Thermodynamics of a one-dimensional frustrated spin- $\frac{1}{2}$ **Heisenberg ferromagnet**

M. Härtel and J. Richter

Institut für Theoretische Physik, Otto-von-Guericke-Universität Magdeburg, D-39016 Magdeburg, Germany

D. Ihle

Institut für Theoretische Physik, Universität Leipzig, D-04109 Leipzig, Germany

S.-L. Drechsler

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, D-01171 Dresden, Germany (Received 9 July 2008; revised manuscript received 2 October 2008; published 12 November 2008)

We calculate the thermodynamic quantities (correlation functions $\langle S_0 S_n \rangle$, correlation length ξ , spin susceptibility χ , and specific heat C_V) of the frustrated one-dimensional spin-half J_1 - J_2 Heisenberg ferromagnet, i.e., for J_2 <0.25 $|J_1|$, using a rotation-invariant Green's-function formalism and full diagonalization of finite lattices. We find that the critical indices are not changed by *J*₂, i.e., $\chi = y_0 T^{-2}$ and $\xi = x_0 T^{-1}$ at $T \rightarrow 0$. However, the coefficients *y*₀ and *x*₀ linearly decrease with increasing *J*₂ according to the relations *y*₀= $(1-4J_2/|J_1|)/24$ and $x_0 = (1-4J_2 / |J_1|)/4$, i.e., both coefficients vanish at $J_2 = 0.25 |J_1|$ indicating the zero-temperature phase transition that is accompanied by a change in the low-temperature behavior of χ (ξ) from $\chi \propto T^{-2}$ ($\xi \propto T^{-1}$) at J_2 $0.25|J_1|$ to $\chi \propto T^{-3/2}$ ($\xi \propto T^{-1/2}$) at $J_2=0.25|J_1|$. In addition, we detect the existence of an additional lowtemperature maximum in the specific heat when approaching the critical point at $J_2=0.25|J_1|$.

DOI: [10.1103/PhysRevB.78.174412](http://dx.doi.org/10.1103/PhysRevB.78.174412)

PACS number(s): 75.10.Jm, 75.40.Cx, 75.40.Gb

I. INTRODUCTION

Low-dimensional quantum magnets represent an ideal playground to study systems with strong quantum and thermal fluctuations.¹ In particular, much attention has been paid to the one-dimensional (1D) J_1-J_2 quantum Heisenberg model, which may serve as a canonical model to study frustration effects in low-dimensional quantum magnets. Although this model has been studied frequently (see Ref. 2 , and references therein), the model deserves further attention to detect unknown features of this quantum many-body system especially in the case of ferromagnetic nearest-neighbor (NN) interaction $J_1 < 0.3$ $J_1 < 0.3$ ⁻¹¹ From the experimental side, recent studies have demonstrated that edge-shared chain cuprates represent a family of quantum magnets for which the 1D J_1-J_2 Heisenberg model is an appropriate starting point for a theoretical description. Among others, we mention LiVCuO₄, LiCu₂O₂, NaCu₂O₂, Li₂ZrCuO₄, and Li_2CuO_2 , $12-21$ $12-21$ which were identified as quasi-1D frustrated spin-1/2 magnets with a ferromagnetic NN in-chain coupling J_1 <0 and an antiferromagnetic next-nearest-neighbor (NNN) in-chain coupling J_2 >0. The Hamiltonian of their 1D subsystems considered in this paper is then given by

$$
H = J_1 \sum_{\langle i,j \rangle} \mathbf{S}_i \mathbf{S}_j + J_2 \sum_{[i,j]} \mathbf{S}_i \mathbf{S}_j,\tag{1}
$$

where $\langle i, j \rangle$ runs over the NN and $[i, j]$ over the NNN bonds. For the model ([1](#page-0-0)) the ferromagnetic ground state (GS) gives way for a singlet GS with spiral correlations at the critical point $J_2 = 0.25 |J_1|$.^{[7](#page-4-5)[,22](#page-5-1)}

The edge-shared chain cuprates have attracted much attention due to the observation of incommensurate spiral spin ordering at low temperature. Hence, in these compounds the antiferromagnetic NNN exchange J_2 is strong enough to destroy the ferromagnetic GS favored by the ferromagnetic *J*1. On the other hand, several materials that considered as model systems for 1D spin-1/2 ferromagnets, such as Tetramethylammonium Copper Chloride $(TMCuC[(CH₃)₄NCuCl₃])$ (Ref. [23](#page-5-2)) and *p*-nitrophenyl nitronyl nitroxide (p-NPNN) $(C_{13}H_{16}N_3O_4)$,^{[24](#page-5-3)} might have also a weak frustrating NNN exchange interaction J_2 <-0.25 J_1 . Moreover, recent investigations suggest that $Li₂CuO₂$ is a quasi-1D spin-1/2 system with a dominant ferromagnetic J_1 and weak frustrating antiferromagnetic $J_2 \approx 0.2 |J_1|^{21}$ $J_2 \approx 0.2 |J_1|^{21}$ $J_2 \approx 0.2 |J_1|^{21}$

Although for J_2 < −0.25 J_1 the GS remains ferromagnetic, the frustrating J_2 may influence the thermodynamics substantially, in particular, near the zero-temperature critical point at $J_2=0.25|J_1|$. The investigation of this issue is the aim of this paper. The study of the 1D J_1-J_2 Heisenberg model is faced with the problem that, due to the J_2 term, neither the Betheansatz solution nor the quantum Monte Carlo method is applicable. Hence, we use (i) the full exact diagonalization (ED) of finite systems of up to $N=22$ lattice sites and (ii) the second-order Green's-function technique²⁵ that has been applied recently successfully to low-dimensional quantum spin systems. $26-29$ For example, in Ref. [27,](#page-5-7) by comparison with Bethe-ansatz data it has been demonstrated that this method leads to qualitatively correct results for the thermodynamics of the 1D Heisenberg ferromagnet in a magnetic field. As the most prominent feature, a field-induced extra lowtemperature maximum in the specific heat has been found²⁷ and characterized as a peculiar quantum effect. $27,29$ $27,29$

II. FULL DIAGONALIZATION OF FINITE LATTICES

Using Schulenburg's SPINPACK (Ref. [30](#page-5-8)) and exploiting the lattice symmetries and the fact that $S^z = \sum_i S_i^z$ commutes with *H*, we are able to calculate the exact thermodynamics for periodic chains of up to *N*=22 spins. The comparison of results for $N=12$, 14, 16, 18, 20, and 22 allows to estimate the finite-size effects. The largest matrix which has to be diagonalized for $N=22$ has 29 414 \times 29 414 matrix elements.

III. SPIN-ROTATION-INVARIANT GREEN'S-FUNCTION THEORY

To calculate the spin-correlation functions and the thermodynamic quantities, we determine the transverse spin susceptibility $\chi_q^{+-}(\omega) = -\langle \langle S_q^+, S_{-q}^- \rangle \rangle_{\omega}$ (here, $\langle \langle \dots, \dots \rangle \rangle_{\omega}$ denotes the two-time commutator Green's function³¹) by the spin-rotation-invariant Green's-function method (RGM).^{[25,](#page-5-4)[26](#page-5-5)} Using the equations of motion up to the second step and supposing rotational symmetry, i.e., $\langle S_i^z \rangle = 0$, we obtain $\omega^2 \langle \langle S_q^+; S_{-q}^- \rangle \rangle_{\omega} = M_q + \langle \langle -\ddot{S}_q^+; S_{-q}^- \rangle \rangle_{\omega}$ with $M_q = \langle [[S_q^+, H], S_{-q}^-] \rangle$ and $-\ddot{S}_q^+ = [[S_q^+, H], H]$. For the model ([1](#page-0-0)) the moment *M_q* is given by the exact expression

$$
M_q = -4 \sum_{n=1,2} J_n C_n (1 - \cos nq), \tag{2}
$$

where $C_n = \langle S_0^+ S_n^- \rangle = 2 \langle S_0^z S_n^z \rangle$. The second derivative $-\ddot{S}_q^+$ is ap-proximated as indicated in Refs. [25](#page-5-4)[–29.](#page-5-6) That is, in $-\ddot{S}_i^+$ we adopt the decoupling $S_i^+ S_j^+ S_k^- = \alpha \langle S_j^+ S_k^- \rangle S_i^+ + \alpha \langle S_i^+ S_k^- \rangle S_j^+$, where in the case J_2 < −0.25 J_1 with a ferromagnetic GS the vertex parameter α can be assumed in a good approximation to be independent of the range of the associated spin correlators (see the discussion below). We obtain $-\ddot{S}_q^+ = \omega_q^2 S_q^+$ and

$$
\chi_q^{+-}(\omega) = -\langle \langle S_q^+ ; S_{-q}^- \rangle \rangle_{\omega} = \frac{M_q}{\omega_q^2 - \omega^2},\tag{3}
$$

with

$$
\omega_q^2 = \sum_{n,m(=1,2)} J_n J_m (1 - \cos nq) [K_{n,m} + 4\alpha C_n (1 - \cos mq)],
$$
\n(4)

where $K_{n,n}=1+2\alpha(C_{2n}-3C_n)$, $K_{1,2}=2\alpha(C_3-C_1)$, and $K_{2,1}$ $= K_{1,2} + 4\alpha (C_1 - C_2)$. From the Green's function ([3](#page-1-0)) the correlation functions $C_n = \frac{1}{N} \sum_q C_q e^{iqn}$ of arbitrary range *n* are determined by the spectral theorem 31

$$
C_q = \langle S_q^+ S_{-q}^- \rangle = \frac{M_q}{2\omega_q} [1 + 2n(\omega_q)], \tag{5}
$$

where $n(\omega_q) = (e^{\omega_q/T} - 1)^{-1}$ is the Bose function. By the operator identity $S_i^+ S_i^- = \frac{1}{2} + S_i^z$ we get the sum rule $C_0 = \frac{1}{N} \sum_q C_q = \frac{1}{2}$. The uniform static spin susceptibility $\chi = \lim_{q \to 0} \chi_q$, where $\chi_q = \chi_q(\omega = 0)$ and $\chi_q(\omega) = \frac{1}{2}\chi_q^{+-}(\omega)$, is given by

$$
\chi = -\frac{2}{\Delta} \sum_{n=1,2} n^2 J_n C_n, \quad \Delta = \sum_{n,m=1,2} n^2 J_n J_m K_{n,m}.
$$
 (6)

The correlation length ξ may be calculated from the expansion of the static spin susceptibility around $q=0$ (see, e.g., Refs. [25](#page-5-4) and [29](#page-5-6)) $\chi_q = \chi/(1 + \xi^2 q^2)$. The ferromagnetic longrange order, occurring in the 1D model at *T*=0 only, is described by the condensation term C (Ref. 25) according to $C_n(0) = \frac{1}{N} \sum_{q \neq 0} (M_q/2\omega_q) e^{iqn} + C$. Equating this expression for $n \neq 0$ to the exact result $C_{n \neq 0}(0) = \frac{1}{6} \left[\langle \vec{S}_0 \vec{S}_{n \neq 0} \rangle(0) = \frac{1}{4} \right]$, the

FIG. 1. NN (solid) and NNN (dashed) spin-correlation function for $J_2=0$, 0.1, and 0.2, from top to bottom, calculated by RGM (lines) and ED (open symbols; $N=20$).

ratio $M_q/2\omega_q$ must be independent of q because $C_{n\neq0}$ is independent of *n*. This requires the equations $K_{n,m}(0) = 0$ [cf. Eqs. ([2](#page-1-1)) and ([4](#page-1-2))], which yield $\alpha(0) = \frac{3}{2}$. Then, we get $\omega_q(0)$ $= \frac{3}{2}M_q(0)$ and $C=\frac{1}{6}$, where the sum rule $C_0=\frac{1}{2}$ is fulfilled. In Eq. ([6](#page-1-3)), we have $\Delta(0)=0$, so that χ diverges as $T\rightarrow 0$ indicating the ferromagnetic phase transition.

Let us discuss the used assumption that the vertex parameter α is independent of the distance *l*. For that, we consider an extended decoupling with four different parameters α_l (*l* $=$ 1,...,4) attached to the four correlators C_l appearing in ω_q^2 [cf. Eq. ([4](#page-1-2))]. At $T=0$, the four equations $K_{n,m}=0$ (n,m) $=$ 1,2) yield the solutions $\alpha_l(0) = \frac{3}{2}$. On the other hand, in the high-temperature limit all vertex parameters approach unity[.25](#page-5-4) Because we have identical vertex parameters at *T* $=0$ and for $T \rightarrow \infty$, we put $\alpha_l = \alpha$ in the whole temperature region, as was done above.

To evaluate the thermodynamic properties, the correlators C_l (*l*=1,...,4) and the vertex parameter α have to be determined as numerical solutions of a coupled system of five nonlinear algebraic self-consistency equations for C_l including the sum rule $C_0 = \frac{1}{2}$ according to Eq. ([5](#page-1-4)). Tracing the RGM solution to very low temperature, we find that it becomes less trustworthy for J_2 approaching $J_2=0.25|J_1|$. Therefore, below we will present RGM results for J_2 $\leq 0.2|J_1|$ only.

IV. RESULTS

Hereafter, we put $|J_1|=1$. First we consider the NN and NNN correlation functions shown in Fig. [1.](#page-1-5) The RGM results agree qualitatively well with the ED data. Note that the difference between ED and RGM results at low temperature might be partially attributed to finite-size effects in the ED data. For larger temperature $T \ge 1$, the agreement becomes perfect. With increasing frustration the correlation functions decrease, where the NNN and further-distant correlators decay much stronger than the NN correlator (interestingly, for J_2 =0.2 the NNN correlator changes the sign at $T \approx 1$). This frustration effect is reflected in the correlation length ξ de-picted in the inset of Fig. [2.](#page-2-0) At $T=0$, ξ and the uniform static

FIG. 2. Uniform static spin susceptibility calculated by RGM (solid lines) and ED (open symbols; $N=20$) for $J_2=0$, 0.125, and 0.2, from right to left, and by TMRG (filled symbols) for $J_2=0$ and 0.125 (Ref. 6). The inset shows the correlation length obtained by RGM for $J_2=0$, 0.125, and 0.2, from right to left.

spin susceptibility χ diverge due to the ferromagnetic GS. With growing temperature, the decay of ξ increases with increasing J_2 . As shown in Fig. [2,](#page-2-0) our ED data for χ are in excellent agreement with the results of the transfer-matrix renormalization-group (TMRG) study of Ref. [6](#page-4-6) and agree well with the RGM results. The susceptibility decreases with increasing J_2 because this antiferromagnetic interaction counteracts the spin orientation along a uniform magnetic field.

Next, we investigate the critical behavior of χ and ξ for $T\rightarrow 0$ in more detail. To study the influence of the frustration on the critical behavior we follow Refs. [32](#page-5-10) and [33.](#page-5-11) The critical indices γ for χ and ν for ξ can be obtained by analyzing the RGM data for $-\frac{d \log(\chi)}{d \log(T)}$ and $-\frac{d \log(\xi)}{d \log(T)}$ for $T \to 0$. We find that $\gamma = 2$ and $\nu = 1$ are independent of J_2 for $J_2 < 0.25$. Going beyond the leading order in *T*, we know from Bethe-ansatz $data^{32,33}$ $data^{32,33}$ $data^{32,33}$ $data^{32,33}$ and from the renormalization-group technique³⁴ that the low-temperature behavior of the susceptibility and the correlation length of the unfrustrated 1D spin-1/2 Heisenberg ferromagnet is given by

$$
\chi T^2 = y_0 + y_1 \sqrt{T} + y_2 T + \mathcal{O}(T^{3/2})
$$
 (7)

and

$$
\xi T = x_0 + x_1 \sqrt{T} + x_2 T + \mathcal{O}(T^{3/2}).
$$
 (8)

Here we adopt this expansion suggested by the existence of the ferromagnetic critical point at $T=0$ but with J_2 -dependent coefficients for the frustrated model (1) (1) (1) . To determine the coefficients y_0 and x_0 , in Figs. [3](#page-2-1) and [4](#page-2-2) we show the quantities χT^2 and ξT versus \sqrt{T} . Again we find a good agreement of the ED for χT^2 with Bethe-ansatz and TMRG data down to quite low temperature. The RGM results for χT^2 and ζT deviate slightly from the Bethe-ansatz and TMRG data for finite temperature. The behavior of the leading coefficients y_0 and x_0 and the next-order coefficients y_1 and x_1 can be extracted from the data for χT^2 and ζT by fitting these data to Eqs. (7) (7) (7) and (8) (8) (8) . For the RGM we use data points up to a cutoff temperature $T = T_{\text{cut}}$. Although we find that the data fit

FIG. 3. χT^2 versus \sqrt{T} calculated by RGM (solid lines) and ED $(N=20;$ dashed lines) for $J_2=0$, 0.125, and 0.2, from top to bottom. For comparison we present also Bethe-ansatz data (open squares) for $J_2=0$ (Ref. [32](#page-5-10)) and TMRG data (filled triangles) for $J_2=0.125$ (Ref. [6](#page-4-6)). The upper inset shows the coefficient $y_0 = \lim_{T \to 0} \chi T^2$ obtained by the RGM (filled squares) and ED (open circles) in dependence on J_2 as well as a linear fit of the RGM data points (solid line). The lower inset shows the coefficient y_1 [cf. Eq. ([7](#page-2-3))] obtained by the RGM (filled squares) and ED (open circles) in dependence on J_2 as well as a quadratic fit of the data points (solid line).

is almost independent of the value of T_{cut} , we choose T_{cut} =0.005, which gives optimal coincidence with Bethe-ansatz results available for $J_2=0$ (see below). On the other hand, the ED data at very low temperature are affected by finite-size effects. To circumvent this problem, we proceed as follows. We first determine the temperature T_{ED} down to which the first four digits of the specific heat per site $C_V(T)$ for $N=20$ and 22 coincide. (We use the specific heat to determine T_{ED} because $C_V(T)$ is most sensitive to finite-size effects at low

FIG. 4. ξT versus \sqrt{T} by the RGM (solid lines) for $J_2=0$, 0.125, and 0.2, from top to bottom. For comparison we present also Betheansatz data (open squares) for $J_2=0$ (Ref. [33](#page-5-11)). The left inset shows the coefficient $x_0 = \lim_{T \to 0} \xi T$ obtained by the RGM (filled squares) in dependence on J_2 as well as a linear fit of the RGM data points (solid line). The right inset shows the coefficient x_1 [cf. Eq. ([8](#page-2-4))] obtained by the RGM (filled squares) in dependence on J_2 as well as a quadratic fit of the data points (solid line).

temperature; see also below.) Then we use the ED data points for χT^2 in the temperature region $T_{ED} \leq T \leq T_{ED}$ $+T_{\text{cut}}$ to fit them to Eq. ([7](#page-2-3)). We find that T_{ED} varies from 0.22 at $J_2=0$ to 0.03 at $J_2=0.24$. Obviously, we have to use ED data points at higher temperature for the fit in comparison to the RGM fit, in particular, at small values for J_2 . The results for y_0 and y_1 as well as for x_0 and x_1 are shown in the insets of Figs. [3](#page-2-1) and [4.](#page-2-2) It is obvious that the values for y_0 determined by RGM and ED are very close to each other. Note that for the unfrustrated 1D ferromagnet the quantities y_0 and $x₀$ were calculated by the RGM previously in Ref. [35.](#page-5-13) It was found that $y_0 = 1/24 \approx 0.041$ 667 and $x_0 = 1/4$, which agrees with the Bethe-ansatz results of Refs. [32](#page-5-10) and [33](#page-5-11) [note that χ defined in Ref. [32](#page-5-10) is larger by a factor of 4 than χ given by Eq. ([6](#page-1-3))]. Our RGM data confirm these findings (see also Ref. [29](#page-5-6)). The fitting of the ED data at $J_2=0$ yields $y_0=0.0418$, which is still in reasonable agreement with the Bethe-ansatz result. Including frustration $J_2 > 0$, we find an almost linear decrease in y_0 as well in x_0 with J_2 down to zero at J_2 $=0.25$ (cf. the insets of Figs. [3](#page-2-1) and [4](#page-2-2)). A linear fit of the RGM data points yields the relations

$$
y_0 = (1 - 4J_2)/24
$$
, $x_0 = (1 - 4J_2)/4$, (9)

which describe the RGM data in high precision. The vanishing of y_0 and of x_0 at $J_2=0.25$ reflects the zero-temperature phase transition at this point and indicates the change in the low-temperature behavior of the physical quantities at the critical point. Using the same J_2 data points as in the insets of Figs. [3](#page-2-1) and [4,](#page-2-2) a polynomial fit according to $y_1 = a_y + b_y J_2$ $+c_y J_2^2$ ($x_1 = a_x + b_x J_2 + c_x J_2^2$), indeed, yields, at $J_2 = 0.25$, finite values $y_1 = 0.047$ for RGM and $y_1 = 0.043$ for ED and x_1 =0.147 (RGM only). Hence, our data suggest a change in the low-temperature behavior of χ (ξ) from $\chi \propto T^{-2}$ ($\xi \propto T^{-1}$) at J_2 <0.25 to $\chi \propto T^{-3/2}$ ($\xi \propto T^{-1/2}$) at the zero-temperature critical point $J_2=0.25$. Let us mention here again that our results for the critical indices γ and ν at $J_2=0.25$ are based on the validity of Eqs. (7) (7) (7) and (8) (8) (8) and the extrapolation of our data from J_2 <0.25 to J_2 =0.25. A slightly different index γ also being below the "ferromagnetic" value $\gamma_F=2$ discussed above, namely, $\gamma=4/3$, is obtained³⁶ if one employs the modified spin-wave theory by Takahashi³⁷ at $J_2=0.25$.

The next quantity we consider is the specific heat C_V . In Fig. [5](#page-3-0) our RGM and ED results for C_V are compared with the TMRG data.⁶ Obviously, the ED results are in a very good agreement with the TMRG data. The deviation at low temperature, appearing for $J_2=0.125$ as an increased value of C_V for $0.02 \le T \le 0.1$, is ascribed to finite-size effects (see also the discussion below). For larger values of J_2 the specific heat shows another interesting low-temperature feature (see Fig. [6](#page-3-1)). In the region $0.125 < J_2 < 0.25$ with a ferromagnetic GS, the specific heat exhibits two maxima. Besides the broad maximum at $T \approx 0.6$, an additional frustration-induced lowtemperature maximum appears, which is found by the ED and RGM methods for $J_2 \ge 0.125$ and ≥ 0.16 , respectively. As shown by a detailed analysis (see also below), the behavior of C_V at very low temperature is appreciably affected by finite-size effects. In particular, in the ED data, the lowtemperature maximum is superimposed by a quite sharp extra finite-size peak, as can be clearly seen in Fig. 6 for J_2

FIG. 5. Specific heat obtained by RGM (solid lines), ED (open symbols; $N=20$), and TMRG (filled symbols; Ref. [6](#page-4-6)) for $J_2=0$ and 0.125, from top to bottom.

 $=0.24$. In view of this, the height and the position of the true additional low-temperature maximum cannot be extracted unambiguously from the ED data; however, its existence is not questioned by this ambiguity. On the other hand, the RGM (see inset of Fig. [6](#page-3-1)) yields a shift of the maximum to lower temperature with increasing frustration.

To illustrate the finite-size effects at low temperature, in Fig. [7](#page-4-7) the ED data for the specific heat for $J_2=0.2$ and 0.24 and different chain lengths are plotted. As already discussed above, the first four digits of the $C_V(T)$ data for $N=20$ and 22 coincide down to $T_{\text{ED}} \approx 0.04$ $(T_{\text{ED}} \approx 0.03)$ for $J_2=0.2$ $(J_2$ $=$ 0.24). (Note again that for J_2 = 0 the corresponding value $T_{ED} \approx 0.22$ is much larger.) Below T_{ED} finite-size effects be-come relevant (cf. Fig. [7](#page-4-7)). However, from Fig. 7 it is also evident that the extra low-temperature finite-size peak behaves monotonously with *N*. Hence, a finite-size extrapolation of the height c_{peak} and the position T_{peak} of the extra peak is reasonable. We have tested several extrapolation schemes and found that a three-parameter fit based on the formula $a(N) = a_0 + a_1 / N^2 + a_2 / N^4$ is well appropriate to extrapolate both c_{peak} and T_{peak} to $N \rightarrow \infty$. The results of such an extrapolation are shown as filled squares in Fig. [7.](#page-4-7) The ex-

FIG. 6. Specific heat calculated by RGM (solid) and ED (dashed curve; $N=20$) for $J_2=0.15$, 0.18, 0.2, and 0.24, from top to bottom. The inset exhibits the RGM results in an enlarged scale. Note that for J_2 =0.24 only ED data are shown.

FIG. 7. Finite-size dependence of the low-temperature specific heat for $J_2=0.2$ (upper panel) and 0.24 (lower panel). The lines represent ED data for *N*=12, 14, 16, 18, 20, and 22, from top to bottom.

trapolated data points indicate that the extra peak indeed is a finite-size effect and it vanishes for $N \rightarrow \infty$. However, it is also obvious that the characteristic steep decay of the specific heat down to $T=0$ starts at lower temperature T^* when approaching the zero-temperature critical point (we find T^* \approx 0.05, 0.0007, and 0.002 for *J*₂=0, 0.2, and 0.24, respectively). This behavior is in accordance with the shift of the

low-temperature RGM maximum in C_V mentioned above and is relevant for low-temperature experiments on quasi-1D ferromagnets.

Finally, let us mention that in an early paper by Tonegawa and Harad[a3](#page-4-2) and also recently by Heidrich-Meisner *et al.*[5](#page-4-8) and Lu *et al.*^{[6](#page-4-6)} a double-maximum structure in C_V was already found for $0.25 \le J_2 \le 0.4$, however, with a lowtemperature maximum that becomes much more pronounced approaching the critical point. In this case, the lowtemperature peak in $C_V(T)$ was ascribed to excitations from a singlet GS to a low-lying ferromagnetic multiplet.⁵ In our case $J_2 < 0.25$. Above the fully polarized ferromagnetic GS multiplet many low-lying multiplets exist, and the appearance of the additional low-temperature maximum is attributed to a more subtle interplay between all of these low-lying states.

V. SUMMARY

In this paper, we explored the influence of the NNN coupling $J_2 \leq 0.25|J_1|$ on the thermodynamic properties of the 1D spin-1/2 Heisenberg ferromagnet using ED and RGM methods. The results of both methods are in qualitatively good agreement. We found that the critical behavior of the susceptibility χ and the correlation length ξ is not changed by the frustrating J_2 . However, $\lim_{T\to 0} \chi T^2$ and $\lim_{T\to 0} \xi T$ go to zero for $J_2 \rightarrow 0.25$ *J*₁ indicating a change in the lowtemperature behavior of χ (ξ) from $\chi \propto T^{-2}$ ($\xi \propto T^{-1}$) at J_2 $\langle 0.25 | J_1 |$ to $\chi \propto T^{-3/2}$ ($\xi \propto T^{-1/2}$) at the critical point J_2 $=0.25|J_1|$. Another interesting feature is the appearance of a double-maximum structure in the specific heat C_V , where the additional frustration-induced low-temperature maximum was found by ED (RGM) to occur for $J_2/|J_1| \ge 0.125$ (0.16).

ACKNOWLEDGMENTS

This work was supported by the DFG (Projects No. RI615/16-1 and No. DR269/3-1). One of us (S.-L.D.) is indebted to V. Ya. Krivnov for useful discussions. Further discussions with S. Sachdev and A. Zvyagin are kindly acknowledged.

- ¹*Quantum Magnetism*, Lecture Notes in Physics Vol. 645, edited by U. Schollwöck, J. Richter, D. J. J. Farnell, and R. F. Bishop (Springer-Verlag, Berlin, 2004).
- 2H.-J. Mikeska and A. K. Kolezhuk, in *Quantum Magnetism*, Lecture Notes in Physics Vol. 645, edited by U. Schollwöck, J. Richter, D. J. J. Farnell, and R. F. Bishop (Springer, Berlin, 2004), p. 1.
- ³T. Tonegawa and I. Harada, J. Phys. Soc. Jpn. 58, 2902 (1989).
- ⁴ A. V. Chubukov, Phys. Rev. B **44**, 4693 (1991).
- ⁵F. Heidrich-Meisner, A. Honecker, and T. Vekua, Phys. Rev. B 74, 020403(R) (2006).
- 6H. T. Lu, Y. J. Wang, Shaojin Qin, and T. Xiang, Phys. Rev. B 74, 134425 (2006).
- 7D. V. Dmitriev and V. Ya. Krivnov, Phys. Rev. B **73**, 024402 (2006); D. V. Dmitriev, V. Ya. Krivnov, and J. Richter, *ibid.* 75,

014424 (2007).

- 8R. O. Kuzian and S.-L. Drechsler, Phys. Rev. B **75**, 024401 $(2007).$
- 9L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B **76**, 060407(R) (2007).
- 10D. V. Dmitriev and V. Ya. Krivnov, Phys. Rev. B **77**, 024401 $(2008).$
- ¹¹R. Zinke, S.-L. Drechsler, and J. Richter, arXiv:0807.3431v1 (unpublished).
- 12B. J. Gibson, R. K. Kremer, A. V. Prokofiev, W. Assmus, and G. J. McIntyre, Physica B 350, E253 (2004).
- 13T. Masuda, A. Zheludev, A. Bush, M. Markina, and A. Vasiliev, Phys. Rev. Lett. 92, 177201 (2004).
- 14A. A. Gippius, E. N. Morozova, A. S. Moskvin, A. V. Zalessky, A. A. Bush, M. Baenitz, H. Rosner, and S.-L. Drechsler, Phys.
- 15M. Enderle, C. Mukherjee, B. Fak, R. K. Kremer, J.-M. Broto, H. Rosner, S.-L. Drechsler, J. Richter, J. Málek, A. Prokofiev, W. Assmus, S. Pujol, J.-L. Raggazoni, H. Rakato, M. Rheinstädter, and H. M. Ronnow, Europhys. Lett. **70**, 237 (2005).
- 16T. Masuda, A. Zheludev, A. Bush, M. Markina, and A. Vasiliev, Phys. Rev. Lett. 92, 177201 (2004); S.-L. Drechsler, J. Málek, J. Richter, A. S. Moskvin, A. A. Gippius, and H. Rosner, *ibid.* **94**, 039705 (2005).
- 17S.-L. Drechsler, J. Richter, A. A. Gippius, A. Vasiliev, A. S. Moskvin, J. Málek, Y. Prots, W. Schnelle, and H. Rosner, Europhys. Lett. **73**, 83 (2006).
- 18S.-L. Drechsler, J. Richter, R. Kuzian, J. Málek, N. Tristan, B. Büchner, A. S. Moskvin, A. A. Gippius, A. Vasiliev, O. Volkova, A. Prokofiev, H. Rakato, J.-M. Broto, W. Schnelle, M. Schmitt, A. Ormeci, C. Loison, and H. Rosner, J. Magn. Magn. Mater. **316**, 306 (2007).
- 19S. Park, Y. J. Choi, C. L. Zhang, and S.-W. Cheong, Phys. Rev. Lett. **98**, 057601 (2007).
- 20S.-L. Drechsler, O. Volkova, A. N. Vasiliev, N. Tristan, J. Richter, M. Schmitt, H. Rosner, J. Málek, R. Klingeler, A. A. Zvyagin, and B. Büchner, Phys. Rev. Lett. 98, 077202 (2007).
- ²¹ J. Málek, S.-L. Drechsler, U. Nitzsche, H. Rosner, and H. Eschrig, Phys. Rev. B **78**, 060508(R) (2008).
- ²² H. P. Bader and R. Schilling, Phys. Rev. B **19**, 3556 (1979).
- 23 C. P. Landee and R. D. Willett, Phys. Rev. Lett. **43**, 463 (1979); C. Dupas, J. P. Renard, J. Seiden, and A. Cheikh-Rouhou, Phys. Rev. B 25, 3261 (1982).
- 24M. Takahashi, P. Turek, Y. Nakazawa, M. Tamura, K. Nozawa, D. Shiomi, M. Ishikawa, and M. Kinoshita, Phys. Rev. Lett. **67**,

746 (1991).

- ²⁵ J. Kondo and K. Yamaji, Prog. Theor. Phys. **47**, 807 (1972); H. Shimahara and S. Takada, J. Phys. Soc. Jpn. **60**, 2394 (1991); S. Winterfeldt and D. Ihle, Phys. Rev. B **56**, 5535 (1997).
- ²⁶ W. Yu and S. Feng, Eur. Phys. J. B **13**, 265 (2000); L. Siurakshina, D. Ihle, and R. Hayn, Phys. Rev. B **64**, 104406 (2001); B. H. Bernhard, B. Canals, and C. Lacroix, *ibid.* **66**, 104424 (2002); D. Schmalfuß, J. Richter, and D. Ihle, *ibid.* **70**, 184412 (2004); I. Juhász Junger, D. Ihle, and J. Richter, *ibid.* 72, 064454 (2005); D. Schmalfuß, J. Richter, and D. Ihle, *ibid.* **72**, 224405 (2005); D. Schmalfuß, R. Darradi, J. Richter, J. Schulenburg, and D. Ihle, Phys. Rev. Lett. **97**, 157201 (2006).
- ²⁷ I. Junger, D. Ihle, J. Richter, and A. Klümper, Phys. Rev. B **70**, 104419 (2004).
- 28T. N. Antsygina, M. I. Poltavskaya, I. I. Poltavsky, and K. A. Chishko, Phys. Rev. B 77, 024407 (2008).
- ²⁹ I. Juhász Junger, D. Ihle, L. Bogacz, and W. Janke, Phys. Rev. B **77**, 174411 (2008).
- ³⁰ J. Schulenburg, program package SPINPACK, http://www-e.unimagdeburg.de/jschulen/spin/
- 31W. Gasser, E. Heiner, and K. Elk, *Greensche Funktionen in* Festkörper- und Vielteilchenphysik (Wiley, Berlin, 2001).
- 32M. Yamada and M. Takahashi, J. Phys. Soc. Jpn. **55**, 2024 $(1986).$
- ³³M. Yamada, J. Phys. Soc. Jpn. **59**, 848 (1990).
- ³⁴ P. Kopietz, Phys. Rev. B **40**, 5194 (1989).
- 35F. Suzuki, N. Shibata, and C. Ishi, J. Phys. Soc. Jpn. **63**, 1539 $(1994).$
- ³⁶ V. Ya. Krivnov and D. V. Dmitriev (private communication).
- ³⁷ M. Takahashi, Phys. Rev. Lett. **58**, 168 (1987).