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I present a formalism for dealing directly with the effects of the Gutzwiller projection implicit in the t-J
model which is widely believed to underlie the phenomenology of the high-Tc cuprates. I suggest that a true
BCS condensation from a Fermi-liquid state takes place but in the unphysical space prior to projection. The
theory which results upon projection does not follow conventional rules of diagram theory and in fact in the
normal state is a Z=0 non-Fermi liquid. Anomalous properties of the “strange metal” normal state are predicted
and compared to experiments.
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I. INTRODUCTION

One of the most striking dilemmas about the high-Tc su-
perconducting cuprates is that they seem to obey the standard
BCS quasiparticle theory when they are superconducting—
after all is said and done and in a restricted sense—but that
the normal state is undoubtedly not the Fermi liquid on
which BCS theory is based.

What I propose here is that there is actually an underlying
“hidden Fermi liquid” which undergoes a BCS pairing tran-
sition but that this Fermi liquid is not the usual perturbative
continuation from a sea of free electrons. In particular, in the
normal state, creating a free, bare electron of momentum k
has zero amplitude for creating the hidden Fermi liquid’s
quasiparticle, that is, the wave-function renormalization con-
stant Z=0. For purposes of clarity let us introduce a term for
these excitations: “pseudoparticles.” Many-pseudoparticle
excitations saturate the electron’s amplitude.

It is then obvious why the hidden Fermi liquid emerges
when the substance becomes superconducting; that opens up
a gap for single-pseudoparticle excitations so that the many-
pseudoparticle continuum can only begin at three times that
gap. Therefore the total amplitude for many-particle excita-
tions remains finite and there is a finite Z, although it does
not obey the usual perturbation-theory identities relating it to
self-energy.

All this is a consequence of the fact that the low-lying
electron states of a doped Mott insulator are projective in the
sense that the strong repulsion U forces a finite density of the
many-electron states to split out of the band continuum of
states to the high-energy side, forming the “upper Hubbard
band.” The remaining continuum is overcompletely de-
scribed by a perturbation theory based on the conventional
theory of a tight-binding band, and which can undergo con-
ventional BCS pairing. The quasiparticle excitations of this
hidden Fermi liquid are excitations of the physical system,
but they are not true quasiparticles of that system because the
true particle operators operate on the projected system, not
the overcomplete wave function prior to projection. As a
result the true operators create multiparticle states of the pre-
projection system.

II. FORMALISM

There is ample evidence—such as the presence of an ac-
tual Mott insulator in the phase diagram—that the interac-

tions in the cuprates are dominated by an on-site Mott-
Hubbard term U. Clearly we must deal with U before
bothering with relatively minor terms so we leave other in-
teractions to be accounted for later.

Tsai et al.1 demonstrated that any interacting Fermion sys-
tem which is not a band insulator, and in which none of the
interactions is larger than an upper cutoff energy �such as the
bandwidth for tight-binding models�, may be renormalized
by Shankar’s “poor-man’s renormalization” scheme into a
Fermi-liquid-based theory where the relevant Fermionic ex-
citations all can be based on quasiparticles inhabiting a shell
around a Fermi surface in momentum space. Quite clearly,
the Mott insulator violates this very general theorem; in
many more subtle ways, the physics of the doped cuprates in
the region of the superconducting dome violates the “poor-
man’s” prescription. We believe that the reason is that this is
a case in which the on-site Coulomb interaction, the Mott-
Hubbard interaction U, is larger than the bandwidth and can-
not be renormalized to zero, as in Shankar’s treatment of
Fermi-liquid theory.

Rice2 pioneered the correct way to deal with the interac-
tion U when it cannot be renormalized to zero. This is to
renormalize it, using perturbation theory, effectively to � by
means of a canonical transformation exp�iS� which may be
determined in orders of the kinetic-energy hopping matrix
element t divided by U. That is, we start with the Hubbard
Hamiltonian

H = H0 + H� + H�,

H0 = U � ni↑ni↓;H� = P � tijc�i�cj�P ,

H� = T − H�, �1�

and eliminate successive orders in H� by using the expansion

Heff = eiSHe−iS = H + i�S,H� + . . . �2�

and requiring that Heff have no matrix elements to or from
the doubly-occupied states. The result is, with various dis-
tracting terms dropped out, the t-J Hamiltonian

Ht-J = P �
i�j,�

tijci,� � cj,�P + �
i,j

JijSi Sj . �3�

Here P is the full Gutzwiller projector
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P = �
i

�1 − ni,↓ni,↑� , �4�

which eliminates all doubly-occupied states. There is no
need to apply it to the J term because that does not change
site occupancies.

The “distracting” terms which are ignored are �i� corre-
lated hopping terms caused by the transformation which
modify the tij somewhat �Edegger et al.3 estimated their ef-
fect in some detail�; �ii� phonon-mediated interactions, which
in lowest order simply modify U, the remainder being small
compared to J; �iii� the longer-range coulomb interactions
which play a role in the mesoscopic charge instabilities �such
as stripes� which are manifest for low doping and low tem-
peratures but do not affect the big picture. All can be in-
cluded as extra terms in the projective Hamiltonian �3� �but
must be projected�. Low-energy solutions of �3� are neces-
sarily of the form

� = P��r1,r2, ¯ ,rN� , �5�

where � is a general function of all electron positions.
The Schrodinger equation for � ,Ht-J�=E� may be con-

sidered as an equation for � or, alternatively, as an undeter-
mined equation for �, Ht-J�=E� �since E and P of course
commute or, alternatively, we can simply not apply the final
projection�. We take the point of view that we are attempting
to find the � which gives us the best variational energy.

Of course, since the equations are underdetermined, we
must add some additional constraints on �. What we choose
to do is to assume a Hartree-Fock-BCS form for our trial
wave function

� = �
k

�ukc−k,− + vkck,+
� ��ukck,+ + vkc−k,−

� ��vac�

= � �k�−k�vac� = �
k

�uk + vkck,+
� c−k,−

� ��vac� = �BCS.

�6�

We define the �’s by the usual Hartree-Fock procedure of
requiring that all quasiparticle energies be positive, which
gives us a set of “gap” equations

	�H,�k
����0 = Ek�k

��0. �7�

The “average” brackets mean that in the three-Fermion
terms coming from commutators with the exchange interac-
tion terms we keep all possible mean-field terms, i.e., both
the Fock and the BCS self-energies, which we evaluate self-
consistently. These are the same equations as given in the
“plain vanilla” paper4 and its earlier sources.

The Hartree-Fock procedure gives us a unique answer:
because the Hamiltonian is translationally invariant we can
classify the “pseudoparticles” with a momentum variable and
they are orthogonal �I emphasize that they are not true qua-
siparticles of the full system�. In the absence of a gap they
will have a Fermi surface obeying Luttinger’s theorem. �Pro-
jection commutes with particle number.� This system of ex-
citations is, in fact, the hidden Fermi liquid.

Human ingenuity has not provided us with any more flex-
ible trial functions than the Hartree-Fock-BCS product func-

tion, and in fact in many-body theories so far we have found
this to be quite useful, at least as a start for perturbation
theory. You might suggest that Jastrow functions, as in the
Laughlin theory, might be used, but in fact that is exactly
what we are doing with the canonical transform and the pro-
jection: we are augmenting our product function with a
Jastrow-type correction.

But excitations thus created, although they are valid exci-
tations of the projected Hamiltonian, are not quasiparticles
of the projected problem. They are valid excitations because
the Hamiltonian which applies to them is projected and com-
ponents of the wave function in the forbidden subspace are
irrelevant. These excitations of the projective Hamiltonian
may be described as Pc��0 or Pc�0, but they are quite dif-
ferent from the excitations which are created by applying a
particle field operator to the projected state, c�P�0 or cP�0,
and in fact are not created with finite amplitude in this way.
This is the essence of the “strange metal” phenomenon and
will be discussed in detail below: there is a hidden Fermi
liquid but it is not accessible with one- or two-particle per-
turbations such as particle tunneling or electromagnetic field.

Counterintuitively, opening a BCS gap makes the initial
assumptions better, not worse. The failure of standard theory
in the Fermi sea case is caused by the fact that the spectrum
of excitations with momentum perpendicular to the Fermi
surface has a high density at zero energy and allows the
emission of divergent numbers of low-energy hole-electron
pairs. As Haldane has shown,5 these may be reorganized into
Tomonaga bosons for each patch of the Fermi surface, rep-
resenting the fluctuations of the Fermi surface itself. The
density of such pair states is reduced to zero if there is a gap
�, or, equivalently, the low-energy Tomonaga bosons disap-
pear. The anomalous quasiparticle decay is replaced by a
broad structure around 3�, seen in angle-resolved photo-
emission spectroscopy �ARPES� and tunneling data, that is
referred to as the “hump” and given many interpretations.
Thus we are proposing that there are genuine quasiparticles
at low energies in the superconducting state at absolute zero.
They have a finite renormalization constant Z, but its value
does not have the expected relationship to the effective mass
or Fermi velocity via the self-energy.

There is an aspect of self-consistency here: when the gap
opens the system can exhibit true quasiparticles without
anomalous scattering, and this in turn means that the gap
may open more easily; i.e., the superconducting phase gains
a little stability by destroying some of the anomalous scat-
tering of the strange metal phase. This is a faint residue of
the mechanism which was the central idea in my 1997 book.6

Here we will postpone it until the theory is in a much more
quantitative shape.

I have shown how to calculate the Green’s functions of
the “normal” metal phase of the cuprates and compared the
result to new, accurate experimental data. The methods used
are closely related to those for x-ray spectroscopy in metals,
which in turn depend on two basic theorems about responses
of Fermi systems to scattering potentials: the very well-
known Friedel theorem and the somewhat more obscure No-
zieres theorem.7 These are, first
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�N = �
c

	c/
 . �8�

Here �N is the change in the number of particles surrounding
a scattering perturbation which causes phase shifts 	c in the
scattering channels c. The only channels which affect N are
those at the Fermi surface �if there is one�. If there is a gap,
the scatterer can only change N by creating a bound state,
which is equivalent to a phase shift of 
, and the change in N
is a simple matter of asking how many bound states have
been created out of the given band. I have deliberately ex-
pressed this theorem in “channel” language because in this
way its generality is clear—its obvious relationship to Lut-
tinger’s theorem for instance.

The second theorem is

O�t� � t−p, where p = �
c

1

8

	c
2


2 . �9�

Here O�t� is a kind of “vacuum” Green’s function defined as
the overlap integral between the state just prior to the intro-
duction of the scattering phase shifts 	c at t=0 and the state
at time t later

O�t� = 	eiH0t�0,ei�H0+V�t�0� , �10�

where �0 is the ground state of H0 and V is the potential
which produces the phase shifts 	c.

Equations �8� and �9� are what I have called “node-
counting theorems” and are unique to Fermi-surface systems.
In such systems it is not correct to think in terms of fixed
numbers of particles because when particles at the Fermi
surface are scattered, states can move through the boundary.
Equation �8� tells us what fractional number of particles is
moved through the boundary by a given scattering potential,
and �9�—or its equivalent “orthogonality catastrophe” ver-
sion in terms of sample volume—tells us the penalty in terms
of wave-function incoherence we must pay for doing so.

That this overlap integral is the relevant correction to the
free-quasiparticle Green’s function is the central element of
the strange metal theory8 and the derivation is worth repeat-
ing in more detail. So far, this has only been applied to the
case where the system is normal, there is no anomalous self-
energy, and the quasiparticle operators are simple Fermions c
and c�, but the generalization to Bogoliubov quasiparticles is
direct if complicated; therefore this is the only case we will
consider here.

We designate the “real“ Fermions which represent physi-
cal creation and destruction operators acting in the projected
subspace by “hat” operators which do not create or destroy
any doubly-occupied sites. These are easily seen to be

ĉi� = �1 − ni−��ci� �ĉi�
� = ci�

� �1 − ni−��� . �11�

Here the hatless operators are to be thought of as operating
within the unprojected space; that is, they operate on the
hidden Fermi liquid. The Green’s function for inserting the
hole at time 0 and removing it at time t, then, might be
written as

Gii�0,t� = 	0�ĉi,�
� �0�ĉi,��t��0� 
 	0�ci,�

� �t�ci,��0��0�G−���t�

= G0�t�G��t� , �12�

where

G� = 	0��1 − ni,−��t���1 − ni,−��0���0� .

Here G0 is the free-Fermion Green’s function, which for the
single-site case of �12� is proportional simply to 1 / t. �There
are normalization corrections, different actually for electrons
and holes, which may be calculated using fugacity factors8

but are irrelevant to line shapes.�
The factorization �12� assumes that the two spins are in-

dependently propagating Fermi liquids. In that case, the up-
spin and down-spin operators refer to completely indepen-
dent orthogonal subspaces of Hilbert space and their
averages can be independently computed. In the unprojected
system, there is interaction but only in the form of Landau
forward-scattering corrections which are irrelevant for our
purposes.

What we now want to show is that G�, the density-density
Green’s function, is a Nozieres–de Dominicis function of the
form �9�.

G��t� is the overlap at time t between two wave functions
of the hidden Fermi liquid: one in which site i was emptied
of down-spin electrons at time t=0 and the electrons there-
after propagated according to the free-particle Hamiltonian
and the other in which the site was only emptied at time t.

I argue that the first wave function is equivalent to that
which would result from turning on a local potential at t=0
which would remove the correct number of down-spin elec-
trons from the site that is one which, using the Friedel theo-
rem �8� would establish a phase shift 	 giving us the proper
�N. With constant �Fermi� velocity propagation, the resulting
phase displacement of the electron waves travels outward as
a more or less spherical shell, with the phase of the waves
inside the shell displaced relative to those outside. The over-
lap of such a wave function with the unperturbed ground
state is precisely the Nozieres–de Dominicis expression. The
number of down-spin electrons below the Fermi level, per
site, is �N= �1−x� /2 so that according to Ref. 8 the power
law should be p= �1−x�2 /8.

This is, however, not quite right. When we examine the
hat operators of Eq. �11�, we note that they can be factorized
in two different manners:

ĉi� = ci�ci−�ci−�
� = ci−�Si

− or = ci��1 − ni−�� . �13�

When we write the following two factorizations out in mo-
mentum space they look rather different:

ĉk,� = �
j

eirj kĉj,� = �
q

ck−q,��
k�

ck�−q,−�
� ck�,�

or

=�
q

ck−q,��
k�

ck�,−�ck�−q,−�
� . �14�

We use two observations for the effect of the exclusion prin-
ciple and conservation of energy on electron-electron scatter-
ing for states close to a Fermi surface: one is that as we
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squeeze down to the Fermi surface, only forward scattering
survives �see Fig. 6.1 of Ref. 6�. It is this forward scattering,
for instance, which causes the mean-field interactions in
Fermi-liquid theory. The second observation is that inelastic
scattering only conserves energy when the Fermi velocities
match �since the energy difference is �vF−vF�� q�. Thus in-
elastic scatterings can be roughly described as generating
soft tomographic Tomonaga bosons, with the incoming par-
ticle losing momentum q and generating a Tomonaga boson
of that momentum, and the two terms of �14� create two
different sets of bosons, carrying density and spin density,
respectively. One may describe this situation by remarking
that the two-Fermion state space is divided into, again, two
separate subspaces: one containing spin-one excitations and
the other density waves, i.e. there are separate Tomonagons
for spin and for density. They will not interfere with each
other because the final states are orthogonal. These are two
separate scattering channels with the same amplitude in each,
and according to the rule of Eq. �9�, they will add, doubling
the exponent p. It is this doubled value which we have used
in fitting to experimental data.9

For comparison with ARPES and transport data, it is nec-
essary to derive the momentum-dependent Green’s function.
As pointed out in Ref. 9, given the Green’s function for the
symmetric channel-spherical waves, in the ideal case, it is
trivial to derive the plane-wave result using the ancient de-
vice of Huygens’ construction. The Green’s function for
plane-wave propagation is simply the linear superposition of
spherical waves emanating from each point on the previous
plane-wave front. Thus if the correction for the incoherent
radiation of Tomonagons is the simple function of time,
constant� t−2p, this factor will be common to every compo-
nent and will appear in the plane-wave Green’s function mul-
tiplied by the free quasiparticle Green’s function.

Motion of a particle near the Fermi surface is essentially
one dimensional, so we may take the free particle Green’s
function in space time as 1 / �x−vFt�. In order to get the
imaginary part of G �the density� in k and frequency space,
we must Fourier transform G�x , t�,

G�k,� =� dxdtei�kx−t�t−p/�x − vFt� .

Doing the x integration by a contour integration �the sign of
t determines which way to close the countour�, this becomes

� t−pdtei�vFk − �t � ��vFk − ��−1+p. �15�

The imaginary part of this expression is the T=0 energy
distribution curve. If p=0, this is just a delta function at the
quasiparticle energy, but if p is finite it has an imaginary part
for all �vFk. The quasiparticle becomes a cut singularity,
not a pole, in the complex plane and does not have a finite
residue at the point of singularity, i.e., has Z=0.

Understanding the thermal and transport behaviors in-
volves thought about the physical meaning of this situation.
These properties were discussed at some length in Ref. 6,
and I believe that although the assumption of spin-charge

separation which underlay that discussion was too radical,
the physical consequences do not differ very much from
what was claimed there.

In conventional Fermi-liquid theory, the spectral proper-
ties do not have much to do with the thermal properties, even
though �=1 /T plays the formal role of an imaginary time in
many-body perturbation theory.10 But one of the striking
things about the strange metal phase is that the conductivity
as well as the Green’s functions as seen in ARPES obey
“ ,T scaling,” where the T and frequency dependences seem
to scale together.

There are actually separate arguments for the two types of
response functions. In FLT the Green’s functions have simple
poles at the quasiparticle energies, which are in principle at
sharp energies; it is only the existence of scattering which
gives the quasiparticle a breadth and moves the pole off the
real axis. The Green’s functions as complex functions in
space time can be defined, at finite T, to be �anti�periodic in
the imaginary time direction with period 1 /T, and the result-
ing array of poles along the imaginary axis turn out to be
simply the poles of the Fermi function as a function of com-
plex energy and do not imply any decay or scattering.

Here,

f�/T� = �1 + e−/T�−1 = 1 + tanh�/T� ,

which is a periodic function of i with poles at n= i�2n
+1�T. Yuval and Anderson11 showed many years ago that the
Nozieres–de Dominicis function indeed has a periodic struc-
ture in imaginary time

t−p → �sinh�
Tt�/
T�−p. �16�

It makes the manipulations very much easier to approximate
this expression �quite accurately� simply by

G��t� 
 t−pe−�t, with � = AT,A 
 
p . �17�

We see that the well-known “linear T” decay follows from
the power law and the analytic structure of Green’s func-
tions. Note that � vanishes as p→0.

Using the approximation �17� it becomes quite easy to
Fourier transform the Green’s function and to obtain an ex-
pression for the ARPES intensity

EDC = Im�G � Im� f�/T�
��vFk − � + i��1−p�

= f�/T�
sin�1 − p�cot−1�� − vFk�/��

��vFk − �2 + ���2��1−p�/2 . �18�

�The Fermi distribution is natural since all final states are
single Fermion. It comes from the space Fourier transform of
G0.� This spectrum is not unfamiliar to x-ray spectroscopists:
except for the Fermi distribution factor, it is the
Doniach-Sunjic12 line shape of x-ray line spectra in metals;
except for one further adjustment, that is the expression
which has been compared with the laser ARPES results of
Dessau et al. in a recent publication.9 We have no reason to
believe that the underlying, hidden Fermi liquid does not
have the conventional electron-electron umklapp scattering.
For the standard exclusion principle reasons this vanishes at
the Fermi surface but will give us an addition to � propor-

P. W. ANDERSON PHYSICAL REVIEW B 78, 174505 �2008�

174505-4



tional to �k−kF�2. In fact, the measurements fit that prescrip-
tion �see Fig. 1 borrowed from Ref. 9� remarkably well.

The experimental infrared conductivity in the strange
metal region fits remarkably well to a simple power-law
dependence on frequency over a wide range from
T
10 mev to at least 300 meV. This was discovered by
Schlesinger and Collins13 and has been measured with great
accuracy by van der Marel and others. There is a correspond-
ing  ,T scaling “linear T” resistivity which was the first
manifestation of the strange metal which was noticed. The
interpretation of these results is that in this regime the con-
ductivity is dominated by the lowest-order “bubble” diagram
involving the simple product of two G’s, one each for the
electron and the hole excited by a long-wavelength photon.
For this to be the case “vertex corrections” must be negli-
gible, in spite of the fact that the processes we have been
discussing are primarily forward electron-electron scattering
and, unaided, cannot cause any resistivity at all. This situa-
tion, for the resistivity, was discussed in a paper by Ogata
and Anderson14 and is resolved by the concept of “drag” and

“nondrag” regimes. For the infrared conductivity there is no
problem: the hole and electron survive so briefly they have
no chance to interact; equivalently, lowest-order perturbation
theory suffices. But for the resistivity, the electron decay pro-
cess will be ineffective if the current can be carried by the
“hidden” Fermi-liquid excitations; the relevant scattering
rate will then be that of this Fermi liquid. I believe that it is
this crossover, rather than a crossover to a true Fermi liquid,
which occurs as we move into the overdoped regime.

III. HIDDEN FERMI LIQUID IN THE
SUPERCONDUCTING REGIME

As we have already noted, in the superconductor the t−p

decay of the Green’s function is cut off at times comparable
to the inverse energy gap and there is a coherent, if attenu-
ated, quasiparticle. The Green’s function and ARPES spec-
trum can be calculated by methods used to treat the x-ray
spectra of superconductors by Ma.15 �I am indebted to V.
Muthukumar for calling my attention to this paper.� P. Casey
and the author have applied these methods and produced
tentative spectra; unfortunately these do not fit the experi-
mental data of Koralek and Dessau16 very closely, partly be-
cause of the great inhomogeneity of the energy gaps in
BISSCO. �They fit this accurate data much better, however,
than they do the older data current in the literature.� Another
important difference is that in the superconductor the neutron
magnetic resonance has become much stronger and this
mixes into the single-particle Green’s function. Attempts to
fit in this regime will be the subject of a later paper. The
predicted tunneling spectra of Anderson and Ong in Ref. 17
contain only the coherent, one-pseudoparticle portion of the
spectrum, but for this I think this reference is accurate.
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