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Closure magnetization configuration around a single hole in a magnetic film
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The basic problem of a single hole in a magnetic film with uniaxial anisotropy has been analyzed in detail
by magnetic force microscopy, micromagnetic simulations, and an analytical model. The closure magnetization
configuration can be described by two —1/2 half vortices located at the hole edge along the easy anisotropy
axis and confined within a distance L that is determined by the minimization of magnetostatic and anisotropy
energies constrained by the magnetic charge conservation within the system.
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I. INTRODUCTION

The study of magnetic nanostructures either in the shape
of thin-film magnetic nanoelements or of continuous pat-
terned magnetic films has deserved increased attention in re-
cent years! due to their possible applications in the field of
high-density magnetic recording.” One common feature in
many of these magnetic nanostructures, such as magnetic
nanorings,>¢ thin films patterned with arrays of antidots,”'
or magnetic disks with controlled defects,!3 is the existence
of nonmagnetic holes within the magnetic material. Most of
the attention has been devoted to the analysis of the different
magnetic configurations corresponding to each different kind
of structure, such as the transitions between in-plane axial
and vortex states in nanorings,14 or the different kinds of
periodic closure domain structures in magnetic films with
antidots.!> Recently, a general picture of the physics of thin-
film nanorings and other flat nanoelements has been given in
terms of single topological defects in the limit of negligible
anisotropy.'® However, up to now, the simplest though fun-
damental problem of a continuous magnetic film with a
single nonmagnetic hole has received little attention.

The corresponding problem in three dimensions (3D), i.e.,
that of a nonmagnetic inclusion in a bulk magnetic material,
has long been studied'”"'° and has provided the basis for
coercivity models in soft magnetic materials, in which the
inclusions act as domain-wall pinning centers. The balance
between the magnetostatic energy associated with the poles
that appear at the edges of the inclusion and domain-wall
energy results in the formation of a typical closure domain
structure consisting of a pair of blade-shaped domains cen-
tered at the hole.”’ The observations of the magnetic configu-
ration around holes in thin films*'~?* reveal a very different
behavior that is related with the different character of mag-
netostatic interactions in bulk materials and in thin films (in
a similar way as there is a change in the preferred domain-
wall structure from Bloch to Néel walls as the film thickness
is decreased). However, to our knowledge, this problem has
only been discussed in a qualitative way?! in terms of a mag-
netization pattern that curves around the hole in order to
avoid the magnetic poles in its surface, but it has not been
analyzed in detail in a quantitative manner. A two-
dimensional (2D) model used to obtain the domain configu-
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ration in soft ferromagnetic films was developed by van den
Berg® using the method of characteristics, and it was ex-
tended by Bryant and Suhl®® to the case of a sufficiently
weak in-plane applied field through an electrostatic analogy.
However these models are restricted to finite and simply con-
nected magnetic film elements, that is, without holes.?”-?

In this work, a characterization of the closure structure
around a patterned hole in a soft amorphous magnetic film
has been performed by magnetic force microscopy (MFM)
and micromagnetic simulations using the OOMMF code.?® The
results are analyzed in terms of a simple theoretical model
based both in the principle of pole avoidance solving the
Laplace equation for the magnetization lines in 2D and in the
Gauss theorem so that the analysis can be extended to mul-
tiply connected and infinite films. This allows one to under-
stand the dependence of the confinement distance of the sin-
gularities created by the hole on the different material
parameters.

II. EXPERIMENT

Amorphous Cog¢Zr;, 40-nm-thick magnetic films have
been grown on Si substrates by cosputtering as reported
elsewhere.® The films have a well-defined uniaxial aniso-
tropy with typical easy anisotropy fields Hyg=4 kA/m.
Saturation magnetization M, for this alloy composition is
M,=4X10° A/m so that the anisotropy energy can be cal-
culated as K=uoMHg/2=1%10% J/m3. The films have
been patterned with an array of nonmagnetic holes by a com-
bination of electron-beam (e-beam) lithography and Ar*
etching processes.’® The defined holes are circles with 2 um
diameter and are arranged in a 20 X 20 wm? square cell. In-
terhole distances are much larger than hole size so that the
array can be considered effectively in the diluted limit,?* in
which the holes act as isolated inclusions and no periodic
domain-wall pattern is developed in the array. The magnetic
configuration around each hole has been characterized using
a Nanotec™ force microscopy system with Nanosensors ™
point probe plus magnetic force microscopy-reflex coating
(PPP-MFMR) commercial tips. The measurements were per-
formed in a dynamical retrace mode in which the topo-
graphic profile of a single line is scanned first, and then, this
line is repeated at a retrace height (typically between 20 and
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FIG. 1. (Color online) [(a)-(c)] MFM images of the domain
configuration around several patterned holes in a Co-Zr thin film.
Double arrows indicate the uniaxial anisotropy easy axis in each
image. (al), (b1), and (b2) MFM signal along the indicated profiles
taken across the different walls [indicated by solid lines in panels
(a) and (b)].

150 nm higher than topography scan) following the first
scanned profile. The samples were saturated at 0.27 T along
the easy axis prior to the MFM characterization that was,
then, performed at zero external field in the remanent state.

III. MFM CHARACTERIZATION

Figure 1 shows several MFM images of the area around
patterned holes taken at 20 nm retrace height. In all the stud-
ied holes a very similar closure magnetization configuration
is observed and is in good agreement with previous studies
of holes in permalloy films:?""?? it is symmetric around the
film anisotropy axis and consists of two pairs of domain
walls that emanate from opposite sides of the hole and ex-
tend for about 3 wm inside the film. The domain walls are
curved close to the hole and become approximately perpen-
dicular to the easy axis direction before they disappear inside
the film. The white rim that appears around the holes is a
remnant of the topographic contrast at the hole edge. The
differences between the wall configurations at opposite sides
of the hole can be attributed to tip-sample interactions, as
they disappear for longer retrace distances at the expense of
a lower resolution.’! The walls present a dipolar contrast,
which is more evident in the pairs that emanate from the
bottom side of the holes, characterized by two parallel dark-
clear lines. Even though an unequivocal determination of the
wall structure cannot be made from MFM signal, this kind of
images is typical of Néel walls*? with the dark-clear contrast
lines corresponding to the magnetic charges located at the
core of the wall. This is reasonable since the critical thick-
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FIG. 2. (Color online) MFM image of one of the walls emanat-
ing from the patterned hole. Top inset: MFM signal along a profile
taken across the wall (indicated by solid line). Bottom inset: evolu-
tion along the wall of the MFM signal at the maximum and mini-
mum contrast points (dark and clear lines defining the wall).
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ness for the stability of Néel walls in this material can be
estimated as?*** 60 nm which is larger than the film thick-
ness of 40 nm. Line profiles of the MFM signal taken at
different positions along the walls (panels al, bl, and b2 in
Fig. 1) show an asymmetry between the amplitude of the
positive and negative contrast peaks with the negative con-
trast extending over a larger distance away from the wall.
The wall structure can be seen in more detail in Fig. 2,
which is a magnified view of the end portion of one of these
walls with the distance from the hole edge increasing from
left to right. It can be seen again that the wall is characterized
by a pair of dark-clear contrast lines that run parallel along
the diagonal of the image until they fade away close to the
top-left corner of Fig. 2, i.e., as the distance from the hole is
increased. The width of the wall core can be estimated from
the distance from the maximum and minimum contrast
points in the profile shown in the inset at the top of Fig. 2. It
is constant along the wall and takes a value of around 50 nm.
This is in reasonable agreement with the estimate for the
width of the Néel wall core in CoggZris: Wi
=2(2A/ uyM?)">=20 nm, calculated using a value for the
exchange constant A=1X10""" J/m that is typical of 3d
magnetic materials, taking into account that the experimental
value is always broadened due to the convolution with the tip
stray field distribution. The inset at the bottom of Fig. 2
shows the evolution along the domain wall of the maximum
and minimum contrast points. It can be seen that as the dis-
tance from the hole edge increases the negative value corre-
sponding to the dark contrast line progressively decreases,
whereas the positive value of the clear contrast line stays
constant. There are several possible sources of an asymmet-
ric MFM contrast from a Néel wall:3* disturbances by the tip
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FIG. 3. (Color online) 0OOMMF simulations of the magnetic con-
figuration around a hole in a Co-Zr magnetic film. (a) Map of the
magnetization divergence around the hole. Inset shows the diver-
gence profile taken across one of the walls (solid line) revealing an
asymmetric charge configuration. (b) Same as in (a) but with an
enhanced contrast by a factor of 3. Arrows indicate the direction of
the local magnetization.

stray field, the existence inside the film of an asymmetric
Néel wall or asymmetric Bloch wall with a Néel cap on the
surface,?® and/or a net magnetic charge localized at the wall
core (due to a net component of the magnetization difference
at both sides of the wall perpendicular to the wall). Finally,
the progressive fading away of the wall contrast can be at-
tributed to a decrease in the wall angle that, correspondingly,
decreases the magnetic charges located at the wall core.

IV. MICROMAGNETIC MODELING

Figure 3 shows the results of the micromagnetic simula-
tion of a hole of radius R=0.75 um in a CogeZr,4 film using
the OOMMF code.?® The grayscale corresponds to the magne-
tization divergence, i.e., with the density of magnetic
charges, and the arrows indicate the local magnetization di-
rection. It can be seen that the magnetization is essentially
parallel to the easy axis direction in the regions at the left
and at the right of the nonmagnetic hole and also far enough
above and below it. In two regions close to the hole edge, the
magnetization is seen to rotate around the hole in order to
become parallel to its edge. Taking into account that MFM is
mainly a charge mapping microscopy, a qualitative compari-
son may be made between the MFM images of Figs. 1 and 2
and the calculated divergence images of Fig. 3, even though
simulations of tip-sample interactions would be needed for a
quantitative comparison.® The main features that appear in
the calculated divergence image of Fig. 3(a) are very similar
to those in the MFM images: two pairs of Néel walls gener-
ated at each side of the hole at the singularity points where
the magnetization domain rotating clockwise meets the mag-
netization domain with counterclockwise rotation sense. The
wall angle decreases from almost 90 close to the hole edge
to almost 0" at about 2 um from the hole, where the wall
contrast in the divergence pattern fades away.

The wall contrast is indeed much more intense on one
side of the wall core than on the other, as can be seen in the
profile taken across one of them that is depicted in the inset
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of Fig. 3(a). The negative divergence peak is twice larger
than the positive one, and the negative charges extend for a
longer distance away from the wall center. It is interesting to
mention that these calculated walls are predominantly of
Néel character with a maximum magnetization deviation out
of the film plane of less than 1X 107 rad at the wall core.
Thus, the similarities with the profiles of the MFM signal
across the walls shown in Figs. 1 and 2 confirm that an
important source of the observed asymmetry is the net mag-
netic charge localized at the wall core. Finally, in Fig. 3(b), a
divergence map with an enhanced contrast, it can be seen
that a nonzero magnetic charge density appears in the re-
gions of curved magnetization; it indicates that in this 2D
problem, the magnetic charges that would have been located
at the hole in the case of uniform magnetization are distrib-
uted in a relatively large area around the hole (that corre-
sponds roughly to the Néel tails of the pairs of walls that
emanate from the hole). This results in a mixture of positive
and negatively charged regions around the hole that cannot
be simply described in terms of a dipole approximation. It is
also very different from the more widely studied case of a
spherical cavity in a bulk magnetic material, in which the
walls involved in the closure structure are of Bloch type, and
the main effect of the blade-shaped closure domains is to
distribute the magnetic charges in a larger area to reduce the
magnetostatic energy but essentially keeping the dipolar
character of the magnetic field created at the spherical
cavity.?’

This closure structure around a hole in a 2D film can be
described in terms of elementary topological defects, in a
similar way as it has been done for nanoring structures in the
onion state,'® as being composed of two —1/2 half vortices
located at opposite sides of the nonmagnetic hole. This
makes it a very stable structure since the two half vortices
have the same topological charge and cannot annihilate with
each other. A magnetization reversal process of this closure
structure would simply take place by the two half vortices
exchanging positions along the hole edge, as it is indeed
observed in micromagnetic simulations of a Néel wall cross-
ing across the hole. There are, however, important differ-
ences between the problem of a single hole in an infinite film
with uniaxial anisotropy considered here and the case of
magnetic Permalloy nanorings in which magnetocrystalline
anisotropy is usually neglected. First, the presence of a sig-
nificant uniaxial anisotropy breaks the degeneracy of the cir-
cular hole shape creating an energy minimum for the loca-
tion of the half vortices along the uniaxial anisotropy axis,
and second and more important, the anisotropy confines the
perturbation induced by the half vortices to a limited region
close to the hole of size L by favoring a parallel alignment of
the magnetization to the easy axis in the regions far enough
from the hole. The infinite character of the considered film
also forbids the presence of vortex states around the hole.
This confinement distance L appears as the characteristic
length scale to discriminate between arrays of holes in a
diluted or concentrated regime (i.e., between a set of isolated
holes or a film with a periodic domain pattern joining the
hole) and to determine the range of interactions between a
nonmagnetic inclusion and a domain wall crossing the film
upon magnetization reversal.
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FIG. 4. (Color online) Size of the closure structure around a
hole normalized by the hole radius R (a) as a function of exchange
constant A (K=8X 102 J/m3, M;=2X 10> A/m); (b) as a function
of uniaxial anisotropy K (M,=2X10° A/m, A=1Xx10""" J/m);
and (c) as a function of saturation magnetization M,
(K=8X10? J/m3, A=1Xx10"" J/m): circles along the easy
axis (L,/R) and triangles perpendicular to the easy axis (L,/R).

Figure 4 shows the size of the closure structure around the
nonmagnetic hole L/R obtained from micromagnetic simula-
tions as the point in which the magnetization deviation from
the easy axis becomes smaller than 1° as a function of the
different material parameters: exchange constant A [Fig.
4(a)], uniaxial anisotropy K [Fig. 4(b)], and saturation mag-
netization M, [Fig. 4(c)]. The closure structure presents a
clear anisotropic configuration with a larger extension per-
pendicular to the uniaxial easy axis (L,/R) than along it
(L,/R). L/R is found to increase almost linearly as a func-
tion of M, and to decrease smoothly as a function of material
anisotropy. The ratio L,/L, varies between 1 and 4 in the
studied parameter range and, in particular, for the material
parameters corresponding to the used Co-Zr alloy, L,/L,
=23, which is in good agreement with the experimental
value obtained from the MFM characterization in Fig. 1,
L,/L,=2.5. This geometrical factor shows opposite trends as
a function of M, and K so that the closure structures becomes
more rectangular as its spatial extension becomes larger. This
change in shape can be qualitatively attributed to the curved
shape of the Néel walls that emanate from the singularity
points: these walls would be straight lines at 45° to the hole
edge in the absence of a confining uniaxial anisotropy'® but
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curve away from the diagonals as they run further away from
the hole edge, becoming almost perpendicular to the easy
axis direction (and, thus, result in the observed rectangular
shape of the closure structure). Finally, (L,/R) is found to be
only very weakly dependent on the exchange constant A in a
wide parameter range. This indicates that the size of the clo-
sure structure is mainly determined by the balance between
magnetostatic and anisotropy energies in the range of param-
eter values typical of 3d magnetic materials. Only for large
values of the exchange constant (A>1X1071" J/m) does
L,/R become dependent on A, and a qualitative change ap-
pears in the closure structure to a more square configuration,
indicating a transition to a regime in which exchange energy
overcomes the contribution of anisotropy energy.

V. ANALYTICAL MODEL

In order to study the underlying physical problem and get
a better understanding of the interplay between the different
factors that determine this confinement distance of the clo-
sure structure induced by the hole, an analytical model of
this system can be made by considering an infinite 2D film
with a circular hole of radius R. We denote by ) and J() the
space occupied by the ferromagnetic material and its bound-
ary, respectively. The ferromagnetic film has a uniaxial an-
isotropy and due to the symmetry of the problem, we will
choose the origin of coordinates at the center of the hole, the
x axis in the direction of the easy axis of anisotropy, and the
z axis perpendicular to the film plane. Any solution to the
problem must scale with R; therefore, we denote by p
=(&,m)=(%.%) and (p,0)=(%,0) the normalized Cartesian
and polar coordinates, respectively, of a generic point. The
numerical calculations in Sec. IV suggest that the relation-
ship among exchange energy E.,, anisotropy energy Ey, and
magnetostatic energy E,, satisfies E.,,<<Ex<<E,,. Due to this
relation, the possible magnetization configurations in the sys-
tem will be mainly determined by the principle of pole
avoidance, so that V-M must be as close to zero as possible.
If V-M=0, then M can be directly obtained from the vector
potential A as M=V X A. In two dimensions, the magnetiza-
tion M is restricted to the film plane and the vector potential
is of the form A=(0,0, ). Then,

d 1%
Mx=—¢; My=——l'b, (1)
dy ox

so that M- V=0, i.e., M and V¢ are perpendicular. Thus the
magnetization lines coincide with the contour lines of con-
stant .

From the principle of pole avoidance it follows that ¢{(p)
must satisfy

i)Vy=0 on ()

J
(ii)a—(g =0 on p=1 . (2)
(ili)y ~M,psin @ as p— ©

The solution of the problem can be written as®®
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FIG. 5. (Color online) (a) Magnetization lines around a nonmag-
netic hole derived from ¢(p, #). (b) Magnetization divergence (i.e.,
magnetic charges) that is associated to the magnetization distribu-
tion in (a) upon imposing the condition of constant modulus [M]
=M, everywhere (note the mixture between positive and negative
poles around the hole).

p, 6) :Ms<p— %))sin 0. (3)

This solution is equivalent to the one obtained from the over-
lap of a uniform field and a linear dipolar field in the oppo-
site direction.?”-3% Figure 5(a) shows the magnetization lines
derived from ¢{(p) given by Eq. (3). In this case there are no
magnetic charges in the system since V-M=0 everywhere.
However, this result is not valid for a ferromagnetic material
since it implies that the modulus of M changes from one
point to another. In order to avoid a nonconstant |M|, we
assume that ¢/(p) describes the m=M/M lines instead of the
M lines. This normalization leads to the emergence of poles
in the system. Figure 5(b) shows the divergences of magne-
tization corresponding to the m lines given in Fig. 5(a).
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FIG. 6. (Color online) Sketch of the domain structure around the
hole after introducing two pairs of straight domain walls emanating
from the singularity points at (=1,0). Also indicated are the area
Q,, the wall C, and the point (§,, 7,) that define the area of inte-
gration for the application of the Gauss theorem.

These divergences are distributed symmetrically around the
hole. In the close environment of the point (1,0) there exists
a very high positive charge density and around (-1,0) a very
high negative charge density. Leaved regions of positive
charges appear around the +¢ axis and in the second and
third quadrants with a low density that fades away from the
hole. Besides, around the —¢ axis and in the first and fourth
quadrants other similar leaved regions of negative charges
appear.

On the other hand, the =0 line is made by the circum-
ference of the hole plus two semistraight lines emerging
from the points p=1 and #=0, 7, respectively. The magneti-
zation in these points seems to have two different directions
simultaneously. Abolition of this ambiguity requires the in-
troduction of a domain structure. Thus, from each of these
points two domain walls should emanate. Or equivalently,
each of these points becomes an edge defect with winding
number —1/2. By introducing these four walls, the system
will be divided into domains. The symmetry introduced by
the easy axis and the boundary condition, which requires that
the magnetization should be parallel to the easy axis when
p>1, suggests that the domain pattern is similar to that in-
dicated in Fig. 6. This closure structure not only avoids the
ambiguity at (1,0) and (—1,0) but also reduces considerably
the magnetostatic energy stored around the hole by eliminat-
ing the highly charged regions close to these points. In the
limit of negligible exchange energy, as assumed here, the
domain walls can be considered as infinitely thin lines over
which the magnetization changes abruptly. The magnetiza-
tion forms different angles on both sides of the walls; there-
fore, they are charged with a linear charge density \.

These qualitative descriptions on the closure domain pat-
tern must be converted into quantitative ones in order to
determine the shape, length, and precise position of the
walls. This can be obtained using the Gauss theorem. If a

174417-5



RODRIGUEZ-RODRIGUEZ et al.

saturating magnetic field is applied in the easy axis direction
e=(1,0), free poles appear with density o=—M cos 6 on the
edges of the hole. When the applied field is reduced to zero,
these charges will be distributed by the system. But due to
the symmetry of the magnetization lines (which are parallel
to e=(1,0) at all points on the £ and # axes), the total charge
in each quadrant must remain constant. This condition im-
poses a restriction on the position, shape, and length of the
walls emanating from the —1/2 edge defects. Due to the
symmetry of the system, we will examine only the first quad-
rant. Let C be the wall that emanates from the point (1,0) and
ends at a point (&,,7,). Let ), be the area bounded by the
edge of the hole, by the 7 axis, by the wall C, and by the
straight line 7= 7,,. The direction of the magnetization inside
Q, is denoted by m; and outside it by my=(1,0). The unit
vector normal to the wall C is designated by n,. Applying
the Gauss theorem to the first quadrant, we obtain

J V~Mdp+fMs(ml—mz)-ncdlz—MsR. (4)
Q c

1

Developing the first term of the left side of Eq. (4) we reach

77w_f mz'ncdl—f m;-n,dli=0, (5)
C 7=y

where n, = (0,1) is the unit vector normal to the straight line
n=m,,. Thus, once fixed the function 7=/(£), which defines
the wall, Eq. (5) gives the point (&, 7,) that belongs to 7
=f(&), and that makes it satisfy the Gauss theorem. The po-
sition of this point can be taken as the characteristic size of
the closure pattern, i.e., of the confinement distance L of the
—1/2 singularities induced by the hole.

In order to find the function 7=(§) that defines the wall,
we evaluated Eq. (5) for different expressions. For straight
walls, for example, as depicted in the sketch of Fig. 6, the
conditions imposed by charge conservation cannot be ful-
filled. The only expressions for which there exists a point
(&,,m,) that meets the Gauss theorem are paraboliclike func-
tions with an asymptote perpendicular to the easy axis of
anisotropy. Also, in order to match the results of the MFM
observations and micromagnetic simulations, shown in Figs.
2 and 3, two extra restrictions must be verified: first, all the
magnetic charges in {}; must have the same sign, i.e., the
function 7=f(§) should depart from point (1,0) above the
boundary between the region that separates positive and
negative charges; second, the linear charge density on the
wall should be always of the same sign and decrease gradu-
ally from the point (1,0) to a point denoted by (&, 7), in
which the charge density on the wall becomes zero. A rea-
sonable set of trial functions can be given by the vertical
branch of the right strophoid with pole in point (1,0) and a
vertical asymptote at a distance a from the mentioned pole
[see Fig. 7(a)],

(£ 2&)
7= (¢ 1)(61_&l : (6)

This kind of walls fulfills all the above requirements: they
bound a (), region with only negative charges, there is al-
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FIG. 7. (Color online) (a) Closure domain structure around the
hole with walls described by Eq. (6) with a=1. (b) Linear density of
magnetic charges N\ along the wall calculated for a=1. Arrow indi-
cates the point &, at which Gauss theorem is satisfied.

ways a point (¢, 7,,) which meets the Gauss theorem, and
the charge density of the wall is always of the same sign,
decreasing monotonically from a maximum value at the
point (1,0) to zero at the point (&, 77,). Even more, this point
(&, my) matches the one numerically obtained from Eq. (5):
(&,,,1,,). Thus the wall terminates smoothly at the point de-
termined by the Gauss theorem [see Fig. 7(b) for the charge
density on a wall given by Eq. (6) with a=1; the point &,
=1.94, which verifies the Gauss theorem for a=1, has also
been depicted]. For this kind of walls, the ratio 7,/ &,, which
is a measure of the geometrical shape of the closure configu-
ration, is close to unity for small values of 7,, and increases
up to almost 3 as the size of the closure structure increases in
a similar way as the behavior obtained in the micromagnetic
calculations for the ratio L,/L,.

The previous results suggest that the function given by
Eq. (6) adequately represents the walls that appear in the
systems under study. But Eq. (6) does not define a single
wall, it defines a uniparametric family of walls—one for
each parameter value a. For every wall of the family, there is
only one point (¢, 7,,) that moves away from the hole as a
increases with a linear dependence of 7,, on a. From this
family of walls only the one that minimizes the total energy
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will be adopted by the system. Therefore, in order to deter-
mine the equilibrium configuration of the system, we must
compute the total energy and minimize it with respect to
parameter a.

The total energy is the sum of two terms: magnetostatic
energy E,, and anisotropy energy Ey. The magnetostatic en-
ergy arises from the interaction between the magnetic
charges that were generated on the surface and on the walls.
The magnetization distribution leads to a surface charge den-
sity o(p)=—M[V-m(p)] which is negative in the first and
fourth quadrants and positive in the second and third quad-
rants. On the walls, there will be a linear density A(p)
=M (m;—m,)-n, which is positive in the walls of the first
and fourth quadrants and negative in the walls of the second
and third quadrants. Hence, the magnetostatic energy of the
system is given by

4
Em=Es+EEis+2Eij’ (7)

i1 i.j

where E is the term for the interaction between the surface
charges, E;, is for the interaction between the wall i and the
surface charges, and Ej; is for the interaction between the
walls i and j. The complex mixture of magnetic charges
given by the closure structure of Fig. 7(a) greatly reduces the
total magnetostatic energy and is very different from the clo-
sure structures around holes in bulk materials that simply
dilute the charges in a larger volume keeping the dipolar
character. It might be related with the longer range of the
potential created by the charges that is logarithmic in 2D
(Refs. 37 and 38) as compared to 1/r in 3D. Thus, the pre-
viously defined magnetostatic energies are given by the fol-
lowing expressions:

oM,
Es=——4 f f [V-m(p)][V-m(p')]In(|p
™ JaJa

- p'd*pd’p’ (8)

MM :
Ei=- Py fn fC[V'm(P)]{[ml(P)

—my(p")]-nc(p")Hn(lp - p'|d*pdl’, )

2
Eij=- ot f {[m;(p) —my(p)]- nc(p)} X {{my(p’)
2w Jeler

—-my(p")] - ne(p")}in(|p - p'|dlal’. (10)

The anisotropy energy is
EK=Kf {1-[m(p) - eF} &’p (11)

Q

and the total energy can be written as
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FIG. 8. (Color online) (a) Normalized magnetostatic energy &,,
(circles) and normalized anisotropy energy &, (squares) as a func-
tion of domain-wall parameter a. Dashed line is a fit to 1/a depen-
dence and solid line is a linear fit. (b) Total system energy vs a for
different values of k. Note that the minima in the curves are dis-
placed to larger values of a as k decreases.

~ poM:
27T

E =

1
|:_8‘Y+28i_y+28ij:| + Kg; (12)

2 T

representing €, €, €;j, and g the integrals appearing in Egs.
(8)—(11), respectively. This result can be normalized as fol-
lows:

2E 11
EE == x g+ is T ii + 5 13
wM, w[z" 2 2} o 19

where k=2K/ ,uOMf.

Figure 8(a) shows the numerical results obtained for the
normalized magnetostatic energy &,,=2E,,/uoM. (circles)
and normalized anisotropy energy g, (squares) as a function
of the parameter a that determines wall shape. ¢,, follows
approximately a 1/a dependence (dotted line), whereas g,
increases linearly with a (solid line). Figure 8(b) shows the
total energy X vs a calculated from Eq. (13) for different
values of the reduced anisotropy k. All the curves show a
minimum, corresponding to the stable system configuration,
that moves toward longer distances as « decreases. Consid-
ering the approximate analytical dependencies of g,, and &;
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FIG. 9. (Color online) k dependence of the size of the closure
structure along the hard axis obtained from micromagnetic simula-
tions: triangles varying M, (K=8X 10> J/m3, A=1X10"'" J/m)
and squares varying K (M,=2X10° A/m, A=1X10"!! J/m).
Solid line corresponds to a Ly~ x4 dependence.

on a, this optimum value of a that defines the characteristic
length scale of the closure structure around the hole should
scale as a ~ k™. Taking into account the linear dependence
of confinement distance along the hard axis 7, on a, we
might compare these predictions with the results of the mi-
cromagnetic simulations for Ly, which is the size of the clo-
sure structure perpendicular to the easy axis. Figure 9 shows
L,/R vs k derived from the OOMMF simulations as a function
of M, (triangles) and K (squares). All the points coalesce on
a single line, confirming that « is indeed the relevant physi-
cal parameter that determines the size of the closure struc-
ture. This dependence can be described by a power law of
the form L, ~ k%% (solid line), indicating a stronger confine-
ment of the —1/2 defects close to the hole as the reduced
anisotropy increases. We might compare the obtained behav-
ior with other micromagnetic structures in thin films that are
also determined by the interplay between magnetostatic and
anisotropy energies such as the width of a Néel wall tail®®
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that scales as W,,;~ «~!. The different x dependence found
in the present case can be attributed mainly to the differences
between the magnetic charge distribution that appears around
the hole and that of a Néel wall in which the film is simply
divided in two oppositely charged regions. Thus, the weight
of the contribution of the magnetostatic term in the global
energy balance should be smaller for the studied closure
structure than for a Néel wall, allowing for a stronger con-
finement of the closure structure (i.e., a weaker « depen-
dence taking into account the inverse proportionality be-
tween « and M?).

VI. CONCLUSIONS

In summary, the closure domain structure around a single
hole in a uniaxial magnetic thin film can be described as two
—1/2 half vortices located at opposite sides of the hole along
the anisotropy easy axis and confined within a distance L. It
appears as two sets of charged Néel walls emanating from
the singularity points that bound two regions in which the
magnetization curves around the hole and gives rise to a
distribution of magnetic charges at the film surface. The con-
finement distance L is determined by the interplay between
magnetostatic and anisotropy energies, constrained by the
conservation of magnetic charges within the system. It scales
approximately as L,~ x4 which is a relatively weak de-
pendence that is probably related with the mixture of mag-
netic charges around the hole that reduces the weight of the
magnetostatic term in the global energy balance.
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