
Quantum Monte Carlo study of a magnetic-field-driven two-dimensional
superconductor-insulator transition

Kwangmoo Kim and David Stroud
Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

�Received 18 August 2007; revised manuscript received 25 October 2008; published 17 November 2008�

We numerically study the superconductor-insulator phase transition in a model disordered two-dimensional
�2D� superconductor as a function of applied magnetic field. The calculation involves quantum Monte Carlo
calculations of the �2+1�D XY model in the presence of both disorder and magnetic field. The XY coupling is
assumed to have the form −J cos��i−� j −Aij�, where Aij has a mean of zero and a standard deviation �Aij. In
a real system, such a model would be approximately realized by a 2D array of small Josephson-coupled grains
with slight spatial disorder and a uniform applied magnetic field. The different values �Aij then correspond to
an applied field such that the average number of flux quanta per plaquette has various integer values N: larger
N corresponds to larger �Aij. For any value of �Aij, there appears to be a critical coupling constant
Kc��Aij�=��J / �2U��c, where U is the charging energy, below which the system is a Mott insulator; there is
also a corresponding critical conductivity ����Aij� at the transition. For �Aij =�, the order parameter of the
transition is a renormalized coupling constant g. Using a numerical technique appropriate for disordered
systems, we show that the transition at this value of �Aij takes place from an insulating �I� phase to a Bose
glass �BG� phase, and that the dynamical critical exponent characterizing this transition is z�1.3. By contrast,
z=1 for this model at �Aij =0. We suggest that the superconductor-to-insulator transition is actually of this I to
BG class at all nonzero �Aij’s, and we support this interpretation by both numerical evidence and an analytical
argument based on the Harris criterion �A. B. Harris, J. Phys. C 7, 1671 �1974��. Kc is found to be a
monotonically increasing function of �Aij. For certain values of K, a disordered Josephson array may undergo
a transition from an ordered, Bose glass phase to an insulator with increasing �Aij.
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I. INTRODUCTION

The superconductor-insulator �S-I� transition of thin two-
dimensional �2D� superconducting films has been exten-
sively studied both theoretically1–17 and experimentally18–22

for many years. The theoretical work can be broadly catego-
rized into two groups: in one group, disorder is induced us-
ing a random chemical potential, while in the other, disorder
is generated using a magnetic field. Most previous works
belong to the former1,4–10,13,14,17 whereas only a few belong
to the latter.2,15,20,21

The present work is motivated primarily by several ex-
periments in which an S-I transition is observed in a 2D
material as a function of applied transverse magnetic field.
Such experiments have been reported in thin films of super-
conducting materials. They have also been carried out in
some of the most anisotropic cuprate high-Tc superconduct-
ors; in such materials, individual copper oxide layers may
conceivably behave like thin superconducting films if they
are well enough decoupled from the other layers.23–36 In both
cases, the films seem to undergo a transition from S to I with
increasing magnetic field. Furthermore, the transition ap-
pears to be controlled mainly by the film resistance R. Ex-
periments suggest that, in contrast to some predictions, R
does not have a universal value at the S-I transition.28,29 In
view of these experiments, it seems useful to construct a
simple model which contains disorder and also shows a
field-driven transition. In the present paper we present such a
model and analyze its properties by a combination of nu-
merical methods and scaling assumptions.

Before describing our own approach, we briefly review
some of the previous theoretical work in this area. An early

numerical calculation was carried out by Cha et al.1 at zero
magnetic field �B=0�. These authors calculated both analyti-
cally and numerically the zero-temperature �T=0� universal
conductivity �� of the 2D boson Hubbard model without
disorder at the S-I transition. They found, using numerical
Monte Carlo �MC� simulations of a �2+1�D XY model, that
��= �0.285�0.02��Q, where �Q= �2e�2 /h is the quantum
conductance. This result is close to the value obtained from
an analytic large-N expansion. They further studied this
model under an applied transverse magnetic field using MC
simulations and found that �� was increased.2

Fisher et al.3 studied the T=0 phase diagrams and phase
transitions of bosons with short-range repulsive interactions
moving in both periodic and random potentials. For the pe-
riodic case, they found the system exhibited two different
phases, a superfluid and Mott insulator, and that the dynamic
exponent z exactly equaled the spatial dimension d. They
also derived certain zero-temperature constraints on the cor-
relation length exponent � and the order parameter correla-
tion exponent 	, namely, �
2 /d and 	�2−d. In the pres-
ence of disorder, they found that a “Bose glass” phase
existed, and that the transition to a superfluid phase took
place from the Bose glass phase, not directly from the Mott
insulator.

Most previous studies in this area have been based on
quantum Monte Carlo �QMC� simulations.4–6,8–14,16 Some
work has involved advanced QMC techniques, such as a
QMC algorithm based on the exact duality transformation of
the boson Hubbard model,11 and a worm algorithm.14 Other
studies have used a stochastic series expansion method11,17

and an exact diagonalization method.15 Analytically, besides
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the large-N expansion technique used in Ref. 1, a coarse-
graining approximation7 has been adopted in some investiga-
tions.

The numerical studies of the S-I transition have used a
wide range of model Hamiltonians. Some authors have em-
ployed a 2D hard core boson model,5,9,11,12,15 while others
used a 2D soft core boson Hamiltonian.1,3,4,37 This model has
been used to investigate the S-I transition at T=0,6,7,9,15,17,19

as well as the superconductor-Bose glass �S-BG� phase
transition,5,8 while some authors have investigated
both.4,10,13,14 In addition, Šmakov and Sørensen17 studied the
S-I transition at finite temperature T using a similar model.

A number of authors has also investigated more complex
phase transitions, of which we mention just a few represen-
tative examples. Capriotti et al.16 studied a reentrant super-
conducting-to-normal �S-N� phase transition using, as a
model, a resistively shunted 2D Josephson junction array
with normal Ohmic shunt resistors as the source of dissipa-
tion. Chakravarty et al.38 also found a dissipation-induced
phase transition in such an array, but did not study the pos-
sibility of reentrance. The reentrant S-N phase transition in
Ref. 16 was found to persist for moderate dissipation
strength, but the superconducting phase was always found to
be stabilized above a critical dissipation strength at suffi-
ciently low T. Hébert et al.11 studied phase transitions be-
tween superfluid, checkerboard, and striped solid order, us-
ing two interactions—a nearest-neighbor �V1� and next-
nearest-neighbor �V2� repulsion—instead of a single param-
eter to describe the random chemical potential. They found
that the model exhibited a superfluid to striped solid transi-
tion at half filling; away from half filling, they found a first-
order transition from superfluid to striped supersolid, as well
as a continuous transition from striped supersolid �supercon-
ducting� to striped solid �insulating�. Schmid et al.12 have
studied a first-order transition between a checkerboard solid
and a superfluid phase at finite temperature. They also found
an unusual reentrant behavior in which ordering occurs with
increasing temperature. As an effort to develop a more real-
istic model, several authors have included both short and
long-range repulsive interactions between bosons,6,10 and
some studies have included fluctuations in the amplitude as
well as the phase of the superconducting order parameter.7

The T=0 S-I transition has been found to be characterized
by universal behavior. Reference 9 found, using QMC, that
the dynamic exponent, the correlation length exponent, and
the universal conductivity were z=0.5�0.1, �=2.2�0.2,
and �c= �1.2�0.2��Q, respectively. In the coarse-graining
approximation,7 the universal conductivity was found to be
��= �� /8��Q, while the value ��= �0.45�0.05��Q was ob-
tained at finite T using the stochastic series expansion with a
geometric worm algorithm;17 in the latter work it was also
found that � /�Q scaled with  /T at small frequencies  and
low T. With only short-range Coulomb interactions, the uni-
versal conductivity at the phase transition was found to be
��= �0.14�0.03��Q.6,10 With long-range Coulomb interac-
tions, this value increased to ��= �0.55�0.1��Q �Ref. 6� or
��= �0.55�0.06��Q.10

This critical behavior differs significantly from the T=0
S-BG transition. At this transition, the dynamical exponent
and the universal conductivity were found to equal z

=1.95�0.25 and ��= �0.17�0.01��Q, respectively.5 Ba-
trouni et al.8 found ��= �0.45�0.07��Q from QMC calcula-
tions and ��= �0.47�0.08��Q from analysis of current-
current correlation functions.

At intermediate strength of disorder, Lee et al.13 found
that the dynamical and the correlation length critical expo-
nent were 1.35�0.05 and �=0.67�0.03, respectively. They
also found that a Mott insulator to superfluid transition oc-
curred in the weak disorder regime while a Bose glass to
superfluid transition took place in the strong disorder regime.
More recently, Lee and Cha14 studied the quasiparticle en-
ergy gap near the quantum phase transition. They found that
this gap vanished discontinuously at the transition for a weak
disorder, implying a direct Mott insulator to superfluid tran-
sition, whereas this discontinuous jump disappeared for a
strong disorder, supporting the intervention of Bose glass
phase in this regime.

Several authors have studied the S-I transition by explic-
itly introducing a magnetic field, using various models and
experiments. For example, Nishiyama15 found that the 2D
hard core boson model exhibited a field-tuned localization
transition at a certain critical magnetic field and that the criti-
cal DC conductivity was substantially larger than that at zero
magnetic field. In his work, the critical conductivity was
found to be nonuniversal but instead increased with increas-
ing magnetic field. Besides the experiments mentioned ear-
lier, Sambandamurthy et al.19 found, from studies of thin
amorphous InO films near the S-I transition, that the resis-
tivity followed a power-law dependence on the magnetic
field in both the superconducting and the insulating phases.

In most of the above calculations, the QMC approach is
based on a mapping between a d-dimensional quantum-
mechanical system and a �d+1�-dimensional classical sys-
tem with the imaginary time as an extra dimension.39 This
mapping works because calculating the thermodynamic vari-
ables of the quantum system is equivalent to calculating the
transition amplitudes of the classical system when they
evolve in the imaginary time. The imaginary time interval is
fixed by the temperature of the system. The net transition
amplitude between two states of the system can then be ob-
tained by a summation over the amplitudes of all possible
paths between them according to the prescription of
Feynman.40 These paths are the states of the system at each
intermediate time step. Therefore, the path-integral descrip-
tion of the quantum system can be interpreted using the sta-
tistical mechanics of the �d+1�-dimensional classical system
held at a fictitious temperature which measures zero-point
fluctuations in the quantum system.

In order for a boson system to have a superconductor-
insulator transition, the bosons must have an on-site repul-
sive interaction, i.e., a “charging energy.” Otherwise the bo-
son system would usually undergo Bose-Einstein
condensation at zero temperature. The charging energy in-
duces zero-point fluctuations of the phases and disorders the
system. On the other hand the Josephson or XY coupling
favors coherent ordering of the phases, which causes the on-
set of superconductivity. Therefore, the competition between
the charging energy and XY coupling is responsible for the
superconductor-insulator transition, which typically occurs at
a critical value of the ratio of the strengths of these two
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energies. In addition, if a disorder is added to the system, the
system may also undergo a transition to a phase other than a
Mott insulator, depending on the strength of the disorder.
This additional phase is known to be a Bose glass phase.

In this work, we study the zero-temperature quantum
phase transitions of 2D model superconducting films in an
applied magnetic field. Our model includes both charging
energy and Josephson coupling, and thus allows for an S-I
transition. In our approach, the applied magnetic field is de-
scribed by a root-mean-square �rms� fluctuation �Aij which
describes the randomness in the flux per plaquette. This ran-
domness leads to the occurrence of a Bose glass phase at
large �Aij. As explained further below, our model corre-
sponds well to a 2D Josephson junction array with weak
disorder in the plaquette areas, studied at an applied uniform
magnetic field corresponding to integer number Nv, on aver-
age, of flux quanta per plaquette. The quantity �Aij is pro-
portional to the rms disorder in the flux per plaquette, and is
proportional to Nv. Thus, our model gives rise to an S-I tran-
sition in the array with increasing Nv �or increasing magnetic
field�.

The remainder of this paper is organized as follows. Sec-
tion II presents the formalism. In this section, we give the
model boson Hubbard model, and describe its conversion to
a �2+1�D XY model, which we treat using path-integral
Monte Carlo calculations. We also describe the finite-size
scaling methods for obtaining the critical coupling constants
and universal conductivities at the transition. Finally, this
section describes the nature of the renormalized coupling
constant used to study the behavior of the system in the fully
random case. Section III presents our numerical results using
these approaches. We discuss our results and present our
conclusions in Sec. IV.

II. FORMALISM

A. Model Hamiltonian

Our goal is to examine the superconductor-insulator tran-
sition in a disordered 2D system in a magnetic field at very
low temperature T. Thus, a useful model for this transition
would include three features: �i� a competition between a
Coulomb energy and an energy describing the hopping of
Cooper pairs, �ii� disorder, and �iii� a magnetic field. In par-
ticular, we hope that this model will exhibit, for suitable
parameters, a transition from superconductor to insulator as
the magnetic field is increased. While there are a wide range
of models which could incorporate these features, we choose
to consider a model Hamiltonian appropriate to a 2D Joseph-
son junction array:

H� = U�
j

nj
2 − J�

�ij	
cos��i − � j − Aij� . �1�

Here nj is the operator representing the number of Cooper
pairs on a site j, J is the Josephson energy coupling sites i
and j, �i is the phase of the order parameter on the ith site,
Aij = �2� /�0�
i

jA ·dl is a magnetic phase factor, �0=hc /2e is
the flux quantum, and A is the vector potential. In this pic-
ture, each site can be thought of as a superconducting grain.

For calculational convenience, we choose to take the sites
j to lie on a regular 2D lattice �a square lattice in our calcu-
lations�, with Josephson coupling only between nearest
neighbors. Thus, the disorder in our model is incorporated
via the magnetic phase factors Aij, as explained further be-
low. Our Hamiltonian is identical to that of Cha et al.1 except
that we consider the special case that the chemical potential
�i for Cooper pairs on the ith grain is an integer, and we
choose the Aij’s to be random.

The first term in Eq. �1� is the charging energy. We con-
sider only a diagonal charging energy and also assume all
grains to be of the same size, so that U is independent of j.
Since the charging energy ECj of a grain carrying charge Qj
with capacitance C is ECj =Qj

2 / �2C�,

U =
�2e�2

2C
=

2e2

C
. �2�

We also know that Qj =CVj, where Vj is the voltage of grain
j relative to ground; so

ECj =
1

2
CVj

2 =
C�2

2�2e�2 �̇ j
2, �3�

where we have used the Josephson relation, Vj = �� /2e��̇ j.
Finally, we can express C in terms of U using Eq. �2�, with
the result

ECj =
�2

4U
�̇ j

2. �4�

Combining all these relations, we obtain

H� =
�2

4U
�

j

�̇ j
2 − J�

�ij	
cos��i − � j − Aij� . �5�

Since we have taken the grains to lie on a lattice, we need
to choose the Aij’s in a way which incorporates randomness.
Thus, we make the simplifying assumption that the phase
factor Aij of each bond in the plane is an independent Gauss-
ian random variable with a mean of zero and a standard
deviation �Aij:

P�Aij� =
1

�2���Aij�
exp�−

Aij
2

2��Aij�2� . �6�

Since the sum of the phase factors around the four bonds of
a plaquette is 2� /�0 times the flux through that plaquette,
this choice will cause the flux through the plaquette also to
be a random variable. However, the fluxes through nearest-
neighbor plaquettes will be correlated.

Although this model may seem artificial, it should closely
resemble a real, physically achievable system. Specifically,
consider a spatially random distribution of grains in 2D in a
uniform magnetic field. Suppose that the grain positions de-
viate slightly �but randomly� from the sites of a square lat-
tice. Then the areas of the square plaquettes have a random
distribution, and consequently, the flux through each
plaquette also varies randomly about its mean. If the average
flux � per plaquette is �= f�0, then the root-mean-square
deviation of the flux, ��� f as in Fig. 1.
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Now consider the special case of integer f . In the absence
of disorder, the 2D array at integer f should behave exactly
like the array at f =0, because the Hamiltonian would then be
perfectly periodic in f .41–43 With nonzero disorder, only the
rms deviation from integer f , i.e., �f =�� /�0, is physically
relevant. This deviation increases linearly with f .

In short, our model Hamiltonian is approximately realized
by a 2D Josephson junction array on a square lattice, in
which the grains deviate randomly in position from their
lattice sites, placed in a transverse magnetic field with an
average flux per plaquette f�0, with integer f . A larger �Aij
corresponds to a larger f . The models are not equivalent,
even if the random position deviations are specified by
Gaussian variables, because we assume the �Aij’s for differ-
ent bonds are uncorrelated, whereas they would be correlated
in the positionally disordered case. However, this difference
should have little effect in practice and we have confirmed
this in the limit of large f �see below�. For noninteger f , the
disordered 2D Josephson array has well-known oscillatory
properties as a function of f which are not described by our
model as formulated above. This disordered Josephson array
is not an entirely realistic model of a superconducting film
which undergoes a field-driven superconductor-insulator
transition because our model involves an underlying lattice
of grains. Nonetheless, we may hope that some of the prop-
erties of our model resemble those seen in experimentally
studied materials.

A related method of including random flux has previously
been used by Huse and Seung44 as a model for a three-
dimensional �3D� “gauge glass.” These authors considered
only �Aij =� and studied a 3D classical model �U=0� rather
than the 2D quantum case considered here.

B. Path-integral formulation

We can now use the model Hamiltonian �5� to obtain the
action in the form of a standard integral over imaginary time.
The action S may be written

S

�
=

1

�
 Ld� , �7�

where L is the Lagrangian given by

L =
�2

4U
�

j
� �� j

��
�2

− J�
�ij	

cos��i��� − � j��� − Aij���� . �8�

The partition function is now given by a path integral of
exp�−S /�� over all possible paths described by the variables
�i��� in imaginary time �, integrated from �=0 to �=��,
where �=1 / �kBT�. This path integral can be reduced to the
partition function of an anisotropic classical XY model in
three dimensions. Here, by “anisotropic” we mean that the
coupling constants K and K� in the xy plane and � direction
are different. To make the mapping, we first write

� ��i

��
�2

� ���i

��
�2

�
2 − 2 cos ��i

����2 , �9�

where �� is the width of the time slice, ��i=�i��+���
−�i���, and we have used the expansion of cos �� to second
order in the small quantity ��. This expansion is accurate
when �� is sufficiently small.

Neglecting the constant term in this expansion, we finally
obtain

S

�
= − K� � cos��i��� − �i�� + ����

− K � cos��i��� − � j��� − Aij���� . �10�

Here the sums run over all bonds in the � direction and in the
xy plane, respectively.

In order to obtain the values of the coupling constants K
and K�, we assume that we have broken up the time integral
into M time slices, each of width �� /M. Then the coupling
constant in the xy direction is just

K =
�J

M
. �11�

The coupling constant in the � direction is given by

K� =
�2

4U

1

�
����

2

��u�2 =
1

2U

�

��
=

M

2�U
. �12�

We have used ��=�� /M and included the extra factor of 2
in the numerator because cos ���1− ����2 /2.

Given K and K�, the partition function is obtained from
this anisotropic 3D XY classical Hamiltonian with coupling
constants K and K�. Any desired equilibrium quantity can, in
principle, be computed by averaging over all configurations
using standard classical Monte Carlo techniques. Within any
given realization of the disorder, the Aij’s are chosen at ran-
dom from the Gaussian distribution within the xy plane, as
described above, but the Aij’s for a given bond in the xy
plane are independent of �; i.e., they are the same for all time
slices. In principle, for any given �, this should be done
taking the limit as M→�. In practice, of course, the size of
the sample is limited by considerations of computer time.

FIG. 1. Sketch of a 2�2 group of plaquettes in a square lattice
of Josephson-coupled grains, in which each grain is randomly dis-
placed by a small amount from its nominal lattice site. In a uniform
transverse magnetic field, if the average flux � per plaquette is �
= f�0, then the root-mean-square deviation of the flux from its
mean value is also proportional to f .
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C. Evaluation of specific properties using path-integral
formulation

The time-slice formulation of the partition function allows
various properties to be evaluated using standard classical
Monte Carlo techniques. We now review how this may be
done for the helicity modulus �or superfluid density� and the
electrical conductivity. Similar formulations have been given
in Refs. 1, 2, 42, 43, 45, and 46 for different but related
models.

1. Helicity modulus

For a frustrated classical XY system in d dimensions, the
helicity modulus tensor ��� is a d�d matrix which is a
measure of the phase stiffness. It is defined as the second
derivative of the free energy with respect to an infinitesimal
phase twist, and may be written as

��� =
1

N
� �2F

�A�� � A��
�

A�=0

, �13�

where N is the number of sites in the system and A� is a
fictitious vector potential added to the Hamiltonian �in addi-
tion to the vector potential A already included in the
Hamiltonian45�. In explicit form, this derivative takes the fol-
lowing form for the diagonal elements �see, e.g., Ref. 47�:

��� =
1

N��
�ij	

Jij cos��i − � j − Aij��êij · ê��2�
−

1

NkBT����ij	 Jij sin��i − � j − Aij��êij · ê���2�
+

1

NkBT��
�ij	

Jij sin��i − � j − Aij��êij · ê���2
. �14�

Here êij is a unit vector from the ith to the jth site, and ê� is
a unit vector in the � direction. The triangular brackets de-
note an average in the canonical ensemble.

If this expression is applied to the time-slice representa-
tion of the quantum-mechanical Hamiltonian, the coupling
constants Jij will be different in the xy plane and in the �
direction. For the time-slice calculation, we have to be care-
ful in order to obtain a result which is well behaved in the
limit M→�, where M is the number of time slices. The
correct expression in this case is

�xx =
1

NxNy
� J

M
�

�ij	�x̂
cos��i − � j − Aij��

−
1

NxNykBT�� �
�ij	�x̂

J

M
sin��i − � j − Aij��2�

+
1

NxNykBT� �
�ij	�x̂

J

M
sin��i − � j − Aij��2

. �15�

Here we are assuming that there are NxNy superconducting
grains in our 2D lattice and M time slices. The sums run over
all distinct bonds in the x̂ direction; there are NxNyM of these
bonds �NxNy per time slice�. A similar expression holds for

�yy. The in-plane coupling constant is taken to be J /M be-
cause there are M time slices.

From the above form, we can see why the expression
behaves correctly in the limit M→�. Each of the two sums
contains NxNyM terms in it, but the ensemble average con-
sists of M identical terms, one for each layer. Therefore, the
first sum in Eq. �15�, for example, should take the form

J

M��
�ij	

cos��i − � j − Aij��→ J��
�ij	

�
cos��i − � j − Aij�� ,

�16�

where the sum on the right-hand side runs only over the
phases in a single layer. The right-hand side is evidently
independent of M in the limit M→�. A similar argument can
be used to show that the second part of expression �15� for
�xx also approaches a well-behaved limit as M→�. Our nu-
merical results confirm this behavior.

As an illustration, we write down an expression for �xx in
the limit T→0 in the unfrustrated case ��Aij =0�. First, we
multiply expression �15� by � /M to obtain

��xx

M
=

1

NxNyM�K �
�ij	�x̂

cos��i − � j − Aij��
−

1

NxNyM�� �
�ij	�x̂

K sin��i − � j − Aij��2�
+

1

NxNyM� �
�ij	�x̂

K sin��i − � j − Aij��2
, �17�

where K=�J /M. The corresponding coupling constant in the
� direction is K�=M / �2�U�.

Since we are interested in the limit ��1, we choose M so
that K=K�. This condition is equivalent to

�

M
=

1
�2JU

. �18�

Hence, we get

�xx

�2JU
=

1

NxNyM�K �
�ij	�x̂

cos��i − � j − Aij��
−

1

NxNyM�� �
�ij	�x̂

K sin��i − � j − Aij��2�
+

1

NxNyM� �
�ij	�x̂

K sin��i − � j − Aij��2
, �19�

where K=�J /M =�J / �2U�. Since K=K�, the right-hand side
of this equation represents a dimensionless helicity modulus
�̃ for a classical unfrustrated isotropic 3D XY model on a
simple cubic lattice, which is a function of a single dimen-
sionless coupling constant K.

Now it is known from previous Monte Carlo studies48–52

that the unfrustrated 3D XY model on a simple cubic lattice
has an ordered phase if K�Kc�1 /2.21�0.452. Therefore,
�̃�K� vanishes if K�Kc and is positive for K�Kc. Translat-
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ing this result to the 2D quantum XY model on a square
lattice, we see that there is a superconductor-insulator tran-
sition at J / �2U�= �0.452�2=0.204.

For reference we give the connection between our formu-
lation of the helicity modulus and the calculation of Cha et
al.1 Rather than the helicity modulus, these authors calculate
the quantity ��0�, which is related to the superfluid density �s
by

��0� =
�s

kBT
�20�

and to the components of the helicity modulus tensor by
��0�=K��K��xx+�yy� /2, where �xx=�yy for the present
model, which is isotropic in the xy plane. In our notation,
��0� is given by

��0� =
JK

2NxNyM�� �
�ij	�x̂

cos��i − � j − Aij��
+ � �

�ij	�ŷ
cos��i − � j − Aij���

−
JK2

2NxNyM��� �
�ij	�x̂

sin��i − � j − Aij��2�
+ �� �

�ij	�ŷ
sin��i − � j − Aij��2��

+
JK2

2NxNyM�� �
�ij	�x̂

sin��i − � j − Aij��2

+ � �
�ij	�ŷ

sin��i − � j − Aij��2� . �21�

2. Specific heat

For the specific heat CV, we used the fluctuation-
dissipation theorem given by

CV =
�H�2	 − �H�	2

NkBT2 , �22�

where N is the total number of sites in the lattice, H� is the
Hamiltonian in Eq. �5�, and �¯	 denotes an ensemble aver-
age.

3. Conductivity

The conductivity in the low-frequency limit can also be
obtained from the time-slice Monte Carlo approach as1

��0� = 2��Q lim
k→0

��k�
k

, �23�

where ��k� is proportional to the superfluid density at fre-
quency k and is given by

��k� =
JK

2NxNyM�� �
�ij	�x̂

cos��i − � j − Aij�� + � �
�ij	�ŷ

cos��i − � j − Aij���
−

JK2

2NxNyM� �
�ij	�x̂,x

sin��i − � j − Aij�e−ik·x �
�ij	�x̂,x

sin��i − � j − Aij�eik·x�
−

JK2

2NxNyM� �
�ij	�ŷ,x

sin��i − � j − Aij�e−ik·x �
�ij	�ŷ,x

sin��i − � j − Aij�eik·x�
+

JK2

2NxNyM� �
�ij	�x̂,x

sin��i − � j − Aij�e−ik·x�� �
�ij	�x̂,x

sin��i − � j − Aij�eik·x�
+

JK2

2NxNyM� �
�ij	�ŷ,x

sin��i − � j − Aij�e−ik·x�� �
�ij	�ŷ,x

sin��i − � j − Aij�eik·x� . �24�

In the limit of very small k, we expect that ��k� will remain
finite in the superconducting phase and vanish in the insulat-
ing phase. Thus, ��0� will become infinite in the supercon-
ducting phase but vanish in the insulating phase. Precisely at
the critical value Kc, ��0� will become finite with a universal
value, as already obtained by other authors for related mod-
els.

III. QUANTUM MONTE CARLO RESULTS

A. Numerical procedure

In our quantum Monte Carlo calculations, we use the
standard Metropolis algorithm with periodic boundary con-
ditions in both the spatial directions and the imaginary time
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direction. We usually start with a random configuration of
phases at K=0.4, then increase K up to K=0.7 in steps of
0.005. This procedure corresponds to lowering the tempera-
ture T since K�1 /T. At each K, we take 40 000 MC steps
per site through the entire lattice to equilibrate the system,
after which we take an additional 50 000 MC steps to calcu-
late the thermodynamic variables of interest. For a lattice
size of 63, we use ten times as many MC steps as these for
both equilibration and averaging, and for a lattice size of 83,
we use twice as many steps.

For the phases �i of the order parameter on each site, we
use the 360-state clock model instead of a continuous angle
between 0 and 2� since it allows us to cover the entire range
of angles with fewer trials. Therefore, the allowable angles
are 0° ,1° ,2° , . . . ,359°. It has been shown numerically that
these discrete phase angles give results indistinguishable
from the continuous ones provided that n�20.53 However,
we select Aij from a continuous distribution in all our calcu-
lations.

For the partially random and completely random Aij, we
averaged over 100 different realizations of �Aij to calculate
the helicity modulus � and the specific heat CV. These cal-
culations were so time-consuming that we could go just up to
20�20�20 lattice size. For this reason, we chose to carry
out simulations only over four different �Aij for the partially
random case: �Aij =1 /2, 1 /�2, �1+1 /�2� /2�0.854, and 1.
Each realization is specified by a different random number
seed.

B. Finite-size scaling for �(0)

In general, if there is a continuous phase transition as a
function of some parameter, such as the coupling constant K,
the critical behavior near the transition can be analyzed by
carrying out a finite-size scaling analysis of various calcu-
lated quantities. For example, the zero-frequency helicity
modulus ��0� is expected to satisfy10

��0� =
1

Ld+z−2 �̃�L1/��,
L�

Lz� , �25�

where d is the spatial dimensionality, z is the dynamic expo-
nent, �̃ is a scaling function, � is the critical exponent for the
correlation length �, �= �K−Kc� /Kc, Kc is the critical value
of the coupling constant, and L� is the thickness in the imagi-
nary time direction. For our present system, d=2, so the
right-hand side is L−z�̃�L1/�� ,L� /Lz�. If we define

�̃�L1/�� ,L� /Lz�= �Lz /L��G̃�L1/�� ,L� /Lz�, then this scaling re-
lation becomes

L���0� = G̃�L1/��,
L�

Lz� . �26�

If our computational box has Nx�Ny �M sites, with Nx
=Ny, this scaling relation may be equivalently written as

KM��0� = G̃�Nx
1/��,

M

Nx
z� . �27�

As has been noted by other authors,1,2,6,10,13,54–56 Kc can
now be found, if � is a suitable order parameter, by plotting
KM��0� as a function of � for various cell sizes, all with
aspect ratios satisfying M =cNx

z, and finding the point where
these all cross, which corresponds to �=0. Unfortunately,
this method requires knowing the value of z in advance. For
many such quantum phase transitions, z may not be known.
Thus, one should carry out this calculation for all plausible
values of z and find out which value leads to a satisfactory
crossing. This procedure is prohibitively demanding numeri-
cally. We have, therefore, initially attempted to carry out
scaling using z=1, the value which is known to be correct at
�Aij =0. If this value were correct also at �Aij�0, it would
suggest that the superconducting-insulating transition at fi-
nite �Aij is in the same universality class as the zero-field
transition. In practice, we find that z=1 never gives perfect
scaling at nonzero �Aij and the scaling fit becomes progres-
sively worse as �Aij increases. For large �Aij in particular,
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FIG. 2. Plot of �L� as a function of K for various Nx�Ny �M
lattices for Aij =0. In this and all subsequent figures, unless other-
wise specified, we use Nx=Ny =M. The phase transition occurs
where the curves of different M cross. The crossing point yields
Kc=0.4543�0.0011. The use of Nx=Ny =M is equivalent to assum-
ing that the dynamic exponent z=1, as discussed in the text.
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FIG. 3. �a� Helicity modulus � and �b� specific heat CV plotted
as functions of coupling constant K for several lattice sizes when
�Aij =1 /2. The error bars in �a�, as obtained from the jackknife
method, are smaller than the symbol sizes. The lines in �b� are cubic
spline fits to the Monte Carlo data.
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the fit clearly fails, and we find for these values that ��0�
never converges to a nonzero value. At such large �Aij, we
suggest that this regime corresponds to a Bose glass �as fur-
ther discussed below�, and carry out a different kind of scal-
ing calculation to obtain the actual value of z of this phase at
�Aij =�. We also give arguments suggesting that, in fact, this
Bose glass phase is actually the ordered phase for all nonzero
values of �Aij.

Operationally, we implement the hypothesis that z=1 by
taking Nx=Ny =M. With this choice, Eq. �27� becomes

KM��0� = G̃�M1/��,1� �28�

when d=2.

C. Zero magnetic field

As a check of our method, we have calculated Kc for the
case of zero magnetic field �Aij =0�, using the above numeri-
cal approach. When there is no magnetic field, we get Kc
=0.4543�0.0011 using a finite-size scaling analysis of the
helicity modulus � as shown in Fig. 2. This value is very
close to Kc=0.4539�0.0013 by the series expansion as in
Ref. 57, which is also used in Ref. 1. This result confirms the

validity of our numerical codes. Using our value of Kc, we
can also obtain the universal conductivity �� /�Q
=0.282�0.005. This result is also very close to the value
�� /�Q=0.285�0.02 obtained in Ref. 1.

D. Finite �Aij

Figures 3�a�, 3�b�, and 4 show the helicity modulus �, the
specific heat CV, and the finite-size scaling behavior of � as
a function of coupling constant K for several lattice sizes
when �Aij =1 /2. When K�0.55, � and CV appear to be
nearly lattice size independent. The error bars from the jack-
knife method58 are shown in Fig. 3�a�, but they are smaller
than the symbol sizes. The lines are cubic spline fits to the
data in Fig. 3�b�. The apparent crossing point in Fig. 4 yields
the critical coupling constant Kc=0.491�0.001, which is
very close to the peak of CV in Fig. 3�b�.

The corresponding results for �Aij =1 /�2 are shown in
Figs. 5�a�, 5�b�, and 6. Compared to Fig. 3�a�, � shows more
lattice size dependence when K�Kc in Fig. 5�a�. The appar-
ent crossing point in Fig. 6 yields Kc=0.533�0.001. This Kc
is also very close to the peak in CV as in Fig. 5�b�.
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FIG. 4. Finite-size scaling behavior of the data in Fig. 3�a�,
using z=1. The apparent crossing point yields Kc=0.491�0.001.
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The results for �, CV, and �L� when �Aij =0.854 are
shown in Figs. 7�a�, 7�b�, and 8. In this case, the lattice size
dependence of � when K�Kc in Fig. 7�a� becomes more
conspicuous than that of Fig. 5�a�. The apparent crossing
point for the different sizes in Fig. 8 is less clearly defined
than in the previous examples, but yields Kc=0.585�0.004.
This Kc is slightly larger than the value of K at the maximum
of the broad peak in CV, as in Fig. 7�b�. There are some
fluctuations of �L� around K=0.70 for the lattice size of 123

and larger fluctuations above Kc for the lattice sizes of 163

and 203 in Fig. 8.
The fact that the apparent crossing point in Fig. 8 is even

less clear than those for smaller values of �Aij suggests that
z�1. We present a more likely scenario for this and other
values of �Aij in Sec. IV below.

As a final calculation for partially random Aij, we use
�Aij =1.0. The corresponding three thermodynamic variables
�, CV, and �L� are shown in Figs. 9�a�, 9�b�, and 10, respec-
tively. The lattice size dependence of � in Fig. 9�a� becomes
far more conspicuous than the previous two examples. The
peak of CV is very broad, as shown in Fig. 9�b�. In addition,
there is nothing like a clear crossing point of �L� for differ-
ent sizes Nx in Fig. 10. We interpret this result to mean that
the helicity modulus � does not play the role of an order

parameter and that the transition is not a superconductor-to-
insulator transition of the same character as at �Aij =0. Fur-
thermore, there are strong fluctuations of �L� as a function of
Nx when K
0.64 for most lattice sizes, as can be seen in
Fig. 10. We believe that, for this value �and, in fact, at all
nonzero values� of �Aij, this is a transition from a Bose glass
to a Mott insulator.

Finally, we have considered the case of a fully random
Aij, �Aij =�. We implemented this by choosing �Aij ran-
domly between 0 and 2�. The helicity modulus � and the
specific heat CV for this case are shown in Figs. 11�a� and
12�a�, respectively. The magnitude of � becomes much
smaller than those of previous cases, so that the error bars are
easily visible on the scale of the plot. The helicity modulus
even seems to have negative values for certain values of K,
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depending on the lattice size. Such negative values and fluc-
tuations of the helicity modulus in a disordered supercon-
ductor were already reported in other work,59 in the context
of a different model. As in Figs. 9�a� and 10, � is strongly
lattice-size dependent and there exists no value of K at which
the curves of L���K� for different Nx all cross �we do not
show a plot exhibiting this lack of crossing�. All these results
indicate that we need a different order parameter to describe
the phase transition. Besides these results, we find that the
peak in CV�K� is even broader than that in Fig. 9�b�. More-
over, the peak of CV shifts toward a larger value of K as �Aij
increases.

As a comparison to the fully random �Aij case, we have
also considered a model of “positionally disordered sites” in
a strong uniform transverse magnetic field B=Bẑ, similar to
a model considered in Ref. 42. The position coordinates
�xi ,yi� of each site are assumed uniformly and independently
distributed between −� and � with respect to the position
�xi0 ,yi0� the site would have in the ordered lattice, i.e.,

�xi − xi0� � � ,

�yi − yi0� � � . �29�

In our calculations, we have chosen �=a /4, where a is the
lattice constant of the unperturbed lattice. Thus Aij has the
form

Aij =
2�

�0
B

xi + xj

2
�yj − yi� �30�

for nearest-neighbor sites i and j. In order to consider a
strong field, we choose f =Ba2 /�0=20. The results for this
system of positionally disordered sites are shown in Figs.
11�b� and 12�b�. They are qualitatively similar to those with
�Aij =�, and even quantitatively similar for CV. We conclude
that the model of positionally disordered sites is nearly
equivalent to that with random Aij, at least for �Aij =�.

At large values of �Aij, our results suggest that the tran-
sition occurs between a Mott insulator and a Bose glass
rather than a conventional superconductor. Since a new order
parameter is demanded to study this transition, we use the

“renormalized coupling constant” g as in Ref. 44. Using the
same Aij for each realization, two replicas of phase � j are
simulated with different initial conditions and updated using
different random numbers. Their overlap is calculated from
the quantity

q = �
j

exp�i�� j
�1� − � j

�2��� , �31�

where � j
�1� and � j

�2� are the phases at site j in the two replicas.
Given q, the renormalized coupling constant g is defined as

g = 2 −
���q�4	�
���q�2	�2 , �32�

where �¯	 denotes the thermal average while �¯� denotes
an average over many realizations of Aij. Figure 13 shows
this g as a function of coupling constant K for several lattice
sizes when �Aij =�. From the crossing point for different
sizes, we obtain Kc=0.630�0.005. Unlike the results in Ref.
44, g still has a size dependence when K�Kc.

Figures 11–13 strongly suggest that �Aij =� corresponds
to a Bose glass transition, rather than a conventional super-
conducting transition. Hence, we expect z�1. In order to
allow for z�1, we have carried out additional calculations,
using a method suggested by Guo et al.60 and by Rieger and
Young.61 Following the procedure of these authors, we first
calculate g as a function of the time dimension L� for various
sizes L and several temperatures T. Since the proper scaling
behavior of g is not expected to depend on the anisotropy of
the coupling constants, we assume the same coupling con-
stant J=1 in both the space and imaginary time directions.
For each T and L, g has a maximum value as a function of
L�. According to Refs. 60 and 61, the true Tc is the tempera-
ture such that this maximum value, gmax, is independent of L.
Once Tc is determined by this procedure, the correct z is that
value which causes a plot of g�Tc ,L� /Lz� versus the scaling
variable L� /Lz to be independent of L.
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FIG. 12. Same as Fig. 11 but for the specific heat CV. The lines
are cubic spline fits to the data.
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Following this prescription, we have calculated g�L� ,L ,T�
as a function of L� for various values of T and a lattice of
size L�L�L�, assuming that J=J�=1. We find that gmax is
most nearly independent of L when T=1.61J /kB. To illus-
trate this independence, we plot g�L� ,T=1.61J /kB� for sev-
eral choices of L in Fig. 14. At this temperature, for all L
studied, g�L� ,L ,T� has a maximum of around 0.38 when
plotted against L�.

Given Tc, we obtain z by plotting g�Tc ,L� /Lz� as a func-
tion of the scaling variable L� /Lz for various values of L. The
correct value of z is the one which causes these curves to be
most nearly independent of L. We have made such plots for
various values of z at Tc=1.61J /kB, and find that this col-
lapse of the numerical data is most nearly obtained for z
=1.3, with an uncertainty of about �0.1. The resulting scal-
ing fit is shown in Fig. 15 for z=1.3. The fit is very good,
suggesting that �i� the transition for �Aij =� is indeed a Bose
glass transition, and �ii� the critical exponent z at the transi-
tion is z�1.3�0.1.

We have carried out a similar series of calculations at
�Aij =1.0. For this choice, the best glass scaling fits are rea-
sonable, but not so good as for �Aij =�. They are shown in
Figs. 16 and 17 for T=1.70J /kB, which is our best estimate
for the glass transition temperature of this model at �Aij
=1.0. Our conclusion is that, for �Aij =1.0, the sizes we can
achieve �L�L��12� are simply not large enough to reveal
the excellent scaling behavior which is expected for a suffi-
ciently large sample. We discuss below a possible explana-
tion why �Aij =1.0 requires a larger sample size than �Aij
=�.

With all the Kc’s we have collected so far, we can plot
1 /Kc as a function of �Aij. This is shown in Fig. 18. Since
Kc=��J / �2U��c and since 1 /Kc decreases as �Aij increases,
these results mean that �J / �2U��c increases with increasing
�Aij. Therefore, there exist certain values of the ratio J /U
such that the system is superconducting �or in a Bose glass
state� for small �Aij, but insulating for large �Aij. As dis-

cussed earlier, an increasing value of �Aij can be interpreted
as an increasing value of magnetic field f�0 /a2 for a slightly
disordered Josephson junction array in a transverse magnetic
field equal, on average, to an integer number f of flux quanta
per plaquette. Thus, our results suggest that, for certain val-
ues of J /U and integer f , the system undergoes a supercon-
ductor �or Bose glass� to insulator transition as f increases.
Since a given array would be expected to have a fixed value
of J /U, such an array may undergo an S-I �or BG-I� transi-
tion as a function of integer f if J /U is in the appropriate
range. Our results may not be directly applicable to a realis-
tic thin superconducting film in a magnetic field because
such a film is unlikely to have the topology of a Josephson
junction network. However, the two could exhibit similar
phase diagrams.

In Fig. 18, we have shown a possible phase diagram for
this system, based on all the numerical data we have accu-
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FIG. 14. Plot of g�L� ,L ,T� versus L� for several values of L, as
given in the legend, for T=1.61J /kB and �Aij =�. In these calcula-
tions, the coupling constants J and J� are each taken to be unity. For
each L, each calculation represents an average over 100 realizations
of the disorder. The maximum values gmax�L� are nearly indepen-
dent of L.
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FIG. 15. Plot of g�L� ,L ,T� versus log10�L� /Lz� for several val-
ues of L, as given in the legend, for T=1.61J /kB, z=1.3, and �Aij

=�. In these calculations, the coupling constants J and J� are each
taken to be unity. For each L, each point represents an average over
100 realizations of the disorder. For this choice of z, the results for
different values of L collapse very well onto a single plot. The
corresponding plots for z=1.2 and z=1.4 produce only slightly in-
ferior collapses. We conclude that the correct value of z for this
transition is z�1.3�0.1.
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FIG. 16. Same as Fig. 14 except for �Aij =1.0 and T
=1.70J /kB.
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mulated. We have drawn the diagram to suggest that the
entire ordered region for �Aij�0 is of the Bose glass type,
rather than the S type with z=1. This point is discussed fur-
ther in Sec. IV. Despite this assumption, we have, for �Aij
�0.854, obtained Kc from our calculations of the helicity
modulus, as discussed above. For �Aij =�, we have used our
scaling calculations based on the glass order parameter g.
For �Aij =1.0, we used both methods. They give slightly
different values of Kc at the phase boundary. It is conceivable
�but, we believe, unlikely� that there is another phase bound-
ary separating the S and BG regions somewhere around
�Aij =1.0. Our reasons for believing this scenario to be un-
likely are given in the discussion below.

E. Conductivity

If the transition in our model is from a Mott insulator �I�
to a superconductor �S�, then the helicity modulus � is finite
in the S state but vanishes in the state I. Precisely at the
transition, � becomes linear in frequency, and the conductiv-
ity at the transition can be extracted by a scaling analysis,1 as
we will review below. In what follows, we carry out the
scaling analysis over the full range of �Aij, whether the or-
dered state is S or BG.

In order to obtain the value of the conductivity at the
transition, we need the generalization of the scaling formulas
to frequency-dependent �. When there is such a frequency
dependence, Eq. �28� is generalized to1

KM��k� = G̃�M1/��,kM� , �33�

where k=2�n /M and n is an integer. Precisely at K=Kc, G̃
will be a function of only kM, since K−Kc=0. Thus we can
introduce another scaling function P, in terms of which Eq.
�33� can be simplified to

KM��k� = P�kM� . �34�

From Eq. �23�, the conductivity is obtained by taking the
limit k→0 after first taking the limit M→� with a small k,1

so that P�kM��kM in the limit M→�. Using the scaling
function P, Eq. �23� can be rewritten as1

��

�Q
= 2� lim

kM→�

P�kM�
kM

, �35�

where we have also used the relation ��k�=K��k�. Since this
quantity is to be calculated for k→0 after M→�, the ratio
�� /�Q will be finite only if the scaling function P�x��x in
this regime. Since k=2�n /M, the scaling form �35� can be
written again as1

��n�
�Q

=
P�2�n�

n
. �36�

This scaling form is expected to be valid only in the re-
gime 1�n�M. Since it is difficult to carry out calculations
for M large enough that these inequalities are satisfied, espe-
cially for a disordered system, it is necessary to incorporate
corrections to scaling and express � in terms of n and M
separately. Since the corrections to scaling vanish in the limit
n /M→�, we expand ��n� as a function of n and M /n using
the same form assumed in Ref. 1, namely

��n,M/n�
�Q

=
��

�Q
+ d��

n
−

n

M
� + ¯ , �37�

where d and � are fitting constants. The universal conductiv-
ity �� is found by plotting ��n ,M /n� as a function of the
scaling variable �� /n−n /M� for several lattice sizes M and
finding the optimal value of � which produces the best data
collapse onto a single curve. The universal conductivity for
this value of �Aij is the value of �� at which � /n−n /M =0.

Using this method, we find the following universal con-
ductivities for different values of �Aij: �� /�Q
=0.340�0.006 when �Aij =1 /2, �� /�Q=0.560�0.009
when �Aij =1 /�2, �� /�Q=1.141�0.088 when �Aij =0.854,
and �� /�Q=1.055�0.090 when �Aij =�. At each of these
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FIG. 17. Same as Fig. 15 except for �Aij =1.0 and T
=1.70J /kB.
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FIG. 18. Calculated inverse critical coupling constant 1 /Kc as a
function of �Aij. The filled points denote the calculated points, and
the dashed line connecting them is a freehand interpolation of the
data. We denote the entire ordered region for �Aij�0 as “BG,”
consistent with what we believe to be the most probable nature of
the ordered state. For �Aij �0.854, the data come from calculations
of the helicity modulus, as described in the text; for �Aij =�, they
come from calculation of the glass order parameter g, and for
�Aij =1.0, they come from both, as shown in the figure.
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values of �Aij, we apply the method just described to calcu-
late the universal conductivity at the corresponding Kc values
obtained earlier. The results are shown in Figs. 19–22, re-
spectively. The optimal values of �’s which yield these uni-
versal conductivities are �=0.55, 0.19, 0.06, and 0.01 for
�Aij =1 /2, �Aij =1 /�2, �Aij =0.854, and �Aij =�, respec-
tively. The accuracy of the calculated �� /�Q becomes pro-
gressively worse as �Aij increases. In fact, we need to obtain
the results for �Aij =0.854 and �Aij =� by extrapolation of
��n ,M /n� /�Q to the optimal values of � using Figs. 21 and
22.

The critical coupling constant Kc increases monotonically
with increasing �Aij, as we have already noted. Similarly, the
universal conductivity �� also appears to increase monotoni-
cally with �Aij. From these universal conductivities, we can
plot the universal resistivities as a function of �Aij. These are
shown in Fig. 23. The resistivity decreases with increasing
�Aij all along the phase boundary between the Mott insulator

and the phase-ordered state. The points represent the results
obtained from the QMC simulations, while the dashed lines
represent a guide for the eyes.

As noted earlier, increasing �Aij in our model corre-
sponds to increasing magnetic field for a slightly disordered
Josephson junction array in a uniform transverse magnetic
field. Thus, our results which show a decrease in the univer-
sal resistivity with increasing �Aij probably cannot be di-
rectly compared to the experiments reported in Refs. 20 and
21 and the numerical results of Ref. 15. The experiments
consider a disordered Bi film in a uniform magnetic field
rather than a slightly disordered Josephson junction array in
a periodic field. However, both the experiments and our cal-
culations find a zero-temperature magnetic-field-tuned tran-
sition from a phase-ordered state to an insulator, and both the
experimental papers and previous calculations interpret this
phase transition using scaling fits of the low-temperature
transport properties near the critical field, as we do here for
our model.
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FIG. 20. Same as Fig. 19, except that �Aij =1 /�2 and Kc

=0.533. The optimal � used here is 0.19. The universal conductivity
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IV. DISCUSSION

In this paper, we have calculated the transition between
the superconducting and the insulating state for a model dis-
ordered 2D superconductor in a magnetic field. We treat the
superconductor as a square Josephson junction array with an
intergranular Josephson coupling energy J and a finite ca-
pacitive energy described by an on-site charging energy U.
To include the effect of both disorder and a transverse mag-
netic field, we include a random magnetic phase factor Aij in
the Josephson coupling between grains; Aij is assumed to
have a Gaussian distribution with zero mean and a root-
mean-square width �Aij.

Although our model is certainly artificial, it should rea-
sonably represent the effects of a magnetic field applied to a
disordered 2D array at integer f . Specifically, the model re-
sembles a spatially disordered 2D granular superconductor
in a uniform magnetic field, in which the plaquettes have
slightly different areas. For small �Aij, the root-mean-square
frustration per plaquette is small, but at all nonzero �Aij, the
grain plaquettes are randomly frustrated, a feature which
should be relevant in real 2D films. Our model provides a
way of interpolating smoothly between the zero-field and
high-field limits.62 We have confirmed numerically that, at
least in the high-field limit, the two models give a BG-I
transition at the same value of K.

Our numerical results suggest that, for any value of �Aij,
the system undergoes a transition from an insulating �I� state
to an ordered state. We believe that the transition is I to Bose
glass �BG� over the entire range of �Aij, except for �Aij
=0. Supporting this hypothesis is the fact that g exhibits
excellent scaling at �Aij =� and very good scaling at �Aij
=1.0. This hypothesis is also indirectly supported by the fact
that the scaling behavior of � becomes progressively worse
as �Aij increases. To provide stronger support for this hy-
pothesis numerically for smaller �Aij, we would need to go

to much larger Monte Carlo sample sizes, using the correct
value of z�1.3.

In support of this scenario, we now describe a simple
argument, based on the well-known Harris criterion,63 which
suggests that the S state is unstable against a small random
perturbation of the type we consider here. Consider the zero-
field version of model �1�, in the presence of some kind of
weak uncorrelated disorder. In a region of size �d �where d
=2 and � is the correlation length of the unperturbed system�,
the critical value of K should fluctuate by an amount of order
�−d/2. Near the critical value of K, the correlation length of
the unperturbed system varies with K according to the rela-
tion �� ��K−Kc� /Kc�−�. In order for the transition of the un-
perturbed system to be unaffected by the disorder, the Harris
criterion suggests that �
2 /d. For the present case, d=2,
but because we are dealing with a quantum transition, � is
that of a 3D XY transition, namely ��2 /3.64 Thus, the in-
equality is not satisfied and we expect this quantum phase
transition to be unstable against point disorder in 2D.

For the present model, the randomness is indeed uncorre-
lated within the plane, as required by the above argument,
but it is somewhat different from the usual point disorder.
For small �Aij, the random part of the Hamiltonian may be
written as

Hran� ��Aij� � − J�
�ij	

sin��i − � j��Aij , �38�

where �Aij is a Gaussian random variable. Despite the form
of this disorder, it seems reasonable that the disorder would
have at least as strong an effect on the phase transition of the
pure model as more conventional point disorder. Therefore,
we suggest, based on this rough argument, that the 3D XY
phase transition of the pure model is unstable against this
random field perturbation for arbitrarily weak �Aij.

The next question is, to what is the 3D XY transition
unstable? The most likely scenario is that the transition is of
the I to BG class over the entire range �Aij�0. The seeming
presence of the S phase at small but finite �Aij is probably
due to the fact that our samples are not large enough to
exhibit the expected BG phase. For example, at �Aij =1 /2,
the rms variation in total flux through a single plaquette
would be 2 · �1 /2��0 / �2��=�0 / �2��. Thus, the rms varia-
tion in total flux through a lattice of L2 plaquettes would be
L�0 / �2�� �where the factor of L comes from the fact that 4L
is the perimeter of the L2 plaquettes�, and hence, even for
L=12, would be only about two flux quanta. This value is
not large enough to yield results characteristic of �Aij =�, at
which we have shown the Bose glass is the stable ordered
phase. Thus, indeed, the sample sizes we have considered are
simply not large enough to exhibit fully developed Bose-
glass scaling at �Aij �1 /2, or even at larger values than this.
Nonetheless, we have the basic result that, for any �Aij, there
is a transition from an insulating state to an ordered state
with increasing values of the coupling parameter K
=�J / �2U�. As the above argument suggests, we believe that
this ordered state is a BG phase for any nonzero �Aij.

The critical coupling constant Kc for the transition from I
to BG increases monotonically with increasing �Aij. Thus,
for certain values of K, the material is in the BG state at low
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FIG. 23. The universal resistivity �� divided by �Q as a function
of �Aij. In each case �� /�Q=�Q /��. The dashed lines are cubic
spline fits to the data. “I” and “BG” denote the insulating and Bose
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as in Fig. 18.
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�Aij, but goes through a BG-I transition as �Aij increases. In
a disordered material, increasing �Aij can be identified with
increasing transverse magnetic field for a slightly disordered
Josephson junction array at integer f , in the sense which we
have discussed earlier. Since any given material should have
a fixed K, independent of �Aij, this trend implies that some
materials, which have suitable values of K, will go through a
BG-I transition with increasing field. A material with a
smaller K will remain insulating for all �Aij, while one with
a larger K would remain a BG for all fields. All this behavior
follows from the phase diagram drawn in Fig. 18. In each
case, the I phase in our model is a Mott insulator, since
Cooper pairs are localized by Coulomb repulsion rather than
by disorder.

Besides calculating the critical values of coupling con-
stant Kc, we have also computed the universal conductivities
�� as a function of �Aij for these transitions. The values of
both Kc and �� /�Q���� /�Q�−1 are shown for various values
of �Aij in Fig. 23. In all cases, these values are obtained by
a scaling analysis of the numerically calculated helicity
modulus � and the renormalized coupling constant g.

Our results may be consistent with experimental findings
as in Refs. 20–24, 28, 31, 32, 34, and 36. The data in these
references indicate that a-InOx films,23,28 granular In films,24

a-MoGe films,22 Bi films,20,21 Nd2−xCexCuO4+y films,31 TiN
films,32,34 and Nb0.15Si0.85 films36 show that the resistance per
square, normalized by the resistance at the transition, at very
low temperatures decreases as a function of the scaled mag-
netic field B when the magnetic field is less than the critical
value Bc, while it increases when B�Bc. It should be kept in
mind, of course, that our model calculations refer to a disor-
dered Josephson array at an integer number of flux quanta
per plaquette, on average, whereas the experiments deal with
systems having a possibly different topology.

Numerically, there are several ways in which our calcula-
tions could be further improved. In some cases, the number
of realizations �100� we have used for Aij may be insufficient
to provide accurate statistics and might lead to significant
numerical uncertainties. Our choice for the number of real-
izations is dictated by a compromise between computing

costs and statistical errors. Because of the large amount of
computing time involved, we have carried out our calcula-
tions only up to a lattice size at most of 20 on an edge, and
have considered only five different nonzero �Aij’s. Our re-
sults would have had greater accuracy and given a more
detailed picture of the phase diagram if we had been able to
include more values of �Aij, a larger number of realizations,
and, especially, larger lattice sizes. In addition, our “world-
line” algorithm37,65,66 could be replaced by other approaches,
such as a “worm” algorithm54 or a stochastic series
expansion,11,17,67,68 possibly leading to better convergence. It
might also be valuable to develop another model in which
the disorder is introduced in a manner closely resembling
that in actual superconducting films. Finally, we note that the
same approach could be used to calculate the finite-
frequency conductivity of the low-temperature phase for
various values of �Aij.

5,6,10

To summarize, we have carried out extensive quantum
Monte Carlo simulations of a model for a transition from a
Mott insulator to a superconducting phase at low tempera-
tures. The model is characterized by a continuously tunable
disorder parameter �Aij. Our numerical results suggest that,
for any nonzero �Aij, there is such a transition, and that the
ordered phase is a Bose glass. The evidence that the ordered
phase is a Bose glass is strong for �Aij =�, but less conclu-
sive for smaller �Aij. We also find that, for certain values of
the coupling variable K, the system can go from BG at small
�Aij to a Mott insulator at large �Aij. We also discuss the
possibility that this transition may be related to the field-
driven superconductor-to-insulator transition seen in a num-
ber of superconducting films. It would be of great interest if
our results could be compared to a suitable experimental re-
alization.
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