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Calculations of the broken symmetry phase-transition pressure at temperature �T� equal to 0 for para-
hydrogen are presented. The calculations avoid simulation methods and determine the quantum mechanical
states of a system of infinite rotors arranged in a regular lattice. In this way the quantum nature of the
molecular rotational degrees of freedom is fully accounted for. In order to show the effect of correlations on a
quantitative level, the calculations are performed both at the mean-field level and with correlations included.
From the comparison with experimental results, information on the molecular length in the crystal at high
pressure is obtained.
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I. INTRODUCTION

Solid para-hydrogen, when increasing pressure, under-
goes a transition from an orientationally symmetric1,2 to a
broken symmetry phase �BSP�.2,3 The transition has been
studied experimentally and has been found that, at low tem-
perature �8 K�, it takes place at a pressure of 110 GPa.4

In the following a simple interpretation of the transition is
given. When the molecules are not too close �low pressure�,
so that they interact weakly and can thus be considered as
almost free rotors, the fundamental state is the one in which
all the molecules are in the isotropic, J=0, state �symmetric
state�. That is so because any rotational excitation would
require kinetic energy that cannot be compensated by any
other form of energy. However, when the molecules interact
strongly �high pressure�, the transition to excited rotational
states can be compensated by the decrease in the potential
energy. Actually, molecules in the excited rotational states,
contrary to those in the spherically symmetric ground state,
can orient and find the most favorable angular configuration.
It is thus clear that the transition pressure gives information
on both the rotational excitation energies and on the
orientation-dependent intermolecular potential.

The problem of the BSP transition has been treated theo-
retically in many papers. At first the problem was faced in
the mean-field approximation on a rigid-lattice model.5,6 The
molecules were treated as rigid rotors with their centers of
mass sitting on the lattice sites. Moreover, it was assumed
that the system orders in the fcc-Pa3 structure, and a gas
phase intermolecular potential was used. The numerical re-
sults of these theories underestimate the transition pressure.

Correlation effects have been taken into account in vari-
ous ways: by means of Jastrow-type variational wave
function7 and in a calculation based on the Green’s function
formalism.8 The results of these works show that correlation
effects tend to increase the transition pressure but are not
sufficient to obtain the agreement with the experimental re-
sults.

A time-dependent Hartree formalism9 has also been used
to determine the transition pressure from the appearance of a
roton soft mode. In this calculation it has been shown that
translation-rotation coupling has a minute effect on the tran-
sition pressure.

The BSP has been studied also by means of methods in-
volving simulation techniques. Quantum Monte Carlo calcu-
lations were performed to solve the quantum many-body
problem both for the electrons and protons.10 The calculation
was performed for various structures, and a transition pres-
sure of about 1 Mbar was found. Also path-integral Monte
Carlo �PIMC� methods have been used together with an ef-
fective intermolecular potential derived from local-density
approximation �LDA� calculations.11,12 In Ref. 11 calcula-
tions of the transition pressures at low temperature are made
for two different structures. The transition pressure depends
on the lattice assumed �either fcc or hcp� and is even found
to be too large if the hcp lattice is taken.

In this paper a method similar to the one described in Ref.
8 will be used. In such a method the lattice and orientational
structures are assumed, and the �rotational� energies of the
symmetric and BSP states are compared. In this calculation
the interaction of translations and rotations is neglected, that
is, the centers of mass of the molecules are assumed to be
fixed at the lattice sites. Moreover, it is assumed that the
anisotropic part of the intermolecular potential can be repre-
sented by a “reduced” form of the gas phase intermolecular
potential, which is adapted to reproduce LDA results for the
energy of the system.11

At first the mean-field method is used to calculate the
molecular rotational energies that are later considered as
zeroth-order energies. Then perturbation theory is applied to
take account of the energy that is not included in the mean-
field method. The energy of the symmetric orientationally
disordered state is calculated up to third order and the one of
the BSP state is up to second order.8 The results of the
present method are in close agreement with PIMC
calculations.11

The present method, though limited to 0 K, is computa-
tionally much simpler than the PIMC method and allows
many different computations, where some of the parameters
characterizing either the intermolecular potential or the mo-
lecular properties can be varied. Moreover, the present
method is not affected by the typical approximations con-
tained in simulation techniques: limited systems and finite
length of the Monte Carlo runs.10 It actually treats an infinite
system of rotors and the quanticity of the orientationally de-
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grees of freedom if fully accounted for. It is affected by other
approximations and limitations, mostly the perturbative
method, but it is, however, useful because it can always be
used also as a complementary method to test the results of
more sophisticated techniques.

As already anticipated, the method needs a particular
structure to be chosen. In the first studies of the BSP transi-
tion, it was suggested5,6 that para-hydrogen assumed the
fcc-Pa3 structure, which is the same as that of ortho-
hydrogen at low pressure.2 Later it has been proven that the
centers of mass of the molecules form a hcp structure also in
the broken symmetry phase.13 There is no uniformity of
views with regard to the orientations though. Among the
most recent proposed orientational structures there are the
Pca21,14–16 the P21 /c,17,18 the Cmc21 �Ref. 19�, and the in-
commensurate structures with Pa3 local order12 demon-
strated for the BSP in deuterium.20

In this paper the hexagonal compact structure for the cen-
ters of mass of the molecules is assumed with molecules
oriented according to Pca21. Indeed, calculations performed
with the present method �not reported here� show that the
Pca21 orientational energy is lower than the energy of both
the Cmc21 and P21 /c structures at the transition pressure.
Other structures could have a lower energy, though, particu-
larly the above-mentioned incommensurate one. From this
point of view the present choice is only partly justified.

Moreover, the chosen structure is not an ideal one. For
instance, the c /a ratio is smaller than the ideal value of �8 /3
�Ref. 21�, and the b /a ratio is estimated less than the ideal
value �3 by ab initio molecular-dynamics simulation.15 In
principle crystal-field effects could affect the estimate of the
transition pressure.22,23 Such an effect depends on the devia-
tions of c /a and b /a from their ideal values. However, the
deviations estimated in Refs. 15 and 21 are not significant for
hydrogen at low temperatures and will thus be neglected
here.

The strict dependence of the transition pressure on both
intermolecular potential and rotational energies makes it pos-
sible to obtain information on those quantities. In this paper
an intermolecular potential is assumed, and consequently in-
formation on the rotational energies that allows a rough es-
timate of the molecular length will be obtained. The chosen
potential11 is built in such a way as to be compatible with the
potential energy derived by LDA calculations. It is a pairwise
potential containing the same spherical components as the
one derived in Ref. 24 but with a reduction factor that de-
pends on density.11

It is maybe worth pointing out the fact that also the prob-
lem of the triplet structure for the S0�0� transition is sensitive
to the intermolecular potential and to the rotational excitation
energy.25–28 In that case it was found that the width of the
triplet calculated by a gas phase potential was too large if
compared with the experimental width at high pressures and
that the rotational constant has to be considered as pressure
dependent in order to have agreement with the measured
triplet center. Particularly, at large pressures, it is found that
the molecular length is to be increased with respect to the
length of the molecule in the gas phase. Such a result has
also brought speculations about a possible appearance of
electron exchange between different molecules.25

The method outlined before will be applied in Secs. II and
III to calculate the transition pressure as a function of the
molecular rotational constant �B�. The comparison of the cal-
culations with the measured transition pressure is then used
to estimate B and consequently the molecular length.

In Sec. II, results of the mean-field theory will be pre-
sented. It will be shown that the “mean-field” transition pres-
sure is always lower than the experimental one. In Sec. III
the method that takes into account the correlation effects will
be presented. Finally, Sec. IV contains the numerical results
for the transition pressure as a function of the rotational con-
stant.

II. MEAN-FIELD CALCULATIONS

In the mean-field approximation the ground state of a sys-
tem of rotors is a product of single rotor states, and the state
of each rotor results from the averaged interaction with the
other rotors.2,5 As already stated in Sec. I, it is assumed here
that the state resulting from symmetry breaking is the one in
which the molecules are oriented in a particular structure
�Pca21�. Accordingly, for each lattice site i a preferred ori-

entation �̂i is taken. The orientation of the molecule sitting
in the site i will be denoted by �̂i. Moreover, YJm��̂� indi-
cates spherical harmonics with quantization axis along the

lattice c axis. YJm
�̂ ��� indicates spherical harmonics with

quantization axis along the molecular symmetry axis �̂. The
following relation holds:

YJ0
�̂i��̂i� =� 4�

2l + 1�
m

YJm
� ��̂i�YJm��̂i� . �1�

I indicate by ���̂i� the mean-field state for the single rotor i
and assume that it can be expanded as a sum of spherical
harmonics of order 0 with respect to the molecular symmetry
axis,

���̂i� =
1

�1 + �
J

��J�2
�Y00 + �

J

�JYJ0
�̂i��̂i�� �2�

with J as even integers starting from 2.
The �J coefficients can be obtained by minimizing with

respect to them the total Hamiltonian of rotors averaged over
the � orbitals

����̂1� . . . ���̂N����
i

Ti + V��N������̂� . . . ���̂�	 , �3�

where Ti is the rotational kinetic energy of molecule i, V is
the orientation-dependent potential energy, and �N indicates
a configuration of the collection of N rotors. In this calcula-
tion the potential energy is assumed to have the form of a
sum of pairwise contributions11,24

V =
1

2�
i�j

V�2���̂i�̂ j� . �4�

Alternatively, the mean-field ground state can be obtained
by solving the self-consistent differential equation
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�Ti + �
j��i�

�V�2���̂i�̂ j�	 j − ������̂i� = 0, �5�

where �V�2�	 j means averaging over orientations of molecule
j.

V�2� contains both crystal-field and rotonic components.
Because crystal-field effects can be safely neglected, only
rotonic components are retained,

V�2� = �4��3/2�
L

v22L�Rij��
m,n

C�22L;m,n,m + n�

Y2m��̂i�Y2n��̂ j�YLm+n
� �R̂ij� , �6�

where C are Clebsch-Gordan coefficients and R� ij is the vec-
tor joining site i with site j. The function v22L�Rij� depends
on Rij, which is the distance between i and j. In the case of a
simple quadrupole-quadrupole interaction, L=4 and the
function v�2� reads

v224
�2� �R� =

�70

60

Q2

R5 �7�

with Q as the molecular quadrupole moment.29

In order to use either Eq. �5� or Eq. �3� it is useful to
express the average energy per molecule as a function of the
variational parameters �J. It is useful to know the following
equations:

����̂i��Ti����̂i�	 = BF��J� ,

����̂i��Ylm��̂i�����̂i�	 = G��J�Ylm��̂i� , �8�

with

F =

�
J

��J�2J�J + 1�

�
J

��J�2
,

G =

�
JJ�

�J
��J�

��2J + 1�C�J2J�:0,0,0�2

�
J

��J�2
, �9�

where the sums are extended to all even J and �0=1. More-
over, B is the rotational constant of the molecule, B
=�2 / �2I�, and I is the molecular moment of inertia. The
function G is the reduction factor due to zero-point motion
for the orientation of the molecule.2

It is now easy to show that

����̂1� . . . ���̂N��
�
i

Ti + V�����̂1� . . . ���̂N�	/N

= BF��J� + G��J�2Vcl, �10�

where

Vcl = V��̂1 . . . �̂N�/N �11�

is defined as the potential energy per molecule with the mol-

ecules perfectly oriented along the axes �̂i. In the following

such an energy will be named classical potential energy be-
cause it does not contain the zero-point orientational motion.

Equation �10� shows the separation of kinetic �BF� and
potential energy �G2Vcl� of the system of rotors. They both
depend on the parameters �J. The kinetic energy has a mini-
mum for �0=1 and �J=0 for all J’s larger or equal to 2. The
potential-energy contribution, on the other hand, diminishes
when increasing �J’s �if Vcl is negative, as is the case here�.

Equation �10� can be rewritten by defining � as the total
energy and vcl as the classical potential energy Vcl in B units,

�

B
= F + G2vcl. �12�

� is to be minimized with respect to �J’s. A minimum �even-
tually local� is obtained with all �J’s equal to 0 for all J’s
different from 0 that corresponds to the orientationally dis-
ordered state. It will be named as the symmetric state in the
following. When increasing the density, an energetically
lower minimum with �J different from 0 starts to appear
�BSP state�. That happens when vcl assumes a particular
value. vcl at the transition is derived by using an increasing
number of �J’s. In the table, vcl at the transition is reported
together with the �J values used in the derivation.

Table I shows that the transition takes place when the
classical potential energy per molecule is, in absolute value,
larger than the first-excited rotational state �six in B units�.
Table I shows also that there is an almost complete conver-
gence of the transition value of vcl with the maximum value
of J=6.

In order to go from vcl to density, hypotheses are to be
done both for the intermolecular potential and for the rota-
tional constant B. Here two cases will be considered: first the
rotonic part of the gas phase potential �Vgas� of Ref. 24 will
be considered. It contains the three components with L
=0,2 ,4. It is however interesting to notice that using a
simple quadrupole-quadrupole interaction as in Eq. �7� with
Q=0.967 a.u.,29 the previous results for the transition pres-
sure change by at most 1.5% at the largest B value.

In the second case the pairwise potential �VLDA� derived
from LDA results11 is considered, which is related to the gas
phase potential Vgas by the density-dependent factor 	,11,12

VLDA = 	Vgas,

	 = 0.61 + 0.31�Rnn/Rnn
0 − 0.5� , �13�

with Rnn
0 =3.789 Å.

In Fig. 1 the transition pressures are reported as a function
of the rotational constant B. Mean-field pressures are re-
ported with full and dashed lines: the former for the gas

TABLE I. Classical potential energy at the BSP transition in B
units and �J coefficients.

vcl �2 �4 �6

−6.806 0.320

−6.652 0.398 0.037

−6.651 0.398 0.037 0.002
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phase potential and the latter for the LDA potential. The
comparison of the two curves shows the effect of the reduc-
tion in the intermolecular potential on the mean-field transi-
tion pressure. It is probably worth pointing out that the
present calculations estimate the density rather than the pres-
sure. In order to go from density to pressure, the equation of
state of Ref. 21 is used here after a subtraction of thermal
pressure is performed.30 From the measured transition pres-
sure of 110 GPa,4 it is seen that it takes unreasonable values
for the rotational constant to get agreement with the mea-
sured pressure.

In Sec. III correlation effects in the case of LDA potential
will be taken into account: their importance will be stressed,
and finally a value for the rotational constant will be esti-
mated.

III. CORRELATION EFFECTS

By using Eq. �8�, the self-consistent Eq. �5� can be written
as

�Ti + G��J� �
j��i�

V�2��R� ij�̂ j�̂i�����̂i;�J� = �����̂i;�J� .

�14�

Due to the symmetry of the Pca21 structure, the effective
potential felt by molecule i contains only spherical harmon-

ics of zero order with respect to the �̂i direction. Keeping in
mind the result and the definition of Vcl, the previous equa-
tion can be written as

�Ti + 2G��J�Vcl�4�

5
Y20

�i��̂i�����̂i;�J� = �����̂i;�J� .

�15�

The mean-field ground-state eigenfunction 
0��N� of the
system of N rotors is given by the product of the single-
molecule orbitals


0��N� = �i���̂i� �16�

and the mean-field total energy �E0� reads

E0 = N� , �17�

where the energy per molecule � is given by

� = �� − G��J�2Vcl. �18�

The second term in the definition of � avoids double count-
ing of the pair interactions.

The same solution can be obtained as the eigenfunction of
the ground state of the Hamiltonian H0 is defined as

H0 = �
i
�Ti + G��J�2Vcl�4�

5
Y20

�i��̂i� − G��J�2Vcl� ,

�19�

whereas the real Hamiltonian of the same system reads

H = �
i

Ti + V��N� . �20�

Correlation effects will be estimated by treating perturba-
tively the difference between the real Hamiltonian H and the
mean-field one, H0,

H − H0 = V��N� − G��J�2Vcl�4�

5 �
i

Y20
�i��̂i� + NG��J�2Vcl.

�21�

It is clear that, for the disordered state, G��J�=0 and the
perturbation is just the potential energy of the rotors.

At first order the correction E1 to the energy is null

E1 = �
0��H − H0��
0	 = 0 �22�

because 
0 is a solution of the mean-field self-consistent
equations.

In order to find the second �and higher�-order perturbative
corrections, zeroth-order excited states of Eq. �15� are to be
found. That will be done numerically by retaining only the
rotational states up to J=6. The procedure is similar to that
described in Ref. 5. The restriction to rotational quantum
numbers that are lower or equal to six affects the excited
rotational energy needed for the calculation for less than 1%.
For the single-molecule orbitals, the projection of the angular

momentum along the ordering axis �̂i is a constant of mo-
tion so that each orbital can be characterized by a quantum
number �. The other will be defined as k. Thus, an orbital
can be expanded according to

�k� = �
J

6

�J
k�YJ�, �23�

where �J
k�=0 if J ���. k is chosen to be zero for the ground

state. The relative energies will be denoted by �k�.
Second �and higher�-order perturbative corrections can be

derived by the application of standard formulas if zeroth-
order eigenvalues and eigenfunctions are known, that is,
when �J

k� and �k� are known. In principle both single and
double excitations are possible, that is, transitions from the
state with all molecules in the k=0 to states with one or two
molecules in states with k�0. The contribution of the single
excitation transitions is related to the crystal-field compo-
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FIG. 1. Transition pressure as a function of the rotational con-
stant B. Mean field with gas phase potential �full line�, mean field
with LDA potential �dashes�, and mean field with correlations in-
cluded and LDA potential �small dashes�.
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nents of the potential, and thus, it can be safely neglected2

for the symmetry of the hcp structure. As already anticipated,
the corrections are now calculated for the intermolecular po-
tential determined from LDA results.11

In Fig. 2 the energies of the mean-field ground state and
of the first-excited rotational states are reported, with �
=0, �1, �2. The energies are reported as a function of pres-
sure. It is seen that, in the range of pressures that is of inter-
est here, the energy differences between the excited and the
ground states increase with increasing pressure.

In the mean-field case, the symmetric state is described by
orbitals independent of the molecular orientation ��0=1 and
all other �J’s equal to 0�. Moreover, the energy is rigorously
equal to zero. BSP states appear only after a critical density
is reached, and it is only after the energy of the BSP state
vanishes that we can speak of BSP transition in the mean-
field approximation. One of the main effects of correlations
is that the energy of the symmetric state decreases. Also the
energy of the BSP state decreases but is less than the energy
of the symmetric state. That is so because in the mean-field
symmetric state only the kinetic rotational energy is taken
care of, whereas in the mean-field BSP state some of the
potential energy is also taken into account. For such a reason
correlation effects increase the transition pressure, which is
what is to be expected after comparing the measured transi-
tion pressure with that calculated in the mean-field approxi-
mation. One more consequence is the fact that second-order
perturbative corrections to the energy of the symmetric state
are usually larger than the analogous correction to the BSP
state energy. For that reason, in the case of the symmetric
state energy, also the third-order perturbative correction is
calculated.

The energies for the symmetric and BSP states are re-
ported in Figs. 3 and 4 for the particular case of B
=60 cm−1. In Fig. 3 separate contributions are reported for
different perturbative orders. From that figure information
can be obtained on the uncertainty of the present calcula-
tions. The ratio of third- to second-order corrections to the
symmetric state can be taken as the parameter measuring the
rate of convergence of the perturbative expansion. At 110

GPa that quantity amounts to about 10%. Multiplying by
10% the highest perturbative orders for the two cases of sym-
metric and BSP states, it is found that the uncertainty on the
total energies is about 1% for the symmetric state and 4% for
the BSP state.

In Fig. 4 the total energies for the symmetric and BSP
states are reported for a rotational constant of B=60 cm−1. It
is seen that the two curves cross at a pressure of about 114
GPa. On the other hand, from the dependence of the energy
on the pressure, it is easily found that a variation of 5% on
the energy corresponds to a variation of about 2.5 GPa on the
pressure. That is the uncertainty estimated here for the tran-
sition pressure calculated by means of the present method.

IV. RESULTS

The main result of this work is reported in Fig. 1. That
figure shows both the effect of correlations and the depen-
dence of the transition pressure on the rotational constant.
Correlation effects are estimated by comparing curves with
dashes and points. Dashes are reserved for the transition
pressure derived by the mean-field method and points are for
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pressure estimated by also taking correlation effects into ac-
count. It is seen that correlation effects increase the transition
pressure by almost a factor of 2 that is, thus, the order of
magnitude of the effects due to correlations.

Next it is important to check the present method by com-
paring its results with those obtained in Ref. 11 with a quite
different method. In that work PIMC calculations were per-
formed both for deuterium and hydrogen at low temperature.
Transition pressures of 49 and 120 GPa were determined for
the hcp structure in the two cases. Those results have been
obtained by assuming, for the rotational constants, the gas
phase ones and using the equation of state reported in Ref.
30, particularly the one in the Vinet form. By performing the
calculations for the transition pressures in the same condi-
tions but with the present method, it is now found to be 47
and 125 GPa, which is in agreement with the previous cal-
culations if the uncertainty estimated at the end of Sec. III is
taken into account. This result is important because it dem-
onstrates the consistency of two methods based on quite dif-
ferent approximations.

From Fig. 1 one can see the dependence of the transition
pressure on the rotational constant. It is natural to use that
dependence in order to determine the B value at the transi-
tion. As already mentioned, the measured transition pressure
for hydrogen at low temperature is 110 GPa. A close inspec-
tion of Fig. 1 shows that the measured transition pressure is
reproduced for a value of the rotational constant of
58.2 cm−1. That value is affected by an uncertainty, as
pointed out in Sec. III for the transition pressure, which for

the rotational constant amounts to about 1 cm−1. Conse-
quently the rotational constant at the transition pressure is
determined in a range varying from the gas phase value
�59.3 cm−1� �Ref. 31� down to about 57 cm−1, that is, it can
decrease by at most 4% with respect to the gas phase value.
Such a decrease in the rotational constant means an increase
in the intramolecular length by at most 2%.

Indeed, other works point out that when pressure is large
enough, the intramolecular distance increases.25–28 In those
papers the decrease in B was determined by the analysis of
the Raman S0�0� triplet, that is, at pressures smaller than the
BSP transition pressure. Moreover, it was found that the de-
crease in B, and thus, the increase in the intramolecular
length, was larger than the one found here �about 5% at 80
GPa�.28 That is not completely satisfactory, though, at least
in view of the interpretation of the increase in the intramo-
lecular length as an effect of transfer of electronic charge
from the intramolecular to the intermolecular region.25

In the end, in this work, the BSP transition pressure of
para-hydrogen at T=0 has been calculated as a function of
the molecular rotational constant. From the comparison of
calculated and measured transition pressures, it is found that
the molecular rotational constant is smaller at the BSP tran-
sition pressure than in the gas phase, indicating an increase
in the molecular length under pressure. This is in qualitative
agreement with similar results obtained by the analysis of the
rotational Raman spectrum.
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