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The nonequilibrium dynamics of electrons is of a great experimental and theoretical value, providing im-
portant microscopic parameters of the Coulomb and electron-phonon interactions in metals and other cold
plasmas. Because of the mathematical complexity of collision integrals, theories of electron relaxation often
rely on the assumption that electrons are in a “quasiequilibrium” �QE� with a time-dependent temperature, or
on the numerical integration of the time-dependent Boltzmann equation. We transform the integral Boltzmann
equation to a partial differential Schrödinger-type equation with imaginary time in a one-dimensional “coor-
dinate” space reciprocal to energy which allows for exact analytical solutions in both cases of electron-electron
and electron-phonon relaxations. The exact relaxation rates are compared with the QE relaxation rates at high
and low temperatures.
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I. INTRODUCTION

In recent years investigations of photoresponse functions
in advanced materials have gone through a vigorous revival.
In particular, laser “pump-probe” techniques, where a second
probe pulse is delayed in time with respect to the pump
pulse, provide unique information on the strength of
electron-electron �e-e� and electron-phonon �e-ph� interac-
tions in metals and doped insulators if an adequate theory is
in place.

At present detailed experimental data on relaxation pro-
cesses are collected for metals1–5 and high-temperature
superconductors.6–12 The pump-probe experiments are rou-
tinely analyzed in the framework of the so-called two-
temperature model �TTM�.13,14 The model is based on the
assumption that electrons and phonons are in a thermal qua-
siequilibrium �QE� with two different time-dependent tem-
peratures Te�t� and Tl�t�. The comprehensive analysis of ex-
perimental data collected at room temperature1 allowed for a
determination of the e-ph coupling constant � of many met-
als and low-temperature superconductors in the framework
of TTM.

Similar experiments and their analysis were performed on
high-temperature superconductors. The femtosecond time-
resolved measurements on the high-Tc superconductors
Tl2Ba2Ca2Cu3O10 �Ref. 6� and YBa2Cu3O7−� �Refs. 7 and 8�
found a relaxation process below Tc, which is distinct from
the equilibration of hot carriers in the normal state. A rela-
tively strong e-ph coupling, ��0.9,8 and a rapid decrease in
the photoresponse decay rate with decreasing temperature15

were found in YBa2Cu3O6.5, and the phonon
bottleneck12,16–18 or a biparticle recombination15,19 were ob-
served below Tc. More recently, a time-resolved photoemis-
sion spectroscopy20 and the standard pump-probe optical
measurements21 have been performed on Bi2Sr2CaCu2O8+�.
Their TTM analysis has led to a rather weak e-ph coupling,
��0.25.

The pump-probe techniques have a potential to resolve a
controversial issue on whether the e-ph interaction is
crucial22 or weak and inessential23 for the mechanism of

high-temperature superconductivity. The pioneering work by
Kaganov et al.13 and subsequent TTM studies were based on
the assumption that electrons are in the thermal QE state
because the e-e relaxation time is supposed to be much
shorter than the e-ph relaxation time. This assumption is of
course incorrect on a femtosecond scale comparable with the
e-e scattering time of highly excited electrons. But the ex-
pectation has been that deviation from QE may not in fact
have much influence on the electron energy relaxation on a
larger time scale14 �for discussions of TTM with respect to
some experiments, see, for example, Refs. 24 and 25�.

However, later on it has been realized that nonthermal
effects are essential even on the picosecond scale, compa-
rable with the e-ph relaxation time, when conditions of low
laser excitation power and relatively low temperature are
chosen.26 Under these conditions, the e-e collision rate be-
comes strongly suppressed as a result of the Pauli exclusion
principle. Numerically integrating the Boltzmann equation
with e-e and e-ph collision integrals, Groeneveld et al.26

showed that the electron gas cannot attain a thermal distri-
bution by e-e collisions on the time scale of the e-ph energy
relaxation. A departure from QE leads to an increase in the
e-ph energy relaxation time with respect to the QE expecta-
tion. As a consequence of this departure, one might underes-
timate the e-ph coupling using TTM.

While numerical integrations of the Boltzmann equation
can describe the time evolution of the electron distribution
function on any time scale, they require a number of input
parameters, which might be unknown a priori. Here, an ana-
lytical approach to this long-standing problem is developed.
We reduce the integral Boltzmann equation to a differential
Schrödinger-type equation using an auxiliary space recipro-
cal to energy and find exact analytical time-dependent distri-
butions of electrons in both cases of electron-electron and
electron-phonon relaxations. We also derive long-time relax-
ation rates of response functions and compare them with
TTM.

II. ELECTRON-ELECTRON RELAXATION

Let us first consider a nonthermal relaxation of the elec-
tron distribution function fk�t� caused by electron-electron
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collisions, which is described by the following Boltzmann
equation:

ḟk =
2�

�
�
p,q

Vc
2�q����k + �p − �k+q − �p−q�

	�fk+qfp−q�1 − fk��1 − fp� − fkfp�1 − fk+q��1 − fp−q�� .

�1�

Here ḟk��fk�t� /�t, Vc�q� is the matrix element of the
electron-electron scattering �pseudo�potential, and �k is the
electron energy with respect to the equilibrium chemical po-
tential. For transparency we drop the time argument in the
distribution function. If the distribution function depends
only on energy and time, fk= f�, one can average this equa-
tion over the angles of k as

ḟ� � N−1����
k

���k − �� ḟk, �2�

where N��� is the density of states �DOS� per spin, with the
following result:

ḟ� =� � � d��d
d
�K��,��,
,
����� + 
 − �� − 
��

	�f��f
��1 − f���1 − f
� − f�f
�1 − f����1 − f
��� , �3�

where

K��,��,
,
�� =
2�

�N��� �
k,p,q

Vc
2�q����k − �����p − 
�

	���k+q − ������p−q − 
�� . �4�

We restrict our theory to relaxations involving nonequi-
librium electron-hole excitations with energies much less
than the equilibrium Fermi energy EF. Since the kernel
K�� ,�� ,
 ,
�� has variation on the scale of the Fermi energy,
one can approximate it by a constant, K�� ,�� ,
 ,
��	K. This
constant is related to the Coulomb pseudopotential �C
�VcN�0�, important in the theory of superconductivity, K
	��C

2 /2�EF. Assuming a low laser excitation power, we
linearize Eq. �3� by introducing a small nonequilibrium cor-
rection, ��� , t�
1, to the equilibrium distribution n�,

f� = n� + ���,t� , �5�

where n�= �e�/kBT+1�−1. Keeping terms linear in ��� , t� and
measuring energies in units of kBT, which is the only relevant
energy scale of the problem, one obtains

�̇��,t� = K�kBT�2� � � d��d
d
���� + 
 − �� − 
��

	�����,t��n−�n−
n
� + n�n
n−
��

− ���,t��n��n−
n
� + n−��n
n−
��� . �6�

Performing simple integrations in linearized Eq. �6� yields

�̇��,t� = −
���,t�
�e���

+
K�kBT�2

cosh��/2��−�

�

d������,t�cosh���/2�

	
 � − ��

sinh� � − ��

2
� −

� + ��

2 sinh� � + ��

2
�
 , �7�

where

�e��� =
2

��2 + �2�K�kBT�2 �8�

is the familiar lifetime of electron-hole excitations in the
Fermi liquid. Here we have used the integral �0

�dz ln�z� / ��z
−a��z+b��= ��2−ln2�a�+ln2�b�� /2�a+b�, with a ,b�0.

The second term on the right-hand side of Eq. �7� de-
scribes a source of quasiparticles due to inelastic electron-
electron collisions. Collisions in cold degenerate plasmas
differ essentially from quasielastic collisions in classical
�hot� plasmas. In the latter the energy transfer is small com-
pared with the electron energy due to the long-range charac-
ter of the Coulomb potential, so that one can approximate the
Boltzmann collision integral by the differential Landau-
Fokker-Planck �LFP� equation �see, for example, Ref. 27�.
As one can see from Eq. �7�, it is not the case in metals. The
collision energy transfer in metals is about the same as the
excitation energy itself, which makes the differential LFP
approximation unacceptable here.

Remarkably, the electron-electron collision integral ac-
quires a differential form in a reciprocal auxiliary-time space
introduced via the Fourier transform of Eq. �7�, rather than in
the energy space as in the LFP case. Let us consider non-
equilibrium states conserving the electron-hole symmetry, so
that the nonequilibrium part of the distribution is an odd
function of energy, ��−� , t�=−��� , t�. If one determines a
function

���,t� � ���,t�cosh��/2� , �9�

then the Boltzmann equation is simplified as

�̇��,t�
K�kBT�2 = −

�2 + �2

2
���,t� +

3

2
�

−�

�

d������,t�
� − ��

sinh� � − ��

2
� .

�10�

We shall see below that a “bound state” of the effective
“Schrödinger” equation for the Fourier transform of ��� , t�
corresponds to the stationary quasiequilibrium distribution.
Taking the Fourier transform of Eq. �10�, we arrive at an
exact differential counterpart of the Boltzmann equation,

�e�̇�x,t� = � �2

�x2 +
6

cosh2�x�
− 1���x,t� , �11�

where

�e = 2/�2K�kBT�2 �12�

and
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��x,t� = �
−�

�

d����,t�eix�/�. �13�

Here, another integral �−�
� dzz exp�ixz� /sinh�z /2�=2�2 /

cosh2��x� has been used.
The solution of Eq. �11� is found as a superposition of

normalized eigenstates, �k�x�, of a textbook Hamiltonian,28

��x,t� = �
k

ck�k�x�e�k2−1�t/�e, �14�

where coefficients ck are determined by the initial nonequi-
librium distribution function ��� ,0� at t=0,

ck = �
−�

�

dx�
−�

�

d��k
��x�cosh��/2����,0�eix�/�. �15�

The eigenstates �k�x� and the eigenvalues E=−k2 are found
from the Schrödinger equation

� �2

�x2 +
m�m + 1�
cosh2�x� ��k�x� = k2�k�x� , �16�

with m=2. This equation has a finite number of discrete
bound states with real k’s �Ref. 28� and continuum extended
states with imaginary k’s, k= ip �p is real�. If m is an integer,
there are m bound states with k=1,2 , . . . ,m and both bound
and unbound eigenstates can be expressed in terms of el-
ementary functions,29

�k�x� = AkD̂mD̂m−1 ¯ D̂1ekx, �17�

where Ak is the normalizing amplitude and D̂m=d /dx
−m tanh�x�. In our case �m=2� there are two bound states,
the even ground state with k=2 �E=−4� and the odd excited
state with k=1 �E=−1�. For relaxations conserving the
electron-hole symmetry, the ground-state contribution to the
superposition, Eq. �14�, is integrated to zero because the ini-
tial nonequilibrium distribution is odd. On the contrary, the
excited odd state with �1�x��sinh�x� /cosh2�x� is the only
state which survives in Eq. �14� at t→�, so that

��x,�� �
sinh�x�

cosh2�x�
, �18�

and �using Eqs. �9� and �13��

��x,�� �
�

cosh2��/2�
, �19�

which is precisely the result of the QE approximation.
Indeed expanding the QE distribution function fQE
= �exp��E−EF� /Te�+1�−1 in powers of Te−T, we obtain

fQE = n� + �Te − T

4T
� �

cosh2��/2�
, �20�

with the same nonequilibrium correction nQE�� /cosh2�� /2�,
as in Eq. �19�.

The exact solution, Eq. �14�, allows us to trace the relax-
ation at any energy and at any time scale. In particular, Fig.
1 represents the time evolution of the total number of
nonequilibrium excitations �electrons plus holes�, n

=2�0
�d���� , t�, for initial nonequilibrium distributions of the

shape, ��� ,0�= ��1/2E0 /2�3�� exp�−�� /��2�, where the dis-
tribution width � is varied but the total energy E0 is un-
changed. For wide sources with large ��1, the number of
excitations increases with time, conserving the total energy
in the process of their cooling. On the other hand, when most
excitations at t=0 are created with the energy less than kBT
�i.e., ��1�, their number decreases with time since their
individual energies increase due to collisions with equilib-
rium electrons. One can trace the relaxation for any initial
distribution including the case where a single photon initially
creates a single electron-hole pair, which cascades eventually
into a large number of pairs until they get lost in the back-
ground thermal distribution.

The asymptotic behavior of response functions can be
readily obtained from Eq. �14� by taking into account that
only the excited bound state and the extended states with
small p	�t /�e�−1/2
1 contribute to the sum in Eq. �14�,
when t /�e� �1,1 /�2�. Substituting the extended eigenfunc-
tions �p�x�� �3 tanh2�x�−3ip tanh�x�− p2−1�exp�ipx� into
Eq. �14� with cp� p at small p and integrating over p yield

��x,t� − ��x,�� �
x

t3/2exp�−
t

�e
−

x2�e

4t
� �21�

in the saddle-point approximation. Performing the Fourier
transform of Eq. �21� with respect to x, we find

���,t� − ���,�� � �e−t/�e���. �22�

The same result is obtained by using a � approximation for
Boltzmann equation �7�,

�̇��,t� = −
���,t� − ���,��

�e���
, �23�

which has the following solution:

���,t� = ���,�� + ����,0� − ���,���e−t/�e���. �24�

Hence one can use the � approximation, Eq. �24�, on the time
scale much longer than the characteristic collision time �e.
However this approximation is inaccurate on a shorter time
scale because in contrast with the exact solution, Eq. �14�, it
does not conserve the total energy.

Integrating Eq. �22� yields a universal time asymptotic of
the total number of electron-hole excitations,

FIG. 1. �Color online� Relaxation of the total number of non-
equilibrium excitations, n, normalized by the quasiequilibrium
number nQE for different widths � of the initial nonequilibrium
distribution.
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n�t� − nQE �
e−t/�e

t
, �25�

as also seen from Fig. 1.
Importantly the characteristic e-e relaxation time is quite

long due to the Pauli exclusion principle. Using realistic
�C=1 and EF=10 eV, we estimate �e	1.2 ps at the room
temperature T=300 K �see also Ref. 26�, which increases
further as 1 /T2 with cooling.

III. ELECTRON-PHONON RELAXATION

Now let us consider the electron-phonon relaxation de-
scribed by the e-ph collision integral,

ḟk =
2�

�
�
q

M2�q���fk−q�1 − fk�Nq − fk�1 − fk−q��Nq + 1��

	���k − �k−q − ��q� + �fk+q�1 − fk��Nq + 1�

− fk�1 − fk+q�Nq����k − �k+q + ��q�� , �26�

where M�q� is the matrix element of the deformation poten-
tial and Nq is the distribution function of phonons with the
frequency �q.

As in the former case of the e-e collisions, we average this
equation over the momentum angles using Eq. �2� and con-
ventional units:

ḟ� = 2�� d�� d��Q��,�,������� − �� − ���

	��f�� − f��N� − f��1 − f���� + ��� − �� + ���

	��f�� − f��N� + f���1 − f���� . �27�

Here

Q��,�,��� =
1

�N����k,q
M2�q����k−q − ������k − �����q − ��

�28�

is the e-ph spectral function,14 which has � variation on the
scale of the maximum phonon frequency �D but has � and ��
variation only on a much larger energy scale on the order of
EF.

Linearizing Eq. �27� with the help of Eq. �5� yields

�̇��,t� = 2�� d�� d��Q��,�,���������,t��N� + n��

− ���,t��N� + n−������� − �� − ���

+ �����,t��N� + n−�� − ���,t��N� + n����

	��� − �� + ���� . �29�

Characteristic electron energies in Eq. �29� are much less
than the Fermi energy, so that

Q��,�,��� 	 Q��,0,0� � �2F��� �30�

is the familiar Eliashberg function. We also assume that
phonons are in the thermal equilibrium, N�= �exp��� /kBT�

−1�−1, due to their fast thermalization caused by anharmonic
interactions �i.e., phonon-phonon collisions� and/or due to a
small size of the sample and the pump-laser spot allowing
for a fast escape of nonequilibrium phonons. If this condition
is not satisfied, one has to solve an equation for the nonequi-
librium phonon distribution coupled with Eq. �29�, which is
outside the scope of this paper. Under these assumptions Eq.
�29� is transformed into a form similar to the e-e collision
integral in Eq. �7�,

�̇��,t� = −
���,t�
�ph���

+
2�kBT

� cosh��/2��−�

�

d��

	sgn�� − ����2F� kBT�� − ���
�

�
	

cosh���/2�

2 sinh� � − ��

2
�����,t� , �31�

where

1

�ph���
=

2�kBT

�
�

0

�

d��2F� kBT�

�
�

	
 1

sinh��

2
�cosh��

2
�

+

sinh2� �

2
�tanh��

2
�

cosh�� + �

2
�cosh�� − �

2
�
 �32�

and energies are now measured in units of kBT. The
Eliashberg function is quite complicated in real metallic
compounds because of their complex lattice structures. This
complexity can be avoided in the high-temperature regime,
kBT���D, and in the opposite low-temperature regime,
kBT
��D.

A. High-temperature electron-phonon relaxation

As shown by Allen14 the energy relaxation in TTM has a
particularly simple form in terms of the moments of �2F���,

���n� � 2�
0

�

d�
�2F����n

�
, �33�

where the coupling constant �, which determines the critical
temperature in the BCS superconductors, is

� = 2�
0

�

d�
�2F���

�
. �34�

Here we derive a high-temperature LFP-type equation for the
nonequilibrium part of the distribution function ��� , t� to
compare our exact approach with the TTM results.13,14

At high temperatures the Eliashberg function is a narrow
function on the temperature scale, so that one can apply a
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quasielastic approximation expanding the e-ph collision inte-
gral, Eq. �29� or �31�, in powers of the phonon energy, ��

kBT. The zero-order elastic terms are canceled out because
the distribution function depends on energy only, while the
next-order terms yield the LFP-type differential equation

�−1�̇��,t� =
�

��
�tanh� �

2
����,t� +

�

��
���,t�� , �35�

where �=�����2� /kBT. Apart from a numerical coefficient
on the order of 1, the characteristic e-ph relaxation rate � /2
is about the same as the TTM energy relaxation rate,14 �T
=3����2� /�kBT, at high temperatures. Indeed multiplying
Eq. �35� by � and integrating over all energies yield the rate
of excitation energy relaxation,

Ėe�t� = − ��
−�

�

d� tanh��/2����,t� , �36�

where Ee�t�=�−�
� d������. If we replace tanh�� /2� in this

equation with its argument assuming that ��� , t� has its char-

acteristic energy width on the order of 1, then Ėe�t�
	−�� /2�Ee. Hence the excitation energy relaxes as Ee�t�
�exp�−�t /2� almost independently of the particular shape of
the nonequilibrium distribution.

To verify the numerical coefficient, one can substitute the
TTM distribution �TTM�� , t�= ��Te�t�−T� /4T�� /cosh2�� /2�
�Eq. �20�� into Eq. �36� to convert this into the temperature
relaxation rate:

Ṫe�t� = −
1

2
��Te − T�

�
0

�

dxx tanh�x�/cosh2�x�

�
0

�

dxx2/cosh2�x�
. �37�

Equation �37� is precisely the same as the TTM temperature

rate,14 Ṫe�t�=−�T�Te−T�, since the ratio of two integrals in
Eq. �37� is 6 /�2.

According to Eq. �36� deviation of ��� , t� from quasiequi-
librium population does not have much influence on the en-
ergy relaxation, apart from a numerical coefficient. Hence
TTM �Refs. 13 and 14� is the adequate approximation at high
temperatures, which agrees well with experimental observa-
tions in conventional metals where Debye temperatures are
rather low.1

B. Low-temperature electron-phonon relaxation in poor metals

Characteristic phonon frequencies are exceptionally high
in many advanced materials such as copper oxides,
��D /kB�400–1000 K, so that the low-temperature regime
kBT
��D is of great importance. Since all dimensionless
energies in Eq. �31� are on the order of unity, one can apply
a low-frequency asymptotic of �2F���=�n�� /�D�n /2 in this
regime. The exponent n depends on impurities, disorder, and
sample dimensions: n=2 in clean bulk crystals, while n=1 in
disordered metals due to a phonon damping30,31 and in me-
tallic films.32 Then Eq. �31� can be Fourier transformed into
the Schrödinger equation using Fourier transform equation
�13� of ��� , t����� , t�cosh�� /2�.

In the poor-metal case n=1, the equation for ��� , t� is
almost the same as in the e-e case, Eq. �10�, apart from a
numerical coefficient in front of the integral term,

�̇��,t�
���kBT�2/�2�D

= −
�2 + �2

2
���,t� +

1

2
�

−�

�

d������,t�

	
� − ��

sinh� � − ��

2
� , �38�

where the integrals �0
�d�� /sinh�� /2�cosh�� /2�=�2 /2

and �0
�d�� tanh�� /2� /cosh���+�� /2�cosh���−�� /2�=�2 /

2 sinh2�� /2� have been used. The difference in the numerical
coefficients in front of the integral terms originates in differ-
ent statistics of scatterers, which are bosons in the e-ph case
and fermions in the e-e case. At low temperatures the e-ph
relaxation time has the same energy and temperature depen-
dence as the e-e relaxation time �Eq. �8��,

�ph��� =
2�2�D

��2 + �2����kBT�2 . �39�

We also notice that the temperature dependence of the e-ph
relaxation rate at low temperatures, 1 /�e-ph�T2, is qualita-
tively different from its temperature dependence at high tem-
peratures, ��1 /T.

The Fourier transform of Eq. �38� yields the Schrödinger-
type equation

�ph�̇�x,t� = � �2

�x2 +
2

cosh2�x�
− 1���x,t� , �40�

where

�ph =
2�2�D

�3��kBT�2 . �41�

Different from the e-e case �Eq. �16� with m=2�, the steady-
state Schrödinger equation

� �2

�x2 +
2

cosh2�x���k�x� = k2�k�x� �42�

has only one bound �ground� state, k=1, and itinerant states
with k= ip,

�k�x� = Ak�k − tanh�x��ekx �43�

in the e-ph case �m=1�. Only itinerant states contribute to
superposition equation �14� and determine the time relax-
ation of the distribution function because the contribution of
the even ground state is integrated to zero and there is no
excited odd state here. As a result, the nonequilibrium part of
the distribution function and the number of excitations relax
with characteristic time �ph to zero rather than to any quasi-
equilibrium state as shown in Figs. 2 and 3 by lower curves
��=2�. Their time asymptotic is found using the saddle-point
approximation as in the case of the e-e collisions,

���,t� � �e−t/�ph���, �44�

and
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n�t� �
e−t/�ph

t
. �45�

The time evolution of n�t� is widely independent of the width
� of the initial distribution function at t=0 as one can see
comparing the lowest curves in Figs. 2 and 3.

C. Low-temperature electron-phonon relaxation
in clean metals

The low-frequency Eliashberg function is quadratic as a
function of frequency, �2F���=��� /�D�2 in clean crystal-
line metals, which makes an analytical expression for the
Fourier transform of Boltzmann equation �31� unavailable in
terms of elementary functions. However we can approximate
all relevant integrals numerically as

�
0

�

d�
�2

sinh��/2�cosh��/2�
	 8.414,

�
0

�

d�
�2 sinh2��/2�tanh��/2�

cosh�� + �

2
�cosh�� − �

2
� 	

3

2
�2 + 0.027�4,

and

�
0

�

d�
�2 cos��x/��

sinh��/2�
	

3�2

2
V�x� ,

where V�x� is shown in Fig. 4. Then the corresponding
Schrödinger-type equation for the Fourier transform of
��� , t� becomes

�ph
cl �̇�x,t� = � �2

�x2 + 0.178
�4

�x4 + V�x� − 0.568���x,t� ,

�46�

where now

�ph
cl =

�3�D
2

3�3��kBT�3 . �47�

The effective “potential” energy differs only marginally
from the poor-metal case �Fig. 4�. At large t corresponding to
large x in Eq. �46�, the fourth derivative of the low-energy
extended eigenstates is small. Hence the asymptotic behavior
of response functions in clean metals is qualitatively about
the same as in poor metals,

n�t� �
exp�− 0.568t/�ph

cl �
t

, �48�

but the temperature dependence of the e-ph relaxation time is
more pronounced, �ph

cl �1 /T3. In principle, the clean-metal
potential �Fig. 4� could have “resonances,” states that are in
the continuum but take a long time to leak out, resulting in
some quantitative differences with the poor-metal relaxation.

IV. LOW-TEMPERATURE ELECTRON-PHONON
RELAXATION COMBINED WITH ELECTRON-

ELECTRON RELAXATION

Finally let us combine both collision integrals into one
Boltzmann equation. Performing its Fourier transformation
as described in Secs. II and III yields the following
Schrödinger-type equation in the poor-metal case:

��̇�x,t� = � �2

�x2 +
�

cosh2�x�
− 1���x,t� , �49�

where

FIG. 2. �Color online� Relaxation of the total number of non-
equilibrium excitations, n, for different e-e and e-ph scattering
times characterized by parameter � �Eq. �51�� for the width �=10
of the initial nonequilibrium distribution.

FIG. 3. �Color online� Relaxation of the total number of non-
equilibrium excitations, n, for different e-e and e-ph scattering
times characterized by parameter � �Eq. �51�� for the width �
=2 /3 of the initial nonequilibrium distribution.

FIG. 4. �Color online� The effective potential energy of the
Schrödinger counterpart of the Boltzmann equation with the e-ph
collision integral in clean metals compared with the potential in
poor metals.
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� =
�e�ph

�e + �ph
�50�

and

� =
2�e + 6�ph

�e + �ph
. �51�

There are two bound states of the corresponding steady-
state Schrödinger-type equation

� �2

�x2 +
�

cosh2�x����x� = − E��x� �52�

because � is larger than 2 but smaller than 6.28 The excited
odd state has the eigenfunction

�1�x� �
tanh�x�

�cosh�x���E1�1/2 �53�

and the energy

E1 = −
1

4
��1 + 4��1/2 − 3�2, �54�

which determines the asymptotic behavior of all linear re-
sponse functions. In particular the number of excitations de-
cays at large t as

n�t� � exp�−
�1 + E1�t

�
� . �55�

When both relaxations are involved, the time evolution of
n�t� calculated using Eq. �49� with different initial distribu-
tions differs qualitatively from TTM relaxation as shown in
Figs. 2 and 3. In fact electrons cannot attain the thermal
quasiequilibrium at any � less than 6, in agreement with the
numerical results of Ref. 26. Moreover the exact relaxation
rate �=1+E1 depends on the ratio of the electron-electron
relaxation time �Eq. �12�� and the electron-phonon relaxation
time �Eq. �41��,

r =
�e

�ph
	

2�

��C
2

EF

��D
. �56�

Using Eq. �55�, we find

� = c�r�
�3��kBT�2

2�2�D
, �57�

where

c�r� =
3��1 + r��25 + 9r� − 7r − 15

2r
. �58�

This coefficient changes from c�r�=1 at r=� up to c�r�
=8 /5 at r=0.

The TTM relaxation rate �Tlow at low temperatures is
readily obtained with the Eliashberg function �2F���
=�� /2�D using Eqs. �4� and �10� of Refs. 14 and 33. Lin-
earizing Eq. �10� of Ref. 14 with respect to the temperature
difference Te�t�−T
T yields

�Tlow =
4�3��kBT�2

5�2�D
. �59�

The ratio of our exact relaxation rate to the TTM rate is

�

�Tlow
=

5

8
c�r� . �60�

If e-e collisions are much faster than e-ph collisions �r→0�,
this ratio is 1, justifying the TTM approximation also at low
temperatures in the limit t→�, r→0. However at low tem-
peratures r is not necessarily small as assumed in TTM even
at small �
�C because the Fermi energy in Eq. �56� is often
much larger than the phonon energy. Just the opposite limit
r→� is feasible at a sizable �. In this limit the exact relax-
ation rate is slower than the low-temperature TTM rate,
� /�Tlow=5 /8, so that one may underestimate the electron-
phonon coupling constant by about two times using TTM.
Also an illegitimate fitting of experimental rates measured at
temperatures below ��D /kB with the theoretical high-
temperature TTM rate �T �Ref. 14� �see Sec. III A� may un-
derestimate � by about ���D /�kBT�3 times in poor metals
and much more in clean metals.

V. CONCLUSIONS

In conclusion, using the auxiliary Fourier transform, we
have mapped the linearized Boltzmann equation with the
electron-electron collision integral onto a Schrödinger-type
equation with imaginary time allowing for a simple analyti-
cal solution. A similar mapping is also found for the electron-
phonon collision integral at low temperatures in both poor
and clean metals. We have analytically traced the time and
energy evolution of the nonequilibrium electron distribution
function on any time scale and found its asymptotic relax-
ation rate at t→�.

A low-temperature relaxation rate strongly depends on the
temperature: ��T2 and ��T3 in poor and clean metals, re-
spectively. The Pauli exclusion principle slows down e-e re-
laxation, so that e-e and e-ph collisions are strongly en-
tangled at low temperatures. We have shown that an electron
gas cannot attain a thermal quasiequilibrium distribution by
e-e collisions �Figs. 2 and 3�, in agreement with earlier nu-
merical integrations of the Boltzmann equation.26 The rate of
return to the equilibrium is not governed solely by electron-
phonon processes, but also involves the electron-electron re-
laxation time, �=c�r��Tlow, via the coefficient c�r�, which
depends on the ratio r of the e-e collision time to the e-ph
collision time. The exact relaxation rate � recovers its qua-
siequilibrium TTM value �=�Tlow only in the limit of the
negligible e-ph coupling, �
��C

2 ��D /2EF�0.01. In poor
metals the physically realistic ratio r is large at low tempera-
tures and the exact relaxation rate is slower than the TTM
rate, �=5�Tlow /8.

At high temperatures, T���D /kB, we have reduced the
e-ph collision integral to the differential Landau-Fokker-
Planck form. Using this form we have shown that the devia-
tion of the electron distribution from quasiequilibrium popu-
lation might not have much influence on the energy
relaxation, so that TTM �Refs. 13 and 14� is a reliable ap-
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proximation at high temperatures, if the e-e collisions are
fast enough.

Our theory opens up a perspective of determinations of
both important microscopic parameters � and �C using
single-parameter ��� fitting of response functions in pump-
probe experiments at low temperatures �Figs. 2 and 3�. It
also allows for an analytical approach to the integral Boltz-
mann equation for the case of a steady-state source of exci-
tations as in a current-carrying state. In the latter case relax-
ation times could be different because the current-carrying
state does not have a distribution function that depends only
on energy, as assumed here. The theory could be further
extended beyond the assumption that phonons remain in

equilibrium by including a linearized Boltzmann equation for
the nonequilibrium phonon distribution function.
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