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We have considered the half-filled disordered attractive Hubbard model on a square lattice, in which the
on-site attraction is switched off on a fraction f of sites, while keeping a finite U on the remaining ones.
Through quantum Monte Carlo simulations for several values of f and U and for system sizes ranging from
8�8 to 16�16, we have calculated the configurational averages of the equal-time pair structure factor Ps and,
for a more restricted set of variables, the helicity modulus �s, as functions of temperature. Two finite-size
scaling Ansätze for Ps have been used: one for zero temperature and the other for finite temperatures. We have
found that the system sustains superconductivity in the ground state up to a critical impurity concentration fc,
which increases with U, at least up to U=4 �in units of the hopping energy�. Also, the normalized zero-
temperature gap as a function of f shows a maximum near f �0.07 for 2�U�6. Analyses of the helicity
modulus and of the pair structure factor led to the determination of the critical temperature as a function of f
for U=3, 4, and 6: they also show maxima near f �0.07, with the highest Tc increasing with U in this range.
We argue that, overall, the observed behavior results from both the breakdown of charge-density-wave-
superconductivity degeneracy and the fact that free sites tend to “push” electrons toward attractive sites; the
latter effect being more drastic at weak couplings.

DOI: 10.1103/PhysRevB.78.174519 PACS number�s�: 74.20.�z, 74.81.�g, 74.25.Dw, 74.78.�w

I. INTRODUCTION

The interplay between impurities and superconducting
pairing has been a challenging problem for some time.1 It has
been argued2 that as long as electronic states remain ex-
tended in the presence of weak disorder, superconductivity
should not be affected; as disorder increases, however, super-
conductivity must eventually be suppressed. The conse-
quences of this competition are especially interesting in two
dimensions since the superconducting transition belongs to
the xy-model universality class �the Kosterlitz-Thouless
�KT� transition to a state without long-range order�, while
noninteracting electrons become localized in the presence of
any amount of disorder. Indeed, by varying the thickness of
thin films of Bi and Pb deposited on Ge substrates,3 the sheet
resistance R� shows insulating behavior �i.e., it increases
with decreasing temperature T� for the thinner samples and
superconducting behavior for the thicker samples; the sepa-
ratrix between these two regimes extrapolates to a quantum
critical point as T→0 �Ref. 1� and one of the unresolved
issues is whether or not R�, the threshold value of R�, is
universal, i.e., R�=RQ�h /4e2.

From the theoretical point of view, the two-dimensional
behavior has been examined in a variety of ways. Some have
exploited a bosonic description of Cooper pairs,4,5 according
to which electrons near the Fermi surface are paired and
localization is driven by Coulomb repulsion among pairs. On
the other hand, one may envisage a fermionic mechanism:
Disorder enhances Coulomb repulsion among electrons, thus
decreasing the effective screening �due to electron-phonon
interactions in conventional superconductors� which in turn
leads to the disappearance of Cooper pairs.6 Intermediate
pictures have also been proposed7 within a phenomenologi-
cal theory to address the issue of universality of R�.

Since none of these approaches have succeeded in fully
explaining experimental data, alternative routes should be

sought. One possibility is to study simplified microscopic
fermionic models in which disorder is incorporated in a fun-
damental and unbiased way. However, not much is known
about models in which disorder is present in the pairing in-
teraction. With the purpose of bridging this gap and due to
the fact that disorder is more readily dealt with in real space,
here we consider the disordered attractive Hubbard model,
whose Hamiltonian reads,

H = − t �
�rr�	�

�cr�
† cr�� + H.c.� − ��

r�

nr� − �
r

U�r�nr↑nr↓,

�1�

where cr�
† �cr�� are fermion creation �destruction� operators at

site r with spin �, and nr�=cr�
† cr� and H.c. stands for Her-

mitian conjugate of the previous term. The kinetic-energy
lattice sum �rr�	 is over nearest-neighbor sites on a two-
dimensional square lattice and � is the chemical potential;
the hopping integral sets the energy scale, so we take t=1
throughout this paper. The on-site attraction U�r� is chosen
to take on the two values U�r�=0 and U with probabilities f
and 1− f , respectively; note that U�0 corresponds to attrac-
tion, according to our definition of the on-site term in Eq.
�1�. A review of the homogeneous model can be found in
Ref. 8, while Ref. 9 deals with a recent extension of the
model to describe nonrandom layered superconductors as the
borocarbides.

The above model mimics the thin films of Bi and Pb
being referred above, in the sense that the inverse film thick-
ness tracks the concentration 1− f of attractive sites.3 Addi-
tionally, it also describes the effects of negative-U centers,
which are thought to be relevant to high-temperature super-
conductivity in the cuprates.8,10 This model has been studied
at mean-field level11–13 and the main results, for a given elec-
tronic density, can be summarized as follows: �i� supercon-
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ductivity in the ground state is destroyed for impurity con-
centrations above fc; �ii� fc decreases as U increases �very
simple heuristic arguments11 lead to fc=1− �U /W�2 in two
dimensions, with W=8t being the bandwidth�; and �iii�
Tc�f� /Tc�0� is a concave-down function of f , which vanishes
at fc�U�. Though mean-field approximations are useful as a
first approach to the problem, one should be extremely cau-
tious about their predictions for two-dimensional systems.
For instance, for the pure system at half filling, the degen-
eracy of charge-density wave �CDW� and superconducting
order leads to an effective three-component order parameter,
thus suppressing the critical temperature to zero14–16 by vir-
tue of the Mermin-Wagner theorem;17 mean-field approaches
are unable to detect this feature and should therefore lead to
unreliable results close to half filling. Indeed, recent quantum
Monte Carlo �QMC� simulations have predicted that a small
amount of disorder at half filling initially enhances
superconductivity;18 this was attributed to the impurity-
induced breakdown of the above-mentioned degeneracy. In
view of all this, a more thorough investigation of the model
at half filling is clearly in order. Here we report on quantum
Monte Carlo studies of the dependence of fc with U as well
as of the dependence of Tc with f , for different values of U;
we recall that Ref. 18 was restricted to U=4 and T=0 only.
As we will see, our predictions are very different from those
of mean-field approaches.

The paper is organized as follows. In Sec. II we outline
the QMC method and discuss the quantities used to locate
the superconducting transitions. In Sec. III we present a
finite-size scaling �FSS� analysis of data for superconducting
correlations in the ground state, from which we extract the
behavior of fc with U. In Sec. IV we perform finite-
temperature FSS analyses of data for superconducting corre-
lations, as well as analyses of the superfluid density, to obtain
Tc�f� for different values of U. Finally, Sec. V summarizes
our findings.

II. COMPUTATIONAL APPROACH

We use the determinant QMC method19–23 to investigate
the ground state as well as finite-temperature properties of
the model. In this approach, the imaginary-time interval
�0;�� is discretized into M slices separated by the interval 	

and a path-integral expression is written down for the parti-
tion function Z. The electron-electron interactions are decou-
pled by the introduction of a Hubbard-Stratonovich field.20

The fermion degrees of freedom can then be integrated out
analytically, leaving an expression for Z which involves an
integral over the Hubbard-Stratonovich field with an inte-
grand which is the product of two determinants of matrices
whose dimensions equal the system size. We perform the
integral stochastically. In the case of the attractive Hubbard
model considered here, the traces over the spin-up and spin-
down electrons are given by the determinant of the same
matrix; the integrand is a perfect square and hence there is no
sign problem.21,23

In order to study the physics at a particular lattice size
L�L and value of f , we randomly choose fL2 sites and set
U=0 on those sites. We typically use 30–50 such realizations

to average over the different disorder configurations. If fL2 is
not an integer, we average over the two adjacent integer val-
ues with appropriate weights. For each disorder configura-
tion, observables are evaluated as the appropriate combina-
tions of the Green’s functions, which are given by matrix
elements of the inverse of the matrix appearing as the
integrand.19,21–23 The average over different disorder con-
figurations then yields the quantities of interest. Systematic
errors in the calculated quantities associated with our choice
of 	
 for the discretization of � are typically smaller than
statistical errors, namely those arising from fluctuations for a
single disorder realization as well as those arising from
sample-to-sample variations.

As discussed previously,18 a useful quantity to locate the
transition is the configurationally averaged equal-time pair-
ing structure factor,

Ps = 
�
r

��r�� , �2�

where �. . .� denotes average over disorder configurations
�thus restoring translational invariance�, and the pairing cor-
relation function is

��r� � �	�i�	†�i + r� + H.c.	 , �3�

where �. . .	 denotes ensemble average with

	�r� = cr↓cr↑. �4�

The different scaling behaviors of Ps, in the ground state
and at finite temperatures, will be discussed in Secs. III and
IV.

Further, current-current correlations probe the superfluid
weight and provide an alternative way to detect the destruc-
tion of superconductivity.24 We define

�xx�r,
� = �jx�r,
�jx�0,0�	 , �5�

where

jx�r,
� = eH

it�
�

�cr+x̂,�
† cr,� − cr,�

† cr+x̂,���e−H
, �6�

and the Fourier transform in space and imaginary time,

�xx�q,
n� =
1

Ns
�

r
�

0

�

d
eiq·re−i
n
�xx�r,
� , �7�

where Ns is the number of lattice sites, and 
n=2n� /�.
The longitudinal part of the current-current correlation

function satisfies the f-sum rule, which relates its value to
the kinetic energy Kx,

�L � limqx→0�xx�qx, qy = 0, 
n = 0� �8�

�L = Kx, �9�

where Kx= �−t���cr+x̂,�
† cr,�+cr,�

† cr+x̂,��	. Meanwhile, in the
superconducting state the transverse part,

�T � limqy→0�xx�qx = 0, qy, 
n = 0� , �10�

can differ from the longitudinal part, the difference being the
superfluid stiffness Ds,
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Ds/� = ��L − �T� = �Kx − �T� . �11�

Thus the current-current correlations provide an alternative
complementary method to the equal-time pair correlations
for looking at the superconducting transition.

III. GROUND-STATE PROPERTIES: fc(U)

As remarked above, there is no “sign problem” for the
attractive Hubbard model, so we can do computations at very
low temperatures �large ��, as shown in Fig. 1 for the data of
unscaled Ps. We recall that throughout this paper we only
consider the case of a half-filled band. The error bars result
from the dispersion in the average values taken over disorder
configurations.

The finite-size scaling behavior of Ps allows us to extract
quantitative information about the superconducting transi-
tion. As shown by Huse,25 the spin-wave correction to the
pair structure factor in the ground state is expected to be
inversely proportional to the linear lattice size,

Ps

L2 = 
	0
2 +
a

L
, �12�

where 	0 is the superconducting gap function at zero tem-
perature, and a�a�U , f� is independent of L.

In Figs. 2–5 we plot the T→0 extrapolated values of
Ps /L2 versus 1 /L, for linear lattice sizes ranging from L=8
to 16, and U=2, 2.5, 3, and 6 �data for U=4 can be found in
Fig. 4 of Ref. 18�. According to Eq. �12�, each intercept with
the vertical axis provides an estimate for 	0

2 �the square of
the zero-temperature gap� for the values of U and f consid-
ered. For the pure system �f =0�, 	0 is plotted as a function
of U in Fig. 6: the observed increase of 	0 �at least up to
U�6� is due to an increase in the average site double occu-
pancy. Indeed, Fig. 7 shows the double occupancy on attrac-
tive sites dA��n↑n↓−1 /4	 as a function of U for both the
pure system and for several disordered configurations. The
overall behavior is an increase in dA with U and, for a fixed
U, this double occupancy increases with f , as it can be seen
from its strong-coupling limit,

�n↑n↓ − 1/4	 =
1

4

1 + f

1 − f
, U → � . �13�

In order to compare the effects of disorder for different
attraction intensities, for each U we normalize the zero-
temperature gap 	 by their respective pure system values 	0;
the result is displayed in Fig. 8. For 2.5�U�6, the normal-

FIG. 2. �Color online� Zero-temperature scaling of the configu-
rationally averaged equal-time pair structure factor, for U=2, and
for different disorder concentrations f . For each f , the intersection
with the vertical axis yields the �squared� zero-temperature gap; see
Eq. �12�.

FIG. 3. �Color online� Same as Fig. 2, but for U=2.5.
FIG. 1. �Color online� Configurationally averaged equal-time

pair structure factor Ps as a function of the inverse temperature �,
for different lattice sizes at half filling and concentration of free
sites f =1 /16.

FIG. 4. �Color online� Same as Fig. 2, but for U=3.
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ized gaps initially increase with disorder, reaching maxima
�	 /	0�max around f �0.07. It should be noticed that
�	 /	0�max, in turn, does not behave monotonically as a func-
tion of U but displays a maximum for U=3 among the val-
ues of U examined. Another crucial information extracted
from Fig. 8 is that a maximum of 	 /	0 is absent for U=6.
This different behavior for larger U therefore indicates that
the disorder-induced breakdown of CDW-superconductivity
degeneracy is not the only mechanism at play: for smaller U,
the presence of free sites contributes to a decrease in the
single occupancy by “pushing” electrons to the attractive
sites. For larger U, the pairs are so tightly bound that the
relative weight of single occupancy is smaller and disorder
has hardly any effect in forcing the electrons to occupy the
attractive sites. Figure 7 indeed shows that the percentual
enhancement in double occupancy due to disorder is larger
for U�4 than for U�6. As disorder increases, the presence
of free sites strongly disturbs pair coherence and the gap
decreases. The initial increase with disorder has also been
predicted for anisotropic superconductors with mesoscopic
phase separation.26,27

We can obtain the dependence of fc with U by extrapo-
lating the data for 	 /	0 to zero. The intercept with the hori-
zontal axis of each of the curves in Fig. 8 provides fc for the
corresponding U and the result is displayed in Fig. 9; the

error bars reflect the uncertainties in the extrapolations of
	 /	0 to zero in Fig. 8. It should be noted that fc initially
�i.e., for U�2� increases very slowly with U, which should
be attributed to the fact that the pairs are not so strongly
bound for small U, so that a small amount of free sites de-
stroys phase coherence. As U increases, the pairs become
more tightly bound and a larger amount of disorder can be
sustained before the free sites switch their roles from pushing
electrons onto attractive sites to that of destroying phase co-
herence.

This behavior is in disagreement with mean-field predic-
tions, according to which fc should decrease with U,11

though for U�4, fc appears to be decreasing with U and the
agreement with the mean-field approach would set in. In
some situations, Bogoliubov-de Gennes-type theories do a
good job of capturing spatial charge redistribution driven by
disorder; a recent comparison between mean-field and exact
approaches in systems with diagonal disorder indicates that
although charge redistribution may be well described within
mean-field approaches, local spin correlations are not.28 In
the case considered here, however, this discrepancy can be
attributed—to some extent—to two intertwined mechanisms.
First, there is the fact that a three-component order parameter

FIG. 5. �Color online� Same as Fig. 2, but for U=6.

FIG. 6. �Color online� Zero-temperature gap for the pure sys-
tem, obtained from the f =0 data, together with Eq. �12�. The full
line is a guide to the eye.

FIG. 7. �Color online� Average double occupancy on attractive
sites as a function of U, for the pure case and for several disordered
configurations. Data are for 14�14 lattices and for �=18. Data for
U=100 correspond to the strong-coupling limit �Eq. �13��.

FIG. 8. �Color online� Normalized zero-temperature gaps as
functions of impurity concentration, for different values of U. Full
lines are guides to the eye.
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�CDW+superconducting� is split by the disorder into a one-
component �CDW� and a two-component �superconducting�
order parameters and they fluctuate independently; the
present situation is even more sensitive due to the nature of
the Kosterlitz-Thouless transition itself. Second, in the
present case disorder affects the pairing interaction, so that
the charge redistribution may not be adequately described,
i.e., to the point that the above-mentioned switching of roles
played by the free sites cannot be picked up if fluctuations
are not included in a fundamental way.

It is also worth noting that the strong-coupling pure at-
tractive Hubbard model �at half filling� can be mapped onto
an isotropic Heisenberg model.29,30 Therefore, the fact that fc
displays such strong dependence with U is a clear indication
that the mechanisms of superconductivity suppression by im-
purities are very different from those occurring in diluted
magnetic insulators, which are driven by classical
percolation.31 That is, if one is interested in singling out the
geometrical aspects of impure superconductors, a model of
correlated dilution should be more appropriate.

IV. FINITE-TEMPERATURE PROPERTIES: Tc(f ,U)

Another consequence of the two-component nature of the
order parameter is that at finite temperatures the
superconducting-normal phase transition for the pure system
belongs to the Kosterlitz-Thouless universality class. As
such, for 0�T�Tc, one expects that asymptotically,

��r� � r−��T�, �14�

where ��r� is defined by Eq. �3�, and ��T� increases mono-
tonically between ��0�=0 and ��Tc�=1 /4.32,33 The finite-
size scaling behavior of Ps is therefore obtained upon inte-
gration of ��r� over a two-dimensional system of linear
dimension L. One then has15

Ps = L2−��Tc�F�L/��, L � 1, T → Tc
+, �15�

where F�z� is a finite-size scaling function of the variable z
�L /�, with

� � exp
 A

�T − Tc�1/2� , �16�

where A is a constant; in the thermodynamic limit, one re-
covers Ps��7/4. As discussed in Ref. 16, we can obtain es-
timates of Tc by plotting L−7/4Ps�L ,�� as functions of �, for
different L, and by looking for intersections or merges of
curves for consecutive values of L. This procedure was sup-
ported by independent estimates of the critical temperature
through calculations of the superfluid stiffness Ds and using
the universal jump at Tc; see Ref. 16 for details.

The general aspects of the universality class of the super-
conducting transition should remain valid in the presence of
disorder, since one still deals with a two-component order
parameter. Further, numerical evidence has been gathered for
the xy model34 showing that ��Tc�=1 /4 even in the presence
of disorder; this is in agreement with the Harris criterion,
which essentially states that disorder is irrelevant �in the
renormalization-group sense� if the specific-heat exponent �
is positive.35 In view of this, our data analyses for the finite-
temperature transitions can follow along the same lines as
those for the pure system,16 with both Ps and Ds now being
understood as the configurationally averaged equal-time pair-
correlation function and superfluid stiffness, respectively.

Let us first consider the helicity modulus �HM�,24 which
is given by

�s =
Ds

4�e2 , �17�

where Ds is defined in Eq. �11�, and we take e=1 in our
units. At the KT transition, the following universal-jump re-
lation involving the helicity modulus holds:36

Tc =
�

2
�s

−, �18�

where �s
− is the value of the helicity modulus just below the

critical temperature. Thus, on universality grounds we may
assume the same holds for a configurationally averaged �s
and we can obtain Tc by plotting �s�T� and by looking for the
intercept with 2T /�. Figure 10 shows data for U=4 and we
see that the intercepts occur at Tc=0.125�0.015,
0.12�0.01, 0.105�0.008, and 0.080�0.015 for f =1 /16,
2/16, 3/16, and 4/16, respectively. Similarly to the pure
case,16 we have found that the estimates for Tc thus obtained
are not too sensitive to the lattice sizes used. These estimates
appear as empty circles in Fig. 11.

In Fig. 12 we show the scaled configurationally averaged
equal-time pair structure factor as a function of the inverse
temperature �, for U=4 and different system sizes, for a
given concentration of disorder. For usual second-order
phase transitions, similar curves for two successive linear
lattice sizes should cross at a single point, thus leading to
estimates for critical inverse temperatures. For KT transi-
tions, on the other hand, curves for different �but sufficiently
large� lattice sizes should merge above a certain �c.

37 In the
present case, we estimate �c as the smallest value for which
the curves for the smallest size superimpose—within error
bars—with the one for the largest size; this ensures that the

FIG. 9. �Color online� Critical impurity concentration as a func-
tion of U, obtained from Fig. 8. The full line is a guide to the eye.
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error bars for data corresponding to intermediate sizes will
also superimpose. Thus, applying this criterion to the data in
Fig. 12 yields �c=8�1; this procedure is systematically re-
peated for other values of f , and we obtain the Tc�f� data for
U=4 shown in Fig. 11. The estimates thus obtained are in
excellent agreement with those obtained from the HM, thus
adding credence to our merging criterion.

Given the fact that the calculations of configurationally
averaged helicity moduli are very consuming in terms of
computer time �for a given disorder configuration the CPU
time is increased significantly due to the 
 integration and
one performs averages over typically 50 disorder configura-

tions�, for other values of U we only use data for Ps to
estimate Tc�U , f�. From Figs. 13 and 14 �which yield �c
=12�1 and �c=6�1, respectively�, as well as from similar
ones for other values of f , we obtain the estimates for Tc�f�
for U=3 and 6 shown in Fig. 11.

Several interesting physical features emerge from Fig. 11.
First, Tc�0�=0 as a result of the CDW-superconductivity de-
generacy at half filling; however, any finite amount of disor-
der breaks this degeneracy and Tc rises. Second, in all
curves, Tc displays a maximum at some fmax, as a result of
the interplay between the above-mentioned degeneracy and
the behavior of the smallest energy scale 	. Third, we expect
Tc→0 at fc�U�; since above fc, superconductivity cannot be
sustained even in the ground state. Finally, near fc, Tc dis-
plays the convex shape observed in experiments;3 the steep-
ness of the decrease in Tc�f� can therefore be used to fit an
effective U by experimental data. As a final comment, one
should have in mind that some of these results should change
drastically as the system is doped away from half filling.
Indeed, since in this case CDW-superconductivity degen-
eracy is already broken in the pure system, Tc should display

FIG. 10. �Color online� Configurationally averaged helicity
modulus as a function of temperature, for U=4 and different impu-
rity concentrations f , for a 12�12 lattice. In each panel, the straight
line corresponds to 2T /�.

FIG. 11. �Color online� Critical temperature �in units of the
bandwidth� for superconductivity, as a function of impurity concen-
tration, f , for different values of the on-site attraction U. Full sym-
bols have been obtained through the scaling of the pairing structure
factor �Ps�, whereas the empty circles correspond to data obtained
through the helicity modulus ��s�. Full lines are guides to the eye.

FIG. 12. �Color online� Scaled configurationally averaged
equal-time pair structure factor as a function of the inverse tempera-
ture �, for different lattice sizes �L�L� at half filling, concentration
of free sites f =2 /16, and U=4. The curves are labeled by the linear
lattice size L and full lines are guides to the eye.

FIG. 13. �Color online� Same as Fig. 12, but for U=3.
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a monotonic decrease with f for a given U; nonetheless, we
can still expect Tc to be a convex function of f .

V. CONCLUSIONS

We have addressed the issue of disorder in two-
dimensional superconductors. To this end, we have consid-
ered a simple model, namely, the attractive Hubbard model,
in which the on-site attraction is switched off on a fraction f
of sites, while keeping a finite U on the remaining ones; the
model is defined in such a way that U�0 in the attractive
case �see Eq. �1��. Through quantum Monte Carlo simula-
tions for typically 50 disorder configurations, we have calcu-
lated the configurational averages of the equal-time pair
structure factor and, for U=4, the helicity modulus as func-
tions of temperature; there is no minus-sign problem in the
attractive case. The continuous O�2� symmetry of the super-
conducting order parameter allows us to use a spin-wavelike
finite-size scaling form for the ground-state behavior, from
which the zero-temperature gap was calculated; at finite tem-
peratures, the usual finite-size scaling form for the
Kosterlitz-Thouless transition was used to calculate the criti-
cal temperature, which was checked for consistency against
data for the helicity modulus. Our numerical data are consis-

tent with the following findings: �i� Superconductivity in the
ground state is destroyed above an impurity concentration fc;
�ii� At least up to U=4, this critical concentration increases
with increasing U, slowly for U�2.5, and then fast up to
U�4; this behavior does not agree with mean-field predic-
tions due to the important role played by fluctuations, not
included in the latter approach. The error bars prevent us
from ascertaining that fc decreases with U above U=4, but it
may be that the mean-field behavior is recovered in this re-
gime, since fluctuations should become less important for
large U. At any rate, the transition at zero temperature is not
driven by purely geometrical aspects, such as in dilute insu-
lating magnets. �iii� In the range between U=2.5 and U�6,
the normalized zero-temperature gap initially �i.e., small dis-
order� increases with disorder, as a result of both the break-
down of CDW-superconductivity degeneracy and the fact
that free sites “push” the electrons toward attractive sites and
�iv� near the critical concentration of defects beyond its
maximum value, Tc is a convex function of f , as observed in
experiments.

Overall, we conclude that the random attractive Hubbard
model is a promising working ground to investigate the in-
terplay between impurities and pairing. By tuning two vari-
ables at half filling, namely, the impurity concentration and
the pairing potential, we have found instances in which small
disorder either hardly affects superconductivity or enhances
it. It should therefore be of interest to check whether these
features remain valid away from half filling. Further, the
present model can be used, with suitable changes, to inves-
tigate other disordered BCS superconductors, such as three-
dimensional carbon-substituted MgB2 �Ref. 38� and
MgB2 /MgO superstructures.39
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