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We investigate the connection between the transport properties and the thermodynamics of electronic sys-
tems with a tendency to form broken-symmetry mesophases evocative of the physics of liquid crystals.
Through a hydrodynamic approach to the electronic transport in inhomogeneous systems, we develop a per-
turbative expansion for the macroscopic conductivity to study the transport of two-dimensional smectic and
nematic phases. At the fluctuation-induced first-order phase transition expected for the smectic to isotropic
transition, a jump in the macroscopic conductivity is predicted, with a directional dependence that reflects the
fluctuation spectrum of the order parameter. When elastic fluctuation modes melt the smectic phase into a
nematic phase, the resultant nematic order parameter is shown to be linearly proportional to the conductivity
anisotropy. We also outline qualitative comparisons with recent experimental works on strongly correlated
materials that show evidences of electronic liquid-crystalline mesophases.
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I. INTRODUCTION

Recent investigations on strongly correlated electron sys-
tems suggest the emergence of inhomogeneous charge-
ordered phases reminiscent from the smectic and nematic
states commonly found in liquid crystals.1 Such an analogy
makes reference to the broken symmetries of each phase.
While the nematic phase breaks only rotational symmetry,
the smectic state also breaks the translational invariance
along one particular direction. Such electronic mesophases
can be envisaged as “fluctuating” and static charge stripes,
respectively. Numerous experimental works provide evi-
dences for the occurrence of smectic charge ordering in
nickelates,2,3 manganites,4 and La2−xBaxCuO4 �LBCO�
cuprates,5 as well as indications of the existence of nematic
order in quantum Hall systems,6 ruthenates,7 La2−xSrxCuO4
�LSCO�,8,9 and YBa2Cu3O6+y �YBCO� cuprates.10,11

The order of these mesophases is directly manifested in
anisotropies of the electric transport as well as in the mag-
netic or charge response of the system, similar to the aniso-
tropic optical and hydrodynamic properties of liquid crystals,
such as birefringence and viscosity.12 An interesting question
is the explicit connection between the order parameters of
these inhomogeneous mesophases and their transport proper-
ties. While it is natural to expect that the resistivity aniso-
tropy is directly linked to an order parameter that breaks
rotational or translational symmetry, it is less obvious how to
connect transport properties to spatial or temporal fluctua-
tions and correlations of the system.

In this paper, we investigate the transport properties of
inhomogeneous electronic mesophases in the hydrodynamic
transport limit, where collisions dominate. In this regime,
electron transport can be understood as a diffusive process
with inhomogeneous and potentially time-dependent diffu-
sion constant D�x , t�. We use a coarse-grained description
and assume that the dephasing length scale l0, beyond which
diffusive transport sets in, is small compared to the length
scale � on which the inhomogeneities of the electronic me-

sophases vary. The condition l0�� is expected to be valid
close to finite temperature phase transitions. This is certainly
true close to second-order transitions where � diverges. How-
ever, even if the transition is weakly first-order, we still ex-
pect � to be larger than the lattice constant a while l0 be-
comes comparable to a due to strong inelastic scattering
close to the transition.

As will be discussed in detail below, our formalism for the
conductivity of inhomogeneous mesophases has a close con-
nection to the theory of random resistor network �RRN�.13

Previously, the classical RRN was applied to explain trans-
port properties of composite films,14 manganites,15 and silver
chalcogenides.16 Moreover, numerical simulations of corre-
lated versions of this network were carried out in the con-
texts of manganites,17 disordered electronic nematic phases
in cuprates,18 and finite temperature Mott transitions.19 The
present approach is an analytical theory for transport in elec-
tronic mesophases valid for inhomogeneities that are small in
amplitude but well correlated in space. It can also be consid-
ered as an analytical theory for resistor networks with corre-
lated local conductivities.20 Here, the spatial correlations be-
tween the microscopic resistors are directly connected to the
correlations of the order parameter describing the mesophase
and not to an arbitrary distribution function.21 In the formal-
ism that we develop, not only the order-parameter mean
value but also its relevant fluctuations are explicit related to
the macroscopic dc conductivity through a perturbative ex-
pansion.

By applying this general hydrodynamic transport model
to the static charge-striped phase, we show that while the
conductivity measured perpendicular to the stripes probes
mainly the order-parameter amplitude, the conductivity mea-
sured parallel to them is particularly sensitive to the fluctua-
tion spectrum. Thus, from transport measurements, it is in
principle possible to obtain information about the micro-
scopic character of the anisotropic mesophase, such as the
first moments of the Boltzmann distribution function, for ex-
ample. As a specific realization of the thermodynamics of the
electronic smectic state, we consider the Coulomb-frustrated
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Ising model first introduced by Emery and Kivelson22,23 in
the context of doped Mott insulators that present high-
temperature superconductivity. We obtain an analytic expres-
sion for the dc conductivity by using the self-consistent
mean-field solution of the effective Ginzburg-Landau Hamil-
tonian called the Brazovskii Hamiltonian.24 We then show
that the fluctuation-induced first-order transition from the
isotropic liquid to the smectic phase is manifested as an an-
isotropic jump of the conductivity, whose sign brings infor-
mation about the fluctuation spectrum of the order parameter.
Qualitative comparisons to experimental data showing jumps
in the resistivity of nickelates are also outlined.

In our theory, the investigation of the transport properties
of the electronic nematics focuses on the role of thermally
excited modes. Thus, it is complementary to the analysis of
quantum modes as discussed in the recent literature.25 Based
on the work of Toner and Nelson,26 we also describe the
high-temperature nematic phase as a smectic phase melted
due to the elastic fluctuations of stripes. We show explicitly
that there is a temperature range where the macroscopic con-
ductivity anisotropy is linearly proportional to the nematic
order parameter, as expected from symmetry
considerations,27 and determine the prefactor that connects
transport properties and nematic order. The same linear rela-
tion including the prefactor were also observed in numerical
simulations of a disordered electronic nematic phase at zero
temperature,18 suggesting a close connection between the
two rather different approaches. Finally, a very recent experi-
ment regarding YBCO showed a remarkable resemblance be-
tween the spectral weight of the low-energy anisotropic spin
fluctuations obtained through neutron scattering and the re-
sistivity anisotropy obtained from transport measurements.11

The remainder of the paper is organized as follows. In
Sec. II, we provide a detailed derivation of the hydrodynamic
model for the diffusion of an electron in an inhomogeneous
medium, which will be used throughout the work. Section III
is devoted to the application of this formalism to the trans-
port properties of an electronic smectic phase. Not only do
we outline very general properties but we also obtain specific
results after describing the charge stripes thermodynamics by
the Brazovskii model. In Sec. IV, the dc conductivity of an
electronic phase with nematic type of order is investigated
through the hydrodynamic transport model. Such a state is
described as a smectic phase melted by thermally excited
elastic fluctuation modes of the stripes. Comparisons to other
approaches as well as to recent experiments involving doped
transition-metal oxides are delineated. Finally, Sec. V is de-
voted to the final remarks and acknowledgments.

II. DIFFUSIVE TRANSPORT IN INHOMOGENEOUS
MESOPHASES

Let us consider the diffusion of an electron in an arbitrary
inhomogeneous medium. We start from the continuity equa-
tion,

���x,t�
�t

+ � · j�x,t� = 0, �1�

connecting the charge and current densities. The macro-
scopic conductivity of the medium ��� relates the mean cur-

rent density to the external electric field −�Uext�x , t�,

�j��x,t�� = −� ����t − t����Uext�x,t��dt�, �2�

yielding, in the Fourier space,

���k,	�� = − i
����	�k�k�

	
Uext�k,	� . �3�

Next, we assume that locally the diffusive relation

j��x,t� = − 
0D���x,t���Uloc�x,t� �4�

holds for the current density in terms of the local electrical
field −�Uloc�x , t�, where D���x , t� denotes the inhomoge-
neous and possible time-dependent local diffusion coeffi-
cient. Within linear response, the uniform charge susceptibil-
ity 
0 connects the local charge variations with the difference
between the local and external potentials

��x,t� = 
0�Uloc�x,t� − Uext�x,t�� . �5�

Combining the last two expressions, we are able to relate
the external and local potentials via

Ĝ−1Uloc�x,t� =
�Uext�x,t�

�t
, �6�

with inverse diffusion operator

Ĝ−1 =
�

�t
− ���D���x,t���� . �7�

This yields for the charge density

��x,t� = 
0�Ĝ
�

�t
− 1	Uext�x,t� . �8�

After taking the configurational average over ��x , t�, we
can Fourier transform its mean value and obtain, by compar-
ing to Eq. �3�,

����	� = lim
k→0

i	

k�k�


0�− i	G�k,	� − 1� , �9�

where G�k ,	� is the Fourier transform of the average of the
differential operator �7�. In the dc limit, this finally yields

��� = 
0 lim
	→0

lim
k→0

	2

k�k�

Re�G�k,	�� . �10�

Using the Einstein relation,28 we can identify the aniso-
tropic macroscopic diffusion coefficient D��

macro as

D��
macro = lim

	→0
lim
k→0

	2

k�k�
Re�G�k,	�� .

Therefore, it is clear that even if the tensor of the local
diffusion coefficient behaves as D���x , t�=D�x , t����, the
global diffusion coefficient can be anisotropic as long as
D�x , t� is a function of the direction of x.

This hydrodynamic formalism has a one-to-one analogy
with the theory of RRN.29 In its most elementary form, one
considers two resistors with conductivities �A and �B ran-
domly distributed with probabilities p and 1− p over the
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links of a network. An external electric potential Uext is then
applied in each site through a local capacitor with specific
capacitance C. As shown by Ref. 29, the macroscopic con-
ductivity is given by a result identical to Eq. �10�, with C
playing the role of the charge susceptibility while the local
conductivities of the RRN correspond to 
0D�x�. In the RRN
problem, the average is performed over the distribution func-
tion of the resistor network, which is frequently assumed to
be a binomial distribution, characterized by the probability p.

The key difference between our approach and the RRN
theory is that the distribution function for the local diffusion
coefficient is determined by the distribution function of the
order parameter. Let the order of an inhomogeneous elec-
tronic nematic or smectic state be characterized by a scalar
density field ��x , t�. Here, ��x , t� is the deviation of the
coarse-grained electron density from its mean value. We then
assume a simple connection

D���x,t� 
 D�����x,t�� �11�

between the spatially varying diffusion coefficient and the
electron density of the electronic mesophase, meaning that
the temporal and spatial variations of the diffusion coeffi-
cient are determined solely by those of ��x , t�. In our cases of
interest, the ordered inhomogeneous state is characterized by
an order parameter that varies in space alternating between
��0 and �0. For instance, in electronic smectics, ��0
��0� denotes a hole-rich �poor� coarse-grained region.
Since each of these regions has its own conducting proper-
ties, we can associate different local conductivities to each of
them.

For weakly inhomogeneous systems, we expand D���x , t�
relative to the homogeneous state, where ��x , t�=0. Hence,
we propose the following specific form for D���x , t� of Eq.
�11�:

D���x,t� = 
0�0�1 + g��x,t�����, �12�

where �0 is the microscopic conductivity mean value and g
is the coupling constant measuring the contrast between the
conductivities of distinct regions. The physical meaning of
these two parameters can be better visualized by considering
the limit of an ordered homogeneous phase where �= ��0.
Denoting the conductivity of the saturated homogeneous �
�0 ��0� phase as �����, we have �0= ���+�� /2 and
g=�0

−1���−�� / ���+��. A relation similar to Eq. �12�
was considered in the context of the Mott transition by Pa-
panikolaou et al.19 However, in that case it was necessary to
include a next-order term ���x , t�2 in the expansion �12�
originated from the contribution of interface scattering. Such
effects are not included in the present work.

Now, we particularize our analysis to the situation where
the inhomogeneities of the system are small, such that g
�1. Thus, the diffusion differential operator �7� can be per-

turbatively expanded as Ĝ=�n=0
� gn�Ĝ0V̂�nĜ0, with

�Ĝ0�−1 =
�

�t
− D0�

2

V̂ = D0 � · ���x,t��� , �13�

where the bare diffusion coefficient is D0=
0�0. In order to
obtain a perturbative expansion for the conductivity through
Eq. �10�, we need to perform an average over � before taking

the Fourier transform of V̂. There are two opposite limits one
can consider. In the first one, which we shall call quenched
limit, the electron diffuses faster than the field fluctuates,
probing a frozen configuration of the order parameter.
Hence, after taking the proper Fourier transforms, we obtain,
to the second order in g,

��� = �0�1 + g���k = 0,	 = 0��

− g2� ddkd	
k4�n̂� · k̂�2

�	2D0
−2 + k4�

���k,	���− k,− 	��	 ,

�14�

where n̂� is the direction taken to measure the conductivity
and �¯� denotes the proper average over the order param-
eter, which can be the usual thermodynamic average, for
example. Similarly we could also consider transport in non-
equilibrium configurations such as glassy states; then, �¯�
refers to the corresponding dynamic average of the nonequi-
librium configuration under consideration.30,31 For future ref-
erence, we rewrite the formula �14� for the special situation
where the field is static

��� = �0�1 + g���k = 0�� − g2� ddk�n̂� · k̂�2���k���− k��	 .

�15�

In the opposite limit, which we shall call annealed limit,
we consider a field that fluctuates much faster than the elec-
tron diffuses. Therefore, it is legitimate to replace the order
parameter by its mean value �→ ��� in the microscopic con-
ductivity expression �12�, yielding

��� = �0�1 + g���k = 0�� − g2� ddk�n̂� · k̂�2���k�����− k��	 .

�16�

It is clear that the anisotropic character of the conductivity
is not manifested until the second order in g. Moreover, this
second-order term reflects a fundamental difference between
the quenched and annealed limits. While in the latter the
conductivity behavior is dictated by the order-parameter am-
plitude, in the former we note a tight connection between the
macroscopic conductivity ��� and the correlation function
���k���−k��, resembling other similar relations found in
condensed-matter systems, such as between the scattering
cross section and the thermodynamic correlation functions.

III. TRANSPORT IN THE SMECTIC PHASE

Using the formalism developed in Sec. II, there are some
very general statements we can make about the conductivity
of an electronic smectic mesophase, independently of the
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specific model under consideration. Hereafter, we consider
that the static order parameter ��x� describes local fluctua-
tions of the charge density and that the electron diffuses
much faster than the field changes �quenched limit�. Since
the system is usually electrically neutral, such that ���k
=0��= 1

V����x��ddx=0, the lowest nonvanishing correction to
the uniform conductivity in perturbation theory is of second
order in the contrast. After writing the correlation function as

���k���− k�� = C�k� + ���k�����− k�� , �17�

where C�k� is the connected correlation function, we can
split the second-order term of the macroscopic conductivity
�15� in two parts ���=�0�1−g2����� +���� ��,

���� =� ddk�n̂� · k̂�2C�k�

���� =� ddk�n̂� · k̂�2���k�����− k�� . �18�

In the case of interest here, the correlation function de-
pends only on the modulus of the momentum, i.e., C�k�
=C�k�. Therefore, ���� does not depend on the direction taken
to measure the conductivity since n̂� will be integrated out
over all directions. Hence, ���� is isotropic and depends only
on the order-parameter fluctuation spectrum

���� �� ddkC�k� = C�x,x� = ��2�x�� − ���x��2. �19�

Meanwhile, the term ���� is proportional to the averaged
order parameter. For small amplitude static stripes, it is rea-
sonable to assume that the order-parameter mean value is
strongly anisotropic and has a pronounced peak along the
modulation direction q0, such that ���k��A��k−q0�.
Higher harmonics �entering as ��k−2q0� or ��k−3q0�, etc.�
only matter once the amplitude of the inhomogeneity be-
comes large, i.e., ��x , t� becomes large compared to the mean
electron density. It follows that unlike ���� , the term ���� is
anisotropic and depends on the relative angle �� between the
external electric field and the modulation vector through

���� � A2 cos2 ��. �20�

Thus, if the conductivity is measured perpendicular to the
stripes �n̂� �q0�, the order parameter and its fluctuation spec-
trum will be probed. However, if the current is applied par-
allel to the stripes �n̂��q0�, the measurement will be sensi-
tive solely to the fluctuations of the order parameter. Clearly,
the transport quantity that only probes the order-parameter
amplitude is the anisotropic conductivity ��−��.

Another interesting situation to investigate is when the
system undergoes a phase transition to the state with no bro-
ken symmetries: the isotropic liquid. For instance, let us con-
sider a first-order transition from the liquid to the smectic
phase. If the conductivity is measured parallel to the stripes
direction, it is expected that ���� vanishes and the isotropic
part ���� will dictate the behavior of the dc conductivity.
Since fluctuations of the order parameter are usually larger in
the liquid-disordered state, we expect from Eq. �19� that

close to the transition, the conductivity of the liquid phase
will be smaller than the one of the ordered smectic phase
��

liq��
smc.

Instead, if the conductivity is measured perpendicular to
the stripes direction, the contribution of the term ���� will be
maximum. Unlike its counterpart ���� , this term is greater in
the ordered side, since the order-parameter amplitude van-
ishes in the liquid phase. Hence, the question of whether ��

dis

or ��
smc is larger close to the phase transition depends on the

ratio between the jumps of the fluctuations and of the ampli-
tude of the order parameter. For strong first-order transitions,
we expect the latter to be more significant, meaning that
��

liq���
smc.

Let us now apply the hydrodynamic transport formalism
to a specific model for the thermodynamics of the electronic
smectics. In particular, we focus on doped-layered transition-
metal oxides, which are believed to be well described as
two-dimensional �2D�-doped Mott insulators.32 In these
compounds, the stripes appear as a compromise between a
tendency of the doped charges to phase separate from the
antiferromagnetic background spins and the long-range elec-
trostatic repulsion between alike charges.22 A simple model
that attempts to capture these properties is the Coulomb-
frustrated Ising model23

HIsing-Coulomb =
1

2
� d2x��0�2 + ����2 +

u

4
�4�

+
q0

3

2�
� d2x

��x���x��
�x − x��

, �21�

where ��x��0 denotes a hole-rich region �larger conductiv-
ity� while ��x�0 denotes a hole-poor region �smaller con-
ductivity�, with ����x��d2x=0. As usual, �0 denotes the re-
duced temperature and u is an effective parameter. While the
first term of the above Ginzburg-Landau Hamiltonian ex-
presses the tendency of phase separation, the second term
accounts for the frustration introduced by the Coulomb inter-
action. This Hamiltonian is minimized in the Fourier space
for a nonzero wave vector whose modulus is q0. Thus, con-
sidering the low-energy fluctuation modes, we can expand
Eq. �21� around its minimum to obtain the effective func-
tional,

H =
1

2
� d2xd2x���x�C0

−1�x,x����x� +
u

4
� d2x�4�x�

C0
−1�x,x�� =

1

�2��2� d2k
eik·�x−x��

�0 + �k − q0�2 . �22�

Note that although �0 in Eq. �22� is shifted with respect to
�0 in Eq. �21�, we keep the same symbol to simplify the
notation. This model was first studied by Brazovskii in the
context of cholesteric liquid crystals24 and has been em-
ployed to describe a variety of other physical systems with
inhomogeneous states from “hard matter” ones, such as di-
polar ferromagnets,33,34 to “soft matter” systems, such as
diblock copolymers35 and microemulsions.36 The striped
phase with modulation vector q0, which has smectic order, is
a thermodynamic stable state of the model. In two dimen-
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sions, extra external potentials are necessary in order to en-
sure the stability of this smectic phase against elastic
fluctuations—such as crystalline fields37 or pinning centers,
for example.

Since we are interested in the main qualitative transport
properties of the system, we use the self-consistent mean-
field solution of Eq. �22�. The details of this method are
presented elsewhere.24,34,38,39 It predicts a fluctuation-
induced first-order transition from the smectic state ���x��
=2A cos�q0 ·x� to the liquid-disordered phase. The tempera-
ture for which their free energies become equal is �0

��
−�3�2q0u�2/3, which we will consider the transition tempera-
ture hereafter �this is valid for an adiabatic change in the
temperature�. At this point, there is a jump in the correlation
length of the system �, as sketched in Fig. 1. We consider the
stripes frozen in the diffusive electron reference frame;
hence, substituting the self-consistent solution of Eq. �22� in
Eq. �15� yields, for the conductivity of the liquid-disordered
and smectic phases,

���
liq � �0�1 −

g2

4
�q0���

���
smc � �0�1 −

g2

4
�q0���1 + 4� ��

�
�3

cos2 ��	� , �23�

where � is the correlation length, �� is its value at the tran-
sition temperature for the smectic phase, and �� is the angle
between the direction taken to measure the conductivity and
the direction of the stripes modulation q0. As expected, the
conductivity is intrinsically anisotropic and it is greater when
measured parallel to the stripes ���= �

2 � than when it is mea-
sured perpendicular to them ���=0� ��

smc���
smc. Moreover,

this anisotropy increases as the temperature is lowered due to
the decrease in �. Another manifestation of the thermody-
namic behavior in the transport properties is the occurrence
of a jump in the conductivity at the transition temperature, as
shown in Fig. 2.

Not only does the module of the jump ������=���
liq ��0

�

−���
smc ��0

� depend on the angle between the external current

and the stripes modulation but also its sign. In Fig. 3, we plot
������ as a function of �� and see that while its sign is
positive when the conductivity is measured perpendicular to
the stripes, it becomes negative when the measurement is
made along the stripes.

This is in agreement with the general discussion carried
out in the beginning of Sec. III. The negative sign is a con-
sequence of the fact that the conductivity measured parallel
to the stripes ���= �

2 � probes the fluctuations of the order
parameter, which are greater in the disordered phase, as it
can be noted directly from the behavior of the correlation
length presented in Fig. 1. When the conductivity is mea-
sured perpendicular to the stripes ���=0�, even though fluc-
tuations still contribute to the conductivity, there is an extra
contribution coming from the order-parameter amplitude,
which is nonzero only in the ordered phase. The positive sign
is a balance between these two contributions, meaning that
the latter, which is proportional to �−2, is greater than the
first, proportional to �.

In the low-temperature orthorhombic �LTO� phase of the
layered nickelates Nd1−xSrxNiO4, a sudden upturn in the re-
sistivity was observed at the charge-ordering temperature.2,3

1.0

1.5

2.0

0

FIG. 1. �Color online� Correlation length � �in units of the cor-
relation length �� of the smectic phase at the reduced transition
temperature �0

�� as function of the reduced temperature �0.

1.08

1.07

1.06

1.05

−1.05 −1.00 −0.95 −0.90

FIG. 2. �Color online� Conductivity �� measured perpendicular
���=0� to the stripes direction �blue line� as function of the reduced
temperature �0 �in units of the transition temperature modulus ��0

���.
An intrinsic insulating behavior was considered for �0 �red line�.

1.0

0.8

0.6

0.4

0.2

−0.2

−0.4

0.0
15 30 45 60 75 90

FIG. 3. �Color online� Conductivity jump ����� as function of
the angle � between the modulation direction q0 and the direction
taken to measure the conductivity �in degrees�.
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The external current in the experiment of Hücker et al.3 was
applied perpendicular to the direction of the stripes and this
sudden change could be the result of a jump rounded by the
disorder.40 It would be interesting to realize an experiment
where the conductivity is measured along the stripes direc-
tion in order to check if an opposite change in the resistivity
takes place. This would provide additional criteria to check
the validity range of this hydrodynamic transport model and
send light on the fluctuation spectrum in a state of mesoscale
ordering.

In another class of nickelates, the La2NiO4+�, experiments
probing resistivity fluctuations indicated no jump but also
suggested a strong coupling to sample disorder, giving rise to
slow stripe dynamics.41 The current was applied perpendicu-
lar to the stripes direction. For slow sample cooling, how-
ever, jumps were observed below the transition temperature
inside the smectic phase with an increase in the resistivity.
This was attributed to changes in the modulation wave-
vector modulus q0 due to the coupling to the lattice, in ac-
cordance with neutron-diffraction measurements that verified
a decrease in q0.42 A possible explanation is given in the
context of the present model: considering a reduction in the
wave-vector modulus q0�=�q0 with �1 and solving the
resulting self-consistent Brazovskii equations, we obtain
��

smc�q0����
smc�q0� for � close to 1 and for any temperature

below the transition one. Although other mechanisms could
also explain this decrease in the conductivity, such as a
temperature-dependent contrast g, for example, it is worth
pointing out that our model is consistent with this experi-
mental observation.

IV. TRANSPORT IN THE NEMATIC PHASE

In Sec. III, we implicitly assumed the underlying presence
of crystalline fields and/or pinning disorder in the system, in
order to keep the smectic phase stable against low-energy
fluctuation modes of the stripes. In the absence of such sta-
bilizing mechanisms, it is well known that at any finite tem-
perature, the clean two-dimensional smectic phase is un-
stable toward the formation of a nematic phase due to elastic
fluctuations of the stripes walls.26 Therefore, the nematic
phase can be conceived as a melted smectic phase, where the
stripes have no longer true positional order. Since two is the
lower critical dimension of the resulting system, the 2D nem-
atic state has only quasi-long-range orientational order,
which is lost above the Kosterlitz-Thouless transition tem-
perature TKT where pairs of disclinations unbind, driving the
system to the isotropic liquid phase.

Fluctuation modes of stripe walls other than thermally
excited ones can also melt the smectic phase. For example,
random-field disorder18 and quantum fluctuations1 are able to
drive the system to a nematic state even at zero temperature.
Alternatively, the quantum electronic nematics can be envis-
aged not as a result of the quantum melting of the smectic
phase but as a consequence of quadrupolar Pomeranchuk in-
stabilities of the Fermi surface of the isotropic liquid
phase.25,43 Here, we will not consider the role of quantum
fluctuations nor the presence of disorder but will follow
Toner and Nelson’s description of the nematic phase, taking

into account only thermally excited elastic fluctuations.26

This is fully consistent with our hydrodynamic approach
where the dephasing length is assumed short as the system is
considered at finite T.

Without loss of generality, we consider stripes modulated
along the x̂ direction and substitute the order parameter
��x�=2A cos�q0�x+u�x ,y��� in Eq. �22�, where the displace-
ment field u�x� describes the elastic fluctuations. The result-
ing elastic Hamiltonian is given, in the harmonic approxima-
tion, by

Helastic =
1

2
B� d2x�� �u

�x
�2

+ �2� �2u

�y2�2	 , �24�

with B=A2q0
2 and �−1=2q0. In two dimensions, explicit cal-

culations of the mean value and of the correlation function of
the order parameter yield ���=0 and

���x���0�� � �exp�−
q0

2

B
� �x�

4��
�1/2	 for �x � y2

�exp−
q0

2

4B�
�y�	 for �x � y2,�

�25�

meaning that the system has no true positional order. After
taking into account the roles of two kinds of topological
defects, dislocations and disclinations, it follows that the
elastic Hamiltonian describing the melted state is the Frank
Hamiltonian26

HFrank =
1

2
� d2x�K1�� · N�2 + K3�N � �� � N��2� ,

�26�

which describes the elastic properties of a 2D nematic liquid
crystal. In the expression �26�, the unit vector N denotes the
nematic director and the Frank constants K1 and K3 are func-
tions of the elastic parameters B and �, as well as of the
energy necessary to excite an isolated dislocation ED.

The role of the topological defects is fundamental to the
understanding of the thermodynamics of the resulting nem-
atic phase. As explained above, the unbinding of disclination
pairs induces a Kosterlitz-Thouless transition to the isotropic
liquid phase. Moreover, since isolated dislocations have a
finite excitation energy ED, a new length scale �D is intro-
duced in the system below TKT. Such a length scale denotes
the correlation length of isolated dislocations that proliferate
in the system as the temperature is increased and is given by
�D=nD

−1/2, where nD=d−2 exp�−
ED

kBT � is the dislocations den-
sity and d�q0

−1 is the stripes mean width. For lengths greater
than �D the system has the same properties of a nematic
liquid crystal, while for smaller lengths there is smectic order
decorrelated by elastic fluctuations only. Therefore, one can
consider the nematic phase as a set of finite-size smectic
blobs,26 where each blob has orientational order given by the
average of the orientation of the stripes enclosed, as sketched
in Fig. 4.

We can now apply the formulae of Sec. III to calculate the
conductivity of an individual blob ���

blob. Inside it, although
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density fluctuations remain small as long as �0�0
�, elastic

fluctuations are relevant. While a diffusive electron takes the
typical time tel�0

−1�D
2 to cross the blob, phonon fluctuations

propagate with a typical time scale tphv−1�D, where v is a
sound velocity. Therefore, we have to substitute the order-
parameter mean value ���k��=A���k−q0�+��k+q0��e−W,
where W=eED/3kBT / �22/3�1/3A2� is the Debye-Waller factor of
the finite-size blob, in the annealed limit of the macroscopic
conductivity �Eq. �16��. We obtain

���
blob � �0�1 − 2g2A2e−2W cos2 ��� , �27�

where �� is the angle between the direction taken to measure
the conductivity and the blob director �we are following the
convention that the director is perpendicular to the stripes
orientation inside each blob�. This procedure is valid for in-
termediate temperatures only, where W is small and the elas-
tic fluctuations ���el�=�e2W−1��el� are not so large.

To obtain the system’s macroscopic conductivity, the fluc-
tuations of the nematic director inside each blob have to be
taken into account. We can consider them slow in the elec-
tron reference frame. Thus, while taking the annealed limit to
calculate the conductivity inside each blob, we have to take
the quenched limit to calculate the conductivity of the whole
system, averaging over all blobs. We obtain

�xx
nem � �̄0�1 − ḡ�cos 2���

�yy
nem � �̄0�1 + ḡ�cos 2��� �28�

for the two opposite situations where the direction taken to
measure the conductivity is parallel �����=0: x̂ axis� or per-
pendicular �����=� /2: ŷ axis� to the mean orientation of the
nematic director. In the expression �28�, �=��− ���� denotes
the director deviation from the mean value. Furthermore, it
holds that �̄0=�0�1−g2A2e−2W� and ḡ=g2A2e−2W �to the sec-
ond order in the original g�.

It is remarkable that the nematic order parameter �cos 2��
appears spontaneously in the conductivity expression, even
though it was not assumed any coupling between the micro-

scopic conductivity and the nematic order parameter. Such a
relation can be cast in a more formal way by considering the
tensorial nematic order parameter in two dimensions �S���
=S�N�N�− 1

2���� with S= �2 cos2 �−1�. It is clear from Eq.
�28� that the anisotropic conductivity can be written as
���

nem� �̄0�1− ḡ�S����.
Another direct consequence of Eq. �28� is that the con-

ductivity anisotropy is proportional to the nematic order pa-
rameter �yy

nem−�xx
nem=2�0g2A2e−2W�cos 2�� in agreement with

symmetry arguments.27 By comparing this expression with
the one referring to the conductivity anisotropy of the smec-
tic phase �Eq. �23��, we note that in the present case the
anisotropy is much smaller due to the Debye-Waller factor
e−2W. Moreover, this result agrees exactly with the relation

� r + 1

r − 1
��R� − R�

R� + R�
� = �cos 2�� �29�

found for T=0 by Carlson et al.,18 with the same prefactors
�in our case, r


R���cos 2��→1�
R���cos 2��→1� = 1+ḡ

1−ḡ �. In that work, the disor-
dered electronic nematics was mapped on the random-field
Ising model �RFIM� and the conductivity was obtained nu-
merically through a random resistor network approach. Al-
though the two systems are very different, since ours is clean
whereas the one investigated by Carlson et al.18 is disor-
dered, this outcome seems to be a consequence of the exis-
tence of clusters with short-range smectic order inside the
nematic phase—the thermally excited blobs in our model
and the disorder-generated nematic patches in the other
work.

Such a linear relation between a macroscopic quantity and
the thermodynamic order parameter can be very useful in the
investigation of the orientational ordering of nematic phases
in the cuprates, especially through transport measurements.
In fact, a recent experiment11 on YBa2Cu3O6.45 suggested a
linear relation between the compound conductivity aniso-
tropy and the spectral weight of the low-energy anisotropic
spin fluctuations. Still regarding possible experimental impli-
cations, we also point that due to the large elastic fluctuations
intrinsic to the system’s dimensionality, deviations from the
averaged conductivity are expected for small systems in
what would be manifested as noise in time-series measure-
ments.

Before finishing this section, an important remark regard-
ing the mean value �cos 2�� should be made. Strictly speak-
ing, in two dimensions this average is zero in the thermody-
namic limit due to Mermin-Wagner theorem �see, for
instance, Chaikin and Lubensky�.28 However, in real layered
systems, finite-size effects as well as small interlayer cou-
plings are able to stabilize the nematic phase, granting a
nonvanishing value for the order parameter.

V. CONCLUDING REMARKS

We presented a hydrodynamic transport theory that can
provide important tools in the investigation of electronic
phases with smectic and nematic symmetries, rendering ex-
plicit relations between macroscopic transport quantities and
the microscopic order parameter. Particularly, we considered

FIG. 4. �Color online� Schematic representation of the nematic
phase originated from the melting of the smectic state due to ther-
mally excited elastic fluctuations. The blobs comprehend regions
free of topological defects enclosing stripes that are decorrelated by
elastic fluctuations only. The director of each blob is indicated by a
double arrow.
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doped-layered transition-metal oxides, using the Brazovskii
model to describe the thermodynamics of the low-energy
charge modes of their smectic phases. The directional depen-
dence of the sign of the conductivity jump was shown to be
a manifestation of the Brazovskii fluctuation spectrum and a
general characteristic of the hydrodynamic transport model,
constituting an interesting criterion to decide on the applica-
bility of the model to describe the observed static charge-
striped phases.

The finite temperature electronic nematics was conceived
as a smectic Brazovskii phase melted by thermally excited
elastic fluctuations of the stripes walls, following the ap-
proach of Toner and Nelson.26 Not only does the nematic
order parameter appear explicitly and spontaneously in our
formalism, but it is also shown to be linearly proportional to
the conductivity anisotropy, following the same relation
found numerically by Carlson et al.18 for the case of the
disordered electronic nematics at zero temperature.

In the context of nematic phases, it would be interesting
to investigate other excitations that are also able to melt the
smectic phase in a nematic state, such as quantum and

disorder-induced fluctuations.1,18 Moreover, additional stud-
ies on out-of-equilibrium properties of the electronic nemat-
ics, particularly on the connection between fluctuations of
the smectic clusters and transport time-series measurements,
would also be desirable to provide a richer picture of the
problem. Finally, applications of the general formalism to
systems other than doped transition-metal oxides can also be
envisaged, for example, for the low-temperature-striped
phases that appear in quantum Hall systems25,27,43 and for the
inhomogeneous phases found in spin glasses and Mott
insulators.19
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