective theory, we may in-
tegrate out the massive degrees of freedom W, ,(z,z) and
¢i(z,z) with i=1,3. To calculate the correction to the cou-
pling constant \,, we regard the relevant term ®5,(z,z) as an
unperturbed Lagrangian and expand the partition function in
all the other operators Ly, ®,(z,2), ®;(z,2),.... This ex-
pansion can be performed by a lattice regularization of two-
dimensional Euclidean spacetime. In this regularization, the
partition function is represented as the following multiple
integration over countable variables:

ITIT1I {azdifi,a(zad\ffi Z)AY, (2,)dY (z,)

neNiel aeS

2
quo,-(znin)eXp{— ;—Wﬁ(zn,fn)] } (23)

Where I:{l 52’3}7 S:{Tsl}’ and N:{(nl ,f’lz) € Zz| 1 Snl )
=L} is a finite set of integer pairs with a large number of
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elements. For an integer pair n=(n;,n,) € N, we define dis-
cretized coordinates (z,,z,)=a(n,+in,,n,—in,) for (z,2)
with a lattice spacing parameter a. For a finite number of
Grassmann variables, the Taylor expansion is reduced to a
finite summation,

a’ o 1 a? k
eXp|:_ ;K(Znszn)] = 2 = ;E(Zmzn) >

k=1 k!

tency of the Grassmann variables

\I,i,a(zn)z = O’ \I_,i,a(zn)z =0

V(@) =0, W], () =0.
The following integration formula of Grassmann variables,

[T IT I (&a¥, (7)d¥] (z)dV, .(z,)d¥] (z,)

neNiel aeS

X H H H (az‘l,j:a(zn)lpi,a(Zn)\Pza(Z_n)\Pi,a(Zn))
neMiel aeT
I: M=N,J=IT=S
0: otherwise,

(24)

is important to calculate this expansion. In addition, using an
equality for two Grassmann variables,
123 _
Y Ve=100,0,¥, (0" =0"),
and a trace formula of the Pauli matrices

¥’ = D, 0'2,30%70{’570%;& =-

a,B,y,6

258,

one can reduce products of Pauli matrices and Grassmann
variables to the following single term:

H«w o o

—v v «Mﬁ \Mﬁ —p,

. . _ 5ah d

=11l vl v v, 01w 0, 0 5 @
These formulas (24) and (25) make it easier to calculate the
expansion of the partition function (23). As a result, we
obtain

[T 11 [&*a¥, (7,)d V] (Z,)dV, o(2,)d V] (z,)d@r(2,7,)]

neN ae$

neN

- . d’z
NJHD\PZ,QD\I,é,aDqIZ,aD\P;aDCPZ exp[—f ( 2

a’\, 15 A%
Do 2o 325

32 (2m)*

5 MM _ }
= ®
16 (277)5 Z(Zn’zn) +

2)\12)\23>®2(z 2) f } (26)

2 3)\31
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Here, we have neglected several terms of charge degrees of
freedom. The final expression in Eq. (26) clearly indicates
that the correction to A, is 2\ N3/ (3N\3,)=2J,/(3 @), and the
phase boundary between (I) and (ITI) is given by

3
== e (A <0). (27)

Thus, the gapless excitation in the second chain is preserved
and the gapless phase is expanded under the condition J,
<J!<J,. Namely, we have proved that the phase (I) is ex-
actly present at least in the region J,<J <J,. Furthermore,
we find that if J, is large enough to change the sign of \,

+% ®,(z,z) becomes relevant and an energy gap appears.
Since this phase transition is induced by the marginal opera-
tor ®,(z,7), it belongs to the BKT universality class, as in
the S =% zigzag Heisenberg chain. This gapped state must
correspond to the phase (III) in Fig. 2. In the gapful region
under J,<<J, <J,, the second chain must be dimerized. On
the other hand, as we have often mentioned, the gapful phase
in the vicinity of the symmetric line a=1 has the valence-
bond order. Since both the orders break the same transla-
tional symmetry, the state with the dimerized second chain
would smoothly change into the valence-bond ordered state
when we vary « from a large value to unity in the gapful
phase (III).

Finally, we notice that in the prediction (27), the gapless
phase (I) becomes wider for larger «, contrary to the phase
diagram, Fig. 2. Two reasons for this contradiction are im-
mediately found. First, we should not precisely trust the lo-
cation of the phase boundaries in Fig. 2, which are drawn
just by counting the number of Fermi points. The argument
in Sec. IIT A is only qualitatively correct to determine the
phase boundaries. Particularly, since the gapful phase (III)
sandwiched by two gapless phases (I) and (IV) is quite nar-
row for large « in Fig. 2, then we cannot claim the existence
of the gapful phase (III) for @> 1 by using Fig. 2. Therefore,
the phases (I) and (IV) might be smoothly connected in the
large-a region. For such a case, the transition between two
regions (IIT) and (IV) is expected to be also of the BKT type.
Second, the three Dirac fermions in the region (I) do not
always imply the gapless phase,?”? as discussed in Sec.
IIT A. The coupled three Dirac fermions possibly produce an
energy gap by the strong frustration, if a approaches the
symmetric point a=1. The result (27) also shows this ten-
dency.

C. Energy gap for J,>J; and J,~/J,

In this subsection, we discuss the existence of an energy
gap for a sufficiently strong rung coupling J,>J; and a suf-
ficiently weak asymmetry |a—1|<1 except at J;=0. Namely,
we explain that the phase (IIT) has a finite width along the
line J,/Jy=const>1.

As we mentioned before, Kawano and Takahashi® have
obtained the spin-orbital-type model as an effective theory
for the symmetric (@=1) spin tube with a strong rung cou-
pling. The Hamiltonian is written as

PHYSICAL REVIEW B 78, 184415 (2008)

L
J - -

' =32 5 Sl + 455+ 5E01 - 28)
rj=

which is the result of the first-order expansion in J;/J,. The
orbital Pauli matrices 77 (v=x,y,z) are defined for the states
with respect to the left- and right-handed spin configurations
on each rung (see Refs. 6 and 12). From this theory (28),
Kawano and Takahashi have shown that the ground state
has a valence-bond order with the translational symmetry

(8;;—S;j+1) spontaneously broken, and a finite excitation
gap exists. It is believed that the energy gap is generated by
the strong coupling between the spin and orbital degrees of
freedom in the effective Hamiltonian (28). Obviously, either
of them becomes gapless if the other is frozen.

Quite recently, Nishimoto and Arikawa!? have extended
the effective theory to the asymmetric case as follows:

L
H" = " + (a- D2 7. (29)
j=1

For simplicity, we have redefined the orbital Pauli matrices
7/ through a unitary transformation. Remarkably, the asym-
metry induces a transverse external field coupled to the or-
bital spins. A sufficiently strong asymmetry |a@—1|>1 hence
yields the saturated polarization of the orbital spins. In this
case, the effective Hamiltonian (29) is reduced to that of the
antiferromagnetic Heisenberg chain. The spin degree thus
survives as a gapless excitation. Next, let us focus on the
region around the symmetric line o~ 1. In the limit J;/J,
—0, the ground state has a saturated orbital spin at any
asymmetric point a# 1. For a finite J,/J,, however, we ex-
pect an extended gapful phase around a=1, if the energy gap
exists at a=1 due to the coupling between the spin and the
orbital degrees of freedom. The finite energy gap does not
vanish by an infinitesimal external field o— 1. In other words,
the magnetization process of the orbital spins should show a
zero-magnetization plateau. Therefore an energy gap would
also be present for sufficiently weak asymmetry |a—1|<1.
From these arguments, we find that the gapful phase
surely exists in a finite region under the conditions J,>J;
and J,~J ;, and its width becomes smaller with decreasing
J,/J.. This is consistent with the result obtained in Sec. IIT A.

IV. NUMERICAL ANALYSIS

In this section, we numerically analyze the asymmetric
spin tube (1), taking into account the results in the preceding
Sec. III. We show that the arguments based on the effective
theories are in good agreement with the results of the nu-
merical calculations. We will use results of the numerical
diagonalization up to L=10 for the periodic boundary sys-
tem, and those of the DMRG up to L=128 for the open
boundary system.

A. Phenomenological renormalization

A useful order parameter to determine the phase bound-
aries between the gapless and the gapful phases in Fig. 2 is
the spin gap A, which is the energy gap between the singlet
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9.

FIG. 3. (a) Scaled gap calculated by DMRG for J;=0.5. (b)
Difference of the scaled gaps between two systems with sizes L;
and L,.

ground state and the triplet excited state in the finite but large
system. We calculate it by means of the DMRG up to L
=128, where we do not see such a significant open boundary
effect as local edge excitation. In actual DMRG computation,
the number of retained bases is up to m=300, within which
well convergence is achieved for the scaled gap. In Fig. 3(a),
the scaled gap LA is plotted versus « for J;=0.5. It indicates
that the spin gap is just open in a tiny region e~ 1 and it
rapidly vanishes away from a=1. Thus we find two critical
points a,; and «,, (@, <1<a,,), which are expected to be
of the BKT type because of the wide gapless regions outside
the gapful phase and the discussion in Sec. III.

In order to determine a phase boundary of the usual
second-order phase transition, the phenomenological renor-
malization equation L1AL1(CYC)=L2AL2(CYC) is often used ef-
fectively. For the present critical point «,, however, this type
of phenomenological renormalization has no clear crossing
point. It seems from Fig. 3(a) that the scaled gap LA in-
creases with increasing L in both gapless and gapful phases.
This is because the scaled gap is an increasing function with
respect to L not only in the gapful phase but also in the
gapless phase, since the finite-size gap must have the loga-
rithmic size correction term ~-—1/log L. Here, we should
recall that the logarithmic correction normally vanishes just
at a, due to the SU(2) symmetry in the c=1 CFT.?? There-
fore, instead of using the crossing point of the scaled gaps,
we can estimate «, as a point where the size correction is
minimized. The difference of the scaled gap between two
system sizes L and L, is plotted versus « for J;=0.5 in Fig.
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FIG. 4. Ground-state phase diagram of the asymmetric three-leg
spin tube (1), derived from the numerical analysis. The phases (I)-
(IV) correspond to those in Fig. 2. The cross points are determined
by the DMRG. The three kinds of lines are done by the numerical
diagonalization. The circle points are obtained from the level-
spectroscopy method in Sec. IV C.

3(b). The minimum of the difference L;A; —L,A; has a
very small L dependence. Note that the minimum value
LIALI—LQALZ decreases as the size increases. This phenom-
enon and the assumption of the BKT-type transition suggest
that this minimal value approaches zero as the system size
increases. This is quite reasonable if we suppose the most
important finite-size correction to the scaled gap LA next to
1/log L term is order of 1/L23%3%3 We thus determine a,
from the minima for two large systems with L;=96 and L,
=128 for J,<2. The estimated «,.; and «,, are shown as
crosses in Fig. 4. They correspond to the phase boundary
between two regions (IT) and (IIT) and that between (IIT) and
(IV), respectively. At least these boundaries for the strong-
rung-coupling regime J; =2 are precise enough to justify
that a finite gapful phase (III) exists. However, it is difficult
to obtain «, for J;>2 because the DMRG calculation is not
well converged there.

In order to determine the phase boundaries for the weak-
rung-coupling regime J;>2, we use the minimum points of
LIALl —LZAL2 calculated by the numerical diagonalization up
to L=10 under the periodic boundary condition. The esti-
mated phase boundaries for (L;,L,)=(6,8) and (8,10) are
plotted as long-dashed and dashed curves, respectively, in
Fig. 4. In addition, the infinite-L curves extrapolated assum-
ing the size correction is proportional to 1/L? in both direc-
tions of J; and « are also shown as solid curves in Fig. 4. At
least the phase boundaries (II)-(IIT) and (IIT)-(IV) are consis-
tent with the DMRG results for J; <1. The boundary (III)-
(IV) is, however, significantly deviated from the DMRG es-
timation for J; ~ 1. This discrepancy is supposed to be due to
the error of extrapolation. This analysis also justifies the ex-
istence of the phase (I). However, the error of extrapolation
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becomes larger as we approach the line 1/J,=0 in the case
of @<1. Thus it is difficult to conclude that the phase (I)
really exists for <1 within the present numerical demon-
stration. The boundary (I)-(IIT) will be discussed later. It is
also difficult to confirm the boundary (I)-(IT), and the phase
(I) might combine with the phase (II) in a certain regime
with a<<1.

B. Conformal field theory analysis

The numerical analysis based on CFT is generally effi-
cient in investigating the feature of quantum phase transi-
tions in 1+ 1 dimensional systems. The conformal invariance
gives the L dependences of the ground-state energy E( and
the energy gaps for triplet excitations A, and that for singlet
excitations A, as the forms

E, MU, C
= €— 5+, 30
L L* 6 (302)
TV, O
A, = - +ee ], 30b
t I (7] log L ) ( )
TV o
A=—|p-—""4--], 30
s L(ﬂ log L ) (30c)

where v, is the spin wave velocity, ¢ is the central charge,
and 7, o, and oy are the critical exponents. These exponents
7 and o, appear in the spin correlation function3%4

(S708i ) ~ (= 1 (og D=7 (v=xy.2),

where [j|> 1. As discussed in Sec. III, the gapless phases (II)
and (IV) are predicted to be described by the level-1 SU(2)
WZW model. This model indicates the universal constants
c=1, p=1, cr,=%, and a'S=—%.

The exponent 7 can be determined from the triplet and
singlet excitation gaps in the finite-size system, by using the
relations =LA,/ 7vg+-++ and p=LA;/mvs+---. Using the
results from the numerical diagonalization for L=8 and 10,
we estimate ¢, LA,/ mv,=17, and LA,/ 7v,= 5, independently,
shown in Fig. 5 for J;=0.3. Here, we have evaluated the spin
wave velocity by v,=(E;—E,)/k,, where E, is the lowest
energy of the eigenstate with the smallest nonzero wave
number k1=2T77. The velocity is generally nonuniversal and
depends on the couplings J; and J,.

In Fig. 5, we also depict a special average (3LA,/ v,
+LA,/mv,)/4 of the singlet and the triplet gaps such that the
dominant finite-size logarithmic corrections cancel out each
other.*! This average and c¢ seem to be almost unity in the
gapless phases in Fig. 5 as observed in the S:% antiferro-
magnetic Heisenberg chain with the next-nearest-neighbor
interaction.> These results are completely consistent with
the expected BKT transition. We therefore conclude that both
gapless phases (II) and (IV) are governed by the WZW
model and the transition between (II)-(III) and that between
(I)-(IV) belong to the BKT universality class.

Now, we note the level crossing between LA,/ v, and
LA,/ mv, around a=1 in Fig. 5. This level crossing implies
the appearance of another singlet ground state as a reflection
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average

0 1 4 2

0

FIG. 5. Central charge ¢ and critical exponents LA,/ v, and
LA/ v including finite-size corrections for J;=0.3. These are es-
timated from the numerical diagonalization up to L=10, based on
the size dependence of low-lying energy spectra predicted by the
CFT.

of the valence-bond order in the thermodynamic limit. This
is a clear numerical evidence of the extended gapful phase
(IIT) predicted by several effective theories. On the contrary,
Nishimoto and Arikawa'? have claimed that the gapless
phase is extended everywhere except at the point =1, by
means of the DMRG analysis. Our observation does not
agree with their claim.

C. Level-spectroscopy method

The level-spectroscopy method??#>* is a very powerful
tool to determine the critical point of the BKT transition in
one-dimensional quantum systems. For the SU(2)-symmetric
cases including the present spin tube, its strategy becomes
easier.’? According to this method, the critical point can be
determined as an intersection between the singlet and the
triplet excitation gaps, where their logarithmic finite-size cor-
rections vanish. The phase boundaries (IT)-(IIT) and (ITI)-(IV)
estimated by this method are shown in Fig. 6. Here we have
applied the results of the numerical diagonalization up to L
=10 for J;=0.2. The numerical data are well converged to
those of the thermodynamic limit by use of the 1/L? extrapo-
lation. The 1/L? extrapolation is justified by considering the
most important finite-size correction to the excitation gaps A
next to the logarithmic term.?

Several critical points estimated by the level spectroscopy
are plotted by open circles in Fig. 4. We find that at least for
J <1, the results are in good agreement with the phase
boundaries (IT)-(IIT) and (IIT)-(IV) evaluated in the preceding
Sec. IV A.

On the other hand, when we consider the transition be-
tween two phases (IIT) and (I) along the line =1, the finite-
size correction to the critical point is too large to determine
the precise value of the infinite-length limit, as shown in Fig.
7. The extrapolated value of the critical J; results in 1/J;,
=0.51 =0.45. It is therefore difficult to conclude whether J;,.
is finite or zero for =1, namely, whether or not the gapless
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FIG. 6. Critical points «,. evaluated by the level-spectroscopy
analysis for J;=0.2, assuming the size correction is proportional to
/1%

phase (I) still survives for small «. [We have already shown
the presence of the phase (I) for large a>1 in Sec. III B.]

V. CONCLUSIONS AND DISCUSSIONS

We have studied the ground-state phase diagram and the
quantum phase transitions of the S =% three-leg asymmetric
spin tube models defined by Eq. (1). In Sec. IIT A, based on
the Hubbard model on the tube lattice, we have proposed an
effective theory to draw a global phase diagram, Fig. 2, in
the parameter space (J;,a). Three gapless phases (I), (II),
and (IV) and one gapful phase (IIT) are found by counting the
Fermi points. This effective theory indicates that the level-1
SU(2) WZW model describes two extended gapless phases
(IT) and (IV) which are separated by a extended gapful phase
(MI) around a=1. In Sec. III B, applying another analytical
strategy based on the non-Abelian bosonization, we have
proved that the predicted gapless phase (I) is exactly present
at least for weak rung couplings J;>J, with a strong asym-
metry a> 1. Furthermore, we have argued that the gapful
region (IIT) is surely extended (although narrow) for the case
J,>J; and J,~J in Sec. III C.

Following these results of effective theories in Sec. III, we
have numerically analyzed the quantum phase transitions of
the spin tube (1) in Sec. IV. The phenomenological renormal-
ization approach based on the DMRG and the numerical di-
agonalization has enabled us to draw the global phase dia-
gram. The numerical results are qualitatively in agreement
with those of effective theories. In addition, we have raised
the validity of the phase diagram by means of the numerical
finite-size scaling arguments based on the c=1 CFT. We
have confirmed that the phase transitions (IT)-(IIT) and (III)-
(IV) belong to the BKT universality class quantitatively.
Here, we make a comment on that the gapped region esti-
mated in Ref. 12, where an unconventional power-law fitting
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=1

117,

0.04 006
1/L

0 0.02

FIG. 7. Critical value of J; for the regular triangle spin tube
(a=1) evaluated by the level-spectroscopy analysis.

with respect to L is employed, is well inside of the present
phase III. We should, however, recall that the gap near the
BKT transition is exponentially small and thus the gap is
difficult to be detected by the phenomenological renormal-
ization approach, which usually overestimates the gapless
region. This suggests that the gapped region in Ref. 12 be-
comes smaller than the present phase diagram (Fig. 4), al-
though the DMRG data itself may be consistent with each
other.

The semiquantitative phase diagram of the spin tube (1)
has been constructed in this study (see Figs. 2 and 4), but
some subtle issues are still remaining, e.g., (A) the topology
of the phase boundaries along the two lines =0 and 1/«
=0, (B) how widely the gapless phase is extended, etc. In
order to resolve these problems, more sophisticated ap-
proaches would be necessary.
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