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We calculate the thermodynamic quantities �correlation functions �S0Sn�, correlation length �, spin suscep-
tibility �, and specific heat CV� of the frustrated one-dimensional spin-half J1-J2 Heisenberg ferromagnet, i.e.,
for J2�0.25�J1�, using a rotation-invariant Green’s-function formalism and full diagonalization of finite lat-
tices. We find that the critical indices are not changed by J2, i.e., �=y0T−2 and �=x0T−1 at T→0. However, the
coefficients y0 and x0 linearly decrease with increasing J2 according to the relations y0= �1−4J2 / �J1�� /24 and
x0= �1−4J2 / �J1�� /4, i.e., both coefficients vanish at J2=0.25�J1� indicating the zero-temperature phase transi-
tion that is accompanied by a change in the low-temperature behavior of � ��� from ��T−2 ���T−1� at J2

�0.25�J1� to ��T−3/2 ���T−1/2� at J2=0.25�J1�. In addition, we detect the existence of an additional low-
temperature maximum in the specific heat when approaching the critical point at J2=0.25�J1�.
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I. INTRODUCTION

Low-dimensional quantum magnets represent an ideal
playground to study systems with strong quantum and ther-
mal fluctuations.1 In particular, much attention has been paid
to the one-dimensional �1D� J1-J2 quantum Heisenberg
model, which may serve as a canonical model to study frus-
tration effects in low-dimensional quantum magnets. Al-
though this model has been studied frequently �see Ref. 2,
and references therein�, the model deserves further attention
to detect unknown features of this quantum many-body sys-
tem especially in the case of ferromagnetic nearest-neighbor
�NN� interaction J1�0.3–11 From the experimental side, re-
cent studies have demonstrated that edge-shared chain cu-
prates represent a family of quantum magnets for which the
1D J1-J2 Heisenberg model is an appropriate starting point
for a theoretical description. Among others, we men-
tion LiVCuO4, LiCu2O2, NaCu2O2, Li2ZrCuO4, and
Li2CuO2,12–21 which were identified as quasi-1D frustrated
spin-1/2 magnets with a ferromagnetic NN in-chain coupling
J1�0 and an antiferromagnetic next-nearest-neighbor
�NNN� in-chain coupling J2�0. The Hamiltonian of their
1D subsystems considered in this paper is then given by

H = J1�
�i,j�

SiS j + J2�
�i,j�

SiS j , �1�

where �i , j� runs over the NN and �i , j� over the NNN bonds.
For the model �1� the ferromagnetic ground state �GS� gives
way for a singlet GS with spiral correlations at the critical
point J2=0.25�J1�.7,22

The edge-shared chain cuprates have attracted much at-
tention due to the observation of incommensurate spiral spin
ordering at low temperature. Hence, in these compounds the
antiferromagnetic NNN exchange J2 is strong enough to de-
stroy the ferromagnetic GS favored by the ferromagnetic

J1. On the other hand, several materials that consid-
ered as model systems for 1D spin-1/2 ferromagnets,
such as Tetramethylammonium Copper Chloride
�TMCuC��CH3�4NCuCl3�� �Ref. 23� and p-nitrophenyl nitro-
nyl nitroxide �p-NPNN� �C13H16N3O4�,24 might have also a
weak frustrating NNN exchange interaction J2�−0.25J1.
Moreover, recent investigations suggest that Li2CuO2 is a
quasi-1D spin-1/2 system with a dominant ferromagnetic J1
and weak frustrating antiferromagnetic J2	0.2�J1�.21

Although for J2�−0.25J1 the GS remains ferromagnetic,
the frustrating J2 may influence the thermodynamics substan-
tially, in particular, near the zero-temperature critical point at
J2=0.25�J1�. The investigation of this issue is the aim of this
paper. The study of the 1D J1-J2 Heisenberg model is faced
with the problem that, due to the J2 term, neither the Bethe-
ansatz solution nor the quantum Monte Carlo method is ap-
plicable. Hence, we use �i� the full exact diagonalization
�ED� of finite systems of up to N=22 lattice sites and �ii� the
second-order Green’s-function technique25 that has been ap-
plied recently successfully to low-dimensional quantum spin
systems.26–29 For example, in Ref. 27, by comparison with
Bethe-ansatz data it has been demonstrated that this method
leads to qualitatively correct results for the thermodynamics
of the 1D Heisenberg ferromagnet in a magnetic field. As the
most prominent feature, a field-induced extra low-
temperature maximum in the specific heat has been found27

and characterized as a peculiar quantum effect.27,29

II. FULL DIAGONALIZATION OF FINITE LATTICES

Using Schulenburg’s SPINPACK �Ref. 30� and exploiting
the lattice symmetries and the fact that Sz=�iSi

z commutes
with H, we are able to calculate the exact thermodynamics
for periodic chains of up to N=22 spins. The comparison of
results for N=12, 14, 16, 18, 20, and 22 allows to estimate

PHYSICAL REVIEW B 78, 174412 �2008�

1098-0121/2008/78�17�/174412�6� ©2008 The American Physical Society174412-1

http://dx.doi.org/10.1103/PhysRevB.78.174412


the finite-size effects. The largest matrix which has to be
diagonalized for N=22 has 29 414�29 414 matrix elements.

III. SPIN-ROTATION-INVARIANT
GREEN’S-FUNCTION THEORY

To calculate the spin-correlation functions and the ther-
modynamic quantities, we determine the transverse spin sus-
ceptibility �q

+−���=−��Sq
+ ;S−q

− ��� �here, ��. . . ; . . .��� denotes
the two-time commutator Green’s function31� by the spin-
rotation-invariant Green’s-function method �RGM�.25,26 Us-
ing the equations of motion up to the second step and sup-
posing rotational symmetry, i.e., �Si

z�=0, we obtain

�2��Sq
+ ;S−q

− ���=Mq+ ��−S̈q
+ ;S−q

− ��� with Mq= ���Sq
+ ,H� ,S−q

− ��
and −S̈q

+= ��Sq
+ ,H� ,H�. For the model �1� the moment Mq is

given by the exact expression

Mq = − 4 �
n=1,2

JnCn�1 − cos nq� , �2�

where Cn= �S0
+Sn

−�=2�S0
zSn

z�. The second derivative −S̈q
+ is ap-

proximated as indicated in Refs. 25–29. That is, in −S̈i
+ we

adopt the decoupling Si
+Sj

+Sk
−=��Sj

+Sk
−�Si

++��Si
+Sk

−�Sj
+, where

in the case J2�−0.25J1 with a ferromagnetic GS the vertex
parameter � can be assumed in a good approximation to be
independent of the range of the associated spin correlators

�see the discussion below�. We obtain −S̈q
+=�q

2Sq
+ and

�q
+−��� = − ��Sq

+;S−q
− ��� =

Mq

�q
2 − �2 , �3�

with

�q
2 = �

n,m�=1,2�
JnJm�1 − cos nq��Kn,m + 4�Cn�1 − cos mq�� ,

�4�

where Kn,n=1+2��C2n−3Cn�, K1,2=2��C3−C1�, and K2,1
=K1,2+4��C1−C2�. From the Green’s function �3� the corre-
lation functions Cn= 1

N�qCqeiqn of arbitrary range n are de-
termined by the spectral theorem31

Cq = �Sq
+S−q

− � =
Mq

2�q
�1 + 2n��q�� , �5�

where n��q�= �e�q/T−1�−1 is the Bose function. By the opera-
tor identity Si

+Si
−= 1

2 +Si
z we get the sum rule C0= 1

N�qCq= 1
2 .

The uniform static spin susceptibility �=limq→0 �q, where
�q=�q��=0� and �q���= 1

2�q
+−���, is given by

� = −
2

	
�

n=1,2
n2JnCn, 	 = �

n,m�=1,2�
n2JnJmKn,m. �6�

The correlation length � may be calculated from the expan-
sion of the static spin susceptibility around q=0 �see, e.g.,
Refs. 25 and 29� �q=� / �1+�2q2�. The ferromagnetic long-
range order, occurring in the 1D model at T=0 only, is de-
scribed by the condensation term C �Ref. 25� according to
Cn�0�= 1

N�q��0��Mq /2�q�eiqn+C. Equating this expression

for n�0 to the exact result Cn�0�0�= 1
6 ��S�0S�n�0��0�= 1

4 �, the

ratio Mq /2�q must be independent of q because Cn�0 is
independent of n. This requires the equations Kn,m�0�=0 �cf.
Eqs. �2� and �4��, which yield ��0�= 3

2 . Then, we get �q�0�
= 3

2 Mq�0� and C= 1
6 , where the sum rule C0= 1

2 is fulfilled. In
Eq. �6�, we have 	�0�=0, so that � diverges as T→0 indi-
cating the ferromagnetic phase transition.

Let us discuss the used assumption that the vertex param-
eter � is independent of the distance l. For that, we consider
an extended decoupling with four different parameters �l �l
=1, . . . ,4� attached to the four correlators Cl appearing in �q

2

�cf. Eq. �4��. At T=0, the four equations Kn,m=0 �n ,m
=1,2� yield the solutions �l�0�= 3

2 . On the other hand, in the
high-temperature limit all vertex parameters approach
unity.25 Because we have identical vertex parameters at T
=0 and for T→
, we put �l=� in the whole temperature
region, as was done above.

To evaluate the thermodynamic properties, the correlators
Cl �l=1, . . . ,4� and the vertex parameter � have to be deter-
mined as numerical solutions of a coupled system of five
nonlinear algebraic self-consistency equations for Cl includ-
ing the sum rule C0= 1

2 according to Eq. �5�. Tracing the
RGM solution to very low temperature, we find that it be-
comes less trustworthy for J2 approaching J2=0.25�J1�.
Therefore, below we will present RGM results for J2
�0.2�J1� only.

IV. RESULTS

Hereafter, we put �J1�=1. First we consider the NN and
NNN correlation functions shown in Fig. 1. The RGM re-
sults agree qualitatively well with the ED data. Note that the
difference between ED and RGM results at low temperature
might be partially attributed to finite-size effects in the ED
data. For larger temperature T�1, the agreement becomes
perfect. With increasing frustration the correlation functions
decrease, where the NNN and further-distant correlators de-
cay much stronger than the NN correlator �interestingly, for
J2=0.2 the NNN correlator changes the sign at T	1�. This
frustration effect is reflected in the correlation length � de-
picted in the inset of Fig. 2. At T=0, � and the uniform static
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FIG. 1. NN �solid� and NNN �dashed� spin-correlation function
for J2=0, 0.1, and 0.2, from top to bottom, calculated by RGM
�lines� and ED �open symbols; N=20�.
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spin susceptibility � diverge due to the ferromagnetic GS.
With growing temperature, the decay of � increases with
increasing J2. As shown in Fig. 2, our ED data for � are in
excellent agreement with the results of the transfer-matrix
renormalization-group �TMRG� study of Ref. 6 and agree
well with the RGM results. The susceptibility decreases with
increasing J2 because this antiferromagnetic interaction
counteracts the spin orientation along a uniform magnetic
field.

Next, we investigate the critical behavior of � and � for
T→0 in more detail. To study the influence of the frustration
on the critical behavior we follow Refs. 32 and 33. The criti-
cal indices  for � and � for � can be obtained by analyzing
the RGM data for − d log���

d log�T� and − d log���
d log�T� for T→0. We find

that =2 and �=1 are independent of J2 for J2�0.25. Going
beyond the leading order in T, we know from Bethe-ansatz
data32,33 and from the renormalization-group technique34 that
the low-temperature behavior of the susceptibility and the
correlation length of the unfrustrated 1D spin-1/2 Heisenberg
ferromagnet is given by

�T2 = y0 + y1

T + y2T + O�T3/2� �7�

and

�T = x0 + x1

T + x2T + O�T3/2� . �8�

Here we adopt this expansion suggested by the existence of
the ferromagnetic critical point at T=0 but with J2-dependent
coefficients for the frustrated model �1�. To determine the
coefficients y0 and x0, in Figs. 3 and 4 we show the quantities
�T2 and �T versus 
T. Again we find a good agreement of
the ED for �T2 with Bethe-ansatz and TMRG data down to
quite low temperature. The RGM results for �T2 and �T
deviate slightly from the Bethe-ansatz and TMRG data for
finite temperature. The behavior of the leading coefficients y0
and x0 and the next-order coefficients y1 and x1 can be ex-
tracted from the data for �T2 and �T by fitting these data to
Eqs. �7� and �8�. For the RGM we use data points up to a
cutoff temperature T=Tcut. Although we find that the data fit

is almost independent of the value of Tcut, we choose Tcut
=0.005, which gives optimal coincidence with Bethe-ansatz
results available for J2=0 �see below�. On the other hand, the
ED data at very low temperature are affected by finite-size
effects. To circumvent this problem, we proceed as follows.
We first determine the temperature TED down to which the
first four digits of the specific heat per site CV�T� for N=20
and 22 coincide. �We use the specific heat to determine TED
because CV�T� is most sensitive to finite-size effects at low
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FIG. 2. Uniform static spin susceptibility calculated by RGM
�solid lines� and ED �open symbols; N=20� for J2=0, 0.125, and
0.2, from right to left, and by TMRG �filled symbols� for J2=0 and
0.125 �Ref. 6�. The inset shows the correlation length obtained by
RGM for J2=0, 0.125, and 0.2, from right to left.
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FIG. 3. �T2 versus 
T calculated by RGM �solid lines� and ED
�N=20; dashed lines� for J2=0, 0.125, and 0.2, from top to bottom.
For comparison we present also Bethe-ansatz data �open squares�
for J2=0 �Ref. 32� and TMRG data �filled triangles� for J2=0.125
�Ref. 6�. The upper inset shows the coefficient y0=limT→0 �T2 ob-
tained by the RGM �filled squares� and ED �open circles� in depen-
dence on J2 as well as a linear fit of the RGM data points �solid
line�. The lower inset shows the coefficient y1 �cf. Eq. �7�� obtained
by the RGM �filled squares� and ED �open circles� in dependence
on J2 as well as a quadratic fit of the data points �solid line�.
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FIG. 4. �T versus 
T by the RGM �solid lines� for J2=0, 0.125,
and 0.2, from top to bottom. For comparison we present also Bethe-
ansatz data �open squares� for J2=0 �Ref. 33�. The left inset shows
the coefficient x0=limT→0 �T obtained by the RGM �filled squares�
in dependence on J2 as well as a linear fit of the RGM data points
�solid line�. The right inset shows the coefficient x1 �cf. Eq. �8��
obtained by the RGM �filled squares� in dependence on J2 as well
as a quadratic fit of the data points �solid line�.
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temperature; see also below.� Then we use the ED data
points for �T2 in the temperature region TED�T�TED
+Tcut to fit them to Eq. �7�. We find that TED varies from 0.22
at J2=0 to 0.03 at J2=0.24. Obviously, we have to use ED
data points at higher temperature for the fit in comparison to
the RGM fit, in particular, at small values for J2. The results
for y0 and y1 as well as for x0 and x1 are shown in the insets
of Figs. 3 and 4. It is obvious that the values for y0 deter-
mined by RGM and ED are very close to each other. Note
that for the unfrustrated 1D ferromagnet the quantities y0 and
x0 were calculated by the RGM previously in Ref. 35. It was
found that y0=1 /24	0.041 667 and x0=1 /4, which agrees
with the Bethe-ansatz results of Refs. 32 and 33 �note that �
defined in Ref. 32 is larger by a factor of 4 than � given by
Eq. �6��. Our RGM data confirm these findings �see also Ref.
29�. The fitting of the ED data at J2=0 yields y0=0.0418,
which is still in reasonable agreement with the Bethe-ansatz
result. Including frustration J2�0, we find an almost linear
decrease in y0 as well in x0 with J2 down to zero at J2
=0.25 �cf. the insets of Figs. 3 and 4�. A linear fit of the
RGM data points yields the relations

y0 = �1 − 4J2�/24, x0 = �1 − 4J2�/4, �9�

which describe the RGM data in high precision. The vanish-
ing of y0 and of x0 at J2=0.25 reflects the zero-temperature
phase transition at this point and indicates the change in the
low-temperature behavior of the physical quantities at the
critical point. Using the same J2 data points as in the insets
of Figs. 3 and 4, a polynomial fit according to y1=ay +byJ2
+cyJ2

2 �x1=ax+bxJ2+cxJ2
2�, indeed, yields, at J2=0.25, finite

values y1=0.047 for RGM and y1=0.043 for ED and x1
=0.147 �RGM only�. Hence, our data suggest a change in the
low-temperature behavior of � ��� from ��T−2 ���T−1� at
J2�0.25 to ��T−3/2 ���T−1/2� at the zero-temperature criti-
cal point J2=0.25. Let us mention here again that our results
for the critical indices  and � at J2=0.25 are based on the
validity of Eqs. �7� and �8� and the extrapolation of our data
from J2�0.25 to J2=0.25. A slightly different index  also
being below the “ferromagnetic” value F=2 discussed
above, namely, =4 /3, is obtained36 if one employs the
modified spin-wave theory by Takahashi37 at J2=0.25.

The next quantity we consider is the specific heat CV. In
Fig. 5 our RGM and ED results for CV are compared with the
TMRG data.6 Obviously, the ED results are in a very good
agreement with the TMRG data. The deviation at low tem-
perature, appearing for J2=0.125 as an increased value of CV
for 0.02�T�0.1, is ascribed to finite-size effects �see also
the discussion below�. For larger values of J2 the specific
heat shows another interesting low-temperature feature �see
Fig. 6�. In the region 0.125�J2�0.25 with a ferromagnetic
GS, the specific heat exhibits two maxima. Besides the broad
maximum at T	0.6, an additional frustration-induced low-
temperature maximum appears, which is found by the ED
and RGM methods for J2�0.125 and �0.16, respectively.
As shown by a detailed analysis �see also below�, the behav-
ior of CV at very low temperature is appreciably affected by
finite-size effects. In particular, in the ED data, the low-
temperature maximum is superimposed by a quite sharp ex-
tra finite-size peak, as can be clearly seen in Fig. 6 for J2

=0.24. In view of this, the height and the position of the true
additional low-temperature maximum cannot be extracted
unambiguously from the ED data; however, its existence is
not questioned by this ambiguity. On the other hand, the
RGM �see inset of Fig. 6� yields a shift of the maximum to
lower temperature with increasing frustration.

To illustrate the finite-size effects at low temperature, in
Fig. 7 the ED data for the specific heat for J2=0.2 and 0.24
and different chain lengths are plotted. As already discussed
above, the first four digits of the CV�T� data for N=20 and 22
coincide down to TED	0.04 �TED	0.03� for J2=0.2 �J2
=0.24�. �Note again that for J2=0 the corresponding value
TED	0.22 is much larger.� Below TED finite-size effects be-
come relevant �cf. Fig. 7�. However, from Fig. 7 it is also
evident that the extra low-temperature finite-size peak be-
haves monotonously with N. Hence, a finite-size extrapola-
tion of the height cpeak and the position Tpeak of the extra
peak is reasonable. We have tested several extrapolation
schemes and found that a three-parameter fit based on the
formula a�N�=a0+a1 /N2+a2 /N4 is well appropriate to ex-
trapolate both cpeak and Tpeak to N→
. The results of such an
extrapolation are shown as filled squares in Fig. 7. The ex-
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FIG. 5. Specific heat obtained by RGM �solid lines�, ED �open
symbols; N=20�, and TMRG �filled symbols; Ref. 6� for J2=0 and
0.125, from top to bottom.
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trapolated data points indicate that the extra peak indeed is a
finite-size effect and it vanishes for N→
. However, it is
also obvious that the characteristic steep decay of the specific
heat down to T=0 starts at lower temperature T� when ap-
proaching the zero-temperature critical point �we find T�

	0.05, 0.0007, and 0.002 for J2=0, 0.2, and 0.24, respec-
tively�. This behavior is in accordance with the shift of the

low-temperature RGM maximum in CV mentioned above
and is relevant for low-temperature experiments on quasi-1D
ferromagnets.

Finally, let us mention that in an early paper by Tonegawa
and Harada3 and also recently by Heidrich-Meisner et al.5

and Lu et al.6 a double-maximum structure in CV was al-
ready found for 0.25�J2�0.4, however, with a low-
temperature maximum that becomes much more pronounced
approaching the critical point. In this case, the low-
temperature peak in CV�T� was ascribed to excitations from a
singlet GS to a low-lying ferromagnetic multiplet.5 In our
case J2�0.25. Above the fully polarized ferromagnetic GS
multiplet many low-lying multiplets exist, and the appear-
ance of the additional low-temperature maximum is attrib-
uted to a more subtle interplay between all of these low-lying
states.

V. SUMMARY

In this paper, we explored the influence of the NNN cou-
pling J2�0.25�J1� on the thermodynamic properties of the
1D spin-1/2 Heisenberg ferromagnet using ED and RGM
methods. The results of both methods are in qualitatively
good agreement. We found that the critical behavior of the
susceptibility � and the correlation length � is not changed
by the frustrating J2. However, limT→0 �T2 and limT→0 �T go
to zero for J2→0.25�J1� indicating a change in the low-
temperature behavior of � ��� from ��T−2 ���T−1� at J2
�0.25�J1� to ��T−3/2 ���T−1/2� at the critical point J2
=0.25�J1�. Another interesting feature is the appearance of a
double-maximum structure in the specific heat CV, where the
additional frustration-induced low-temperature maximum
was found by ED �RGM� to occur for J2 / �J1��0.125 �0.16�.
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