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Fermionic mean-field theory and variational Monte Carlo calculations are employed to shed light on the
possible uniform ground states of the Heisenberg model on the pyrochlore lattice. Among the various flux
configurations, we find the chiral spin states carrying �� /2 flux through each triangular face to be the most
stable both within the mean-field theory and the projected wave-function studies. Properties of the spin-spin
correlation function and the chirality order parameter are calculated for the projected wave functions. Mean-
field band structures are examined.
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I. INTRODUCTION

The question of the quantum ground state of spin-1/2
Heisenberg Hamiltonian

H = �
�ij�

Si · S j �1�

on the pyrochlore lattice has prompted active research for
nearly two decades.1–6 A popular scheme, employed in Refs.
1–4, was to solve the isolated tetrahedron problem exactly
and to couple the nearby disjoint tetrahedra in the weak ex-
change energy J�. A nonmagnetic state with exponentially
short correlation length was identified in Ref. 1 in this way,
and Refs. 2–4 noted the dimer instability in the ground state.
A similar dimer instability was discovered in the large-N
approach in Ref. 5. While Refs. 2–4 begin with the dimer
basis of a single-tetrahedron solution to carry out perturba-
tion in J�, Ref. 5 starts with a translationally invariant solu-
tion and finds that dimerization occurs as a spontaneous sym-
metry breaking.

In this Rapid Communication, we adopt the fermionic
mean field followed by variational Monte Carlo �VMC�
treatment to address this issue. Prior work in the same spirit
for the Kagome lattice can be found in Ref. 7. We find chiral
spin states8 with nonzero averages of the three-spin operator
�Si ·S j �Sk� for the elementary triangular unit formed by
�ijk� sites to be the likely nonmagnetic ground state of the
Heisenberg model realized on pyrochlore lattice under the
assumption of uniform nearest-neighbor bond amplitudes
��Si ·S j��. The flux through the triangles are found to be
�� /2 at the mean-field level but reached a smaller value
after the Gutzwiller projection was carried out.

II. MEAN-FIELD THEORY

In rewriting the spin operator as a fermion bilinear and
introducing the mean-field variable �ij = �f i

+f j�, one arrives at
the mean-field Hamiltonian

HMF = − �
i

�
j�i

�ij
� f i

+f j + �
i

�i�f i
+f i − 1/2� , �2�

with the Lagrange multiplier �i enforcing the occupation
constraint at each site. In doing the mean-field calculation

we drop the spin index and work with the half-filled
case �f i

+f i�=1 /2. The summation over all nearest-neighbor
sites j with respect to i is indicated by � j�i . To set up
the coordinates, we place the four corners of a single “up”
tetrahedron �uT� at �0,0,0�, �1,0,0�, �1 /2,�3 /2,0�, and
�1 /2,1 /2�3,�2 /3� then displace it by integer combinations
of ê1= �2,0 ,0�, ê2= �1,�3,0�, and ê3= �1,1 /�3,�8 /3� to
generate the pyrochlore lattice: n1ê1+n2ê2+n3ê3, ni

=integers. Each uT is met at four corners by down tetrahedra
�dT� and vice versa as shown in Fig. 1. The self-consistent
mean-field calculations were run for L�L�L�L3 lattice
with 4L3 lattice sites. L refers to the number of uT’s along
each ê� direction. The lattice contains an equal number of uT
and dT blocks.

A completely unrestricted minimization of �HMF� resulted
in the ground state with each site paired into a dimer while
all dimers are disconnected from one another, in accordance
with Rokhsar’s9 general observation. The extensive degen-
eracy of the dimer ground state will be lifted at higher orders
in 1 /N in a large-N expansion to give rise to a ground state
with �possibly� restored translational symmetry. Further-
more, the fully dimerized state carries an energy of −0.375
per site, which is much higher than some of the uniform
states we consider in this Rapid Communication. Therefore,
we move with the idea that the true ground state of Eq. �1� is
better captured by the uniform amplitude ansatz ��ij�=� but
with arbitrary phases: �ij =�ei�ij. For a single tetrahedron,
such a search yielded solutions where the flux through the
four triangular faces are all equal to �= +� /2 or −� /2. The
flux is defined from the directed product ei�=ei	�ij+�jk+�ki
 as
the three sites of a triangle �ijk� are traversed in a counter-
clockwise �CCW� manner when viewed from outside the tet-
rahedron. For the lattice problem with uniform ��ij�, the
mean-field ground state is found to be the one with staggered
chirality: �=� /2 for all the uT’s and �=−� /2 for all the
dT’s or vice versa. No solutions were found where different
faces of a given tetrahedron, either up or down, carried dif-
ferent amounts of flux or flux other than �� /2. The fluxes
through the hexagons of the pyrochlore lattice were all zero.
The mean-field ground-state solution is in complete confor-
mity with the “Rokhsar rule”10 of the flux for different types
of polygons.
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III. VARIATIONAL MONTE CARLO CALCULATION

VMC calculations of the energies of several mean-field
ansatz states were carried out including the one found in the
mean-field calculation. The states are labeled by 	uT, dT, H
,
where the three numbers uT, dT, and H refer to the flux
through the triangles of the up tetrahedra, down tetrahedra,
and the hexagons, respectively. We examine four such states:
�i� 	0,0,0
, �ii� 	 �

2 , �
2 ,0
, �iii� 	 �

2 ,− �
2 ,0
, and �iv� 	0,0 ,�
.

The mean-field result corresponds to case �iii�. For future
reference, we denote �ii� and �iii� as uniform and staggered
flux states. The other two states, �i� and �iv�, do not break
time-reversal symmetry. The choices of the trial states are
motivated by and parallel those in Ref. 7 for the Kagome
lattice. The �ij bond patterns that generate each state at the
mean-field level are shown in Fig. 1. With �ij’s given in Fig.
1 as input to Eq. �2� one can diagonalize HMF to obtain the
mean-field ground state �	MF� as a Slater determinant. The

evaluation of the energy and other operators X̂ is carried out
in the projected space �s� ��s� spans all the states with one
spin per site� by

�X̂� =

�
s

�	MF�s��s�X̂�	MF�

�
s

�	MF�s��s�	MF�
= �

s

P�s�
�s�X̂�	MF�
�s�	MF�

, �3�

where P�s�= ��s�	MF��2 /�s��s �	MF��2 is the probability weight
used in the Monte Carlo procedure.11

The unit cell includes a single tetrahedron for the 	0,0,0

and 	 �

2 , �
2 ,0
 states, and 2�2�1 tetrahedra for the 	 �

2 ,
− �

2 ,0
 and 	0,0 ,�
 states. Periodic boundary conditions
�PBCs� generate degenerate states at the Fermi level for the
	0,0,0
 and 	 �

2 , �
2 ,0
 cases, which can be lifted by applying

antiperiodic boundary conditions �aPBCs� along one of the
directions, e.g., ê1, for 	0,0,0
, and along two directions, e.g.,
ê1 and ê2, for 	 �

2 , �
2 ,0
. In the case of 	 �

2 ,− �
2 ,0
 and 	0,0 ,�


the unit cell includes four up tetrahedra, two in the ê1 direc-
tion and two in the ê3 direction, for the �ij patterns shown in
Figs. 1�b� and 1�c�. PBC suffices in both these cases since no
degeneracy occurs at the Fermi level.

The VMC energies of the trial states we propose are listed
in Table I. Several independent Monte Carlo simulations
were made with each simulation consisting of over 105 steps
�each step means one sweep of the whole lattice� for each
state to obtain reliable estimates of the energy. Due to the
rapid increase in the system size with L, the calculation is
currently limited to L=4. For L up to 4, the two chiral states
turn out to have much lower energies than the two nonchiral
states. The energies of the two chiral states are very close.

IV. SPIN-SPIN CORRELATION AND CHIRALITY

The spin-spin correlation function can be computed using
the relation �Si ·S j�= �3 /4��
i

z
 j
z� due to the spin isotropy of

the ground state. Table II displays the spin-spin correlations
obtained for all four flux configurations as a function of the
distance for L=4. We measure the correlation along the six
directions, ê1, ê2, ê3, ê1− ê2, ê2− ê3, and ê3− ê1, and take av-

TABLE I. Energy per site of various states obtained from VMC
depending on the number of up tetrahedra L in each direction. The
two chiral states have much lower energies than the nonchiral
states. Statistical uncertainties lie below the digits shown. Boundary
conditions, aPBC or PBC, used in the calculation are listed.

L 	0,0,0
 	 �

2 , �

2 ,0
 	 �

2 ,− �

2 ,0
 	0,0 ,�


aPBC aPBC PBC PBC

2 −0.372 −0.478 −0.466 −0.374

4 −0.374 −0.459 −0.456 −0.375

FIG. 1. �Color online� �ij bond configurations producing �a� 	 �

2 , �

2 ,0
, �b� 	 �

2 ,− �

2 ,0
, and �c� 	0,0 ,�
 flux states. Setting ��ij�=1, the
direction of the arrows indicates �ij = + i going from i to j. The shaded bonds are lying on the back sides. Independent sites are labeled from
1 through 4 �one up tetrahedron in a unit cell� in �a� and from 1 through 16 �four up tetrahedra in a unit cell� in �b� and �c�. In �c�, the thick
�dotted� lines represent bonds with �ij =1�−1�.

TABLE II. The spin-spin correlation function �Si ·S j� with re-
spect to distance for the four flux states. Five independent 105 MC
steps were used for each data point.

�i− j� 	0,0,0
 	 �

2 , �

2 ,0
 	 �

2 ,− �

2 ,0
 	0,0 ,�


1 −0.1249�2� −0.1533�1� −0.1522�1� −0.1250�1�
2 +0.0088�3� +0.0194�2� +0.0122�1� −0.0054�3�
3 −0.0027�1� −0.0129�1� −0.0024�3� +0.0012�2�
4 +0.0007�2� +0.0060�2� +0.0006�3� +0.0001�6�
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erages. The results for any one direction are consistent with
those taken along any other. It was difficult to reach a large
enough size to discriminate an algebraic decay of the corre-
lation against an exponential one. The sign of �Si ·S j� alter-
nated with distance as expected in an antiferromagnetically
correlated state, except for 	0,0 ,�
 where the signs of the
second- and the third-neighbor correlations are reversed �see
Table II�. The fast decay of the spin-spin correlation is con-
sistent with an earlier finding of Ref. 1 based on the cluster
perturbation method.

Both the mean-field search and the VMC calculation sug-
gest that the chiral states with spontaneously broken time-
reversal symmetry �T� are vital in the understanding of the
ground-state correlation of the Heisenberg model on the py-
rochlore lattice. We develop below an extension of the VMC
method which allows the calculation of the chirality and
evaluate it for the chiral states.

The scalar chirality �̂123= �S1 ·S2�S3� is equivalent to8

1

2
Im���̂12�̂23�̂31�� =

��̂12�̂23�̂31 − �̂13�̂32�̂21�
2i

�4�

with �̂ij =�
f i

+ f j
. It is the difference of the cyclic permuta-

tion of the spins done in the CCW and clockwise �CW� di-
rections. Unlike in the evaluation of the spin-spin correlation
where the action of 
i

z
 j
z on a given basis state �s� is diago-

nal, the outcome of �̂123�s� is not proportional to �s� itself.
Instead, we obtain the relation �̂123�s�= i��s+�− �s−��, as de-
picted in Fig. 2. The two states �s+� and �s−� are obtained as
CCW and CW rotations by one lattice site of the original
spin configuration �s� with the rotation axis chosen to point
out of the triangular faces of the tetrahedra. When the state
�s� contains all three spins up or all down for a given triangle,
the chirality operation gives zero. The average ��̂123� is ob-
tained from

��̂123� = i�
s

P�s�� �s−�	� − �s+�	�
�s�	� � . �5�

Here P�s� is the statistical weight ��s �	��2 /�s��s �	��2 for a
given mean-field state �	�. Following the usual manner of
updating the configuration by Monte Carlo methods, one has
to calculate the ratio ��s− �	�− �s+ �	�� / �s �	� for each state
�s�.

In the VMC calculation we take averages of �s− �	� / �s �	�
and �s+ �	� / �s �	� separately. The two quantities turn out to
be complex conjugates with extremely high accuracy, so one
can denote the averaged �s+ �	� / �s �	� and �s− �	� / �s �	� as
��̂123� /2� i��̂123� /2, respectively. The flux �123 is deduced
from tan��123�= ��̂123� / ��̂123�. The signs of the flux after the
projection turned out to be in perfect accord with the mean-
field predictions. On the other hand, the amount of flux is

reduced from the mean-field value � /2 after the projection
�see Table III�. The chirality was zero within a statistical
error for the nonchiral states, 	0,0,0
 and 	0,0 ,�
. The in-
crease in the average flux � with the system size is consis-
tent with the scenario of a long-range ordering of the chiral-
ity in the ground state.

V. BAND STRUCTURE

The band structures of the four flux configurations in Fig.
1 have been analyzed along the three orthogonal directions
kx ,ky ,kz as well as along k� that is defined to lie along the
three ê� directions, �=1,2 ,3. The relations between the two
sets of momenta are k1=kx, k2=kx /2+�3ky /2, and k3=kx /2
+�3ky /6+�6kz /3. Flat bands lying exactly at EF were ob-
served in the 	0,0,0
 and 	 �

2 , �
2 ,0
 states, and above EF for

the 	0,0 ,�
 state. No flat bands exist for 	 �
2 ,− �

2 ,0
. We de-
scribe the respective band structures in more detail. �i�
	0,0,0
: a twofold-degenerate flat band lies exactly at EF for
each k� direction. The other two nondegenerate bands lying
below EF are dispersive. �ii� 	 �

2 , �
2 ,0
: a twofold-degenerate

flat band at EF=0 was observed along the kz direction, kx
=ky =0. The other two bands are given by �cos��2 /3kz�.
Along each of the k� directions, the uppermost and the low-
ermost bands �which are related by particle-hole symmetry�
are flat, and the other two dispersive bands cross at EF as k�

equals a multiple of �. There is no gap for this or the 	0,0,0

flux configuration. This explains the existence of a Fermi-
level degeneracy in the finite-size mean-field energy spectra.
�iii� 	 �

2 ,− �
2 ,0
: four doubly degenerate bands lie below the

Fermi level and the others lie above it �separated by an en-
ergy gap�. Dispersion along the k� directions is displayed in
Fig. 3. �iv� 	0,0 ,�
: of the 16 bands, the uppermost band
lying above EF is eightfold degenerate and flat along each of

FIG. 2. �Color online� The two states, �s+� and �s−�, produced by
the chirality operation on a state �s�.

TABLE III. The real and imaginary parts of the averages of
�s+ �	� / �s �	� and the flux �in units of � /2� through the triangle for
	 �

2 , �

2 ,0
 �left three columns� and 	 �

2 ,− �

2 ,0
 �right three columns�.

L �123 ��123� ��123� �123 ��123� ��123�

2 0.376 0.356 0.483 0.368 0.325 0.461

4 0.314 0.358 0.542 0.312 0.358 0.544
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FIG. 3. Mean-field energy bands for the 	 �

2 ,− �

2 ,0
 state along
k�=k ·e� directions, 0�k�2�. Each band is twofold degenerate.
The occupied bands shown here are symmetric with the upper un-
occupied bands due to particle-hole symmetry. The horizontal line
EF=0 is the Fermi level. Dispersion along other directions �not
shown� also shows a full gap.
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the k� directions. The remaining ones are the four twofold-
degenerate bands lying below the Fermi level and separated
by a gap from the uppermost one. A gap separates the occu-
pied from the empty bands for the 	 �

2 ,− �
2 ,0
 and 	0,0 ,�


flux states, which also explains the absence of a Fermi-level
degeneracy in an earlier mean-field calculation.

The presence of flat bands in the 	0,0,0
 and 	 �
2 , �

2 ,0
 flux
states over a linear segment of the Brillouin zone suggests
that an instability might play a role. In the case of the uni-
form flux state, the degeneracy-lifting terms are given by the
modulation of the bond amplitudes for triangles lying in the
plane spanned by ê1 and ê2 vectors. Specifically it corre-
sponds to i�→ i��+�� for the �123� triangle of the up tetra-
hedron, and i�→ i��−�� for the �123� corners of the down
tetrahedron shown in Fig. 1�a�. The flux through the triangles
remains fixed at � /2. We observed that the introduction of
nonzero � did not decrease the variational energy. Rather
there was an increase in the third significant digit of the
energy value for � /� up to 0.1 and by 2.7% at � /�=0.2. The
slow dependence of the overall energy is partly due to the
boundary conditions used, which already opened the gap in
the finite-size single-particle spectra. Another reason for the
lack of dependence may be the degeneracy is confined to a
linear segment of the Brillouin zone, so that not enough
states are affected by the degeneracy-lifting mechanism. On
the other hand, the gapful nature of the band structures for
	 �

2 ,− �
2 ,0
 will guarantee stability of the Gutzwiller-projected

state against small fluctuations. At the moment we believe
both types of flux states have a chance to represent the uni-
form ground states of Eq. �1�.

VI. DISCUSSION

We find that the combined search using the fermionic
mean-field theory and Gutzwiller projection yields chiral
spin liquid states �both uniform and staggered flux types�
with ordered chiralities as the likely ground states of the S
=1 /2 Heisenberg spin Hamiltonian on the pyrochlore lattice.
Previous theories based on the perturbative expansion around
the single-tetrahedron solution1–5 did not find such chiral
spin states. Given the past claims of dimer instability, a si-
multaneous search for a pronounced chirality and dimer cor-
relations in the exact diagonalization of Eq. �1� will be valu-
able in sorting out the contending perspectives. The Fermi-
level degeneracy one finds in the uniform flux state may
have interesting consequences that will need to be explored
more carefully in the future.

Note added. Recently, there appeared a preprint12 pertain-
ing to the chiral spin state on pyrochlore lattice. Its conclu-
sions overlap with those here.
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