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We calculate the average single-particle density of states in graphene with disorder due to impurity poten-
tials. For unscreened short-ranged impurities, we use the non-self-consistent and self-consistent Born and
T-matrix approximations to obtain the self-energy. Among these, only the self-consistent T-matrix approxima-
tion gives a nonzero density of states at the Dirac point. The density of states at the Dirac point is nonanalytic
in the impurity potential. For screened short-ranged and charged long-range impurity potentials, the density of
states near the Dirac point typically increases in the presence of impurities, compared to that of the pure
system.
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I. INTRODUCTION

The recent experimental realization of a single layer of
carbon atoms arranged in a honey-comb lattice has prompted
much excitement and activity in both the experimental and
theoretical physics communities.1,2 Carriers in graphene
�both electrons and holes� have a linear bare kinetic-energy
dispersion spectra around the K and K� points �the “Dirac
points”� of the Brillouin zone. The ability of experimentalists
to tune the chemical potential to lie above or below the Dirac
point energy �by application of voltages to gates in close
proximity to the graphene sheets� allows the carriers to be
changed from electrons to holes in the same sample. This
sets graphene apart from other two-dimensional �2D� carrier
systems that have a parabolic dispersion relation, and typi-
cally have only one set of carriers, i.e., either electrons or
holes. Another unique electronic property, the absence of
back scattering, has led to the speculation that carrier mobili-
ties of 2D graphene monolayers �certainly at room tempera-
ture, but also at low temperature� could be made to be much
higher than any other field-effect-type device, suggesting
great potential both for graphene to be the successor to Si-
MOSFET �metal-oxide-semiconductor field effect transistor�
devices and for the discovery of phenomena that normally
accompanies any significant increase in carrier mobility.3–6 It
is therefore of considerable fundamental and technological
interest to understand the electronic properties of graphene.2

Graphene samples that are currently being fabricated are
far from pure, based on the relatively low electronic mobili-
ties compared to epitaxially grown modulation-doped two-
dimensional electron gases �2DEGs� such as GaAs-AlGaAs
quantum wells. It is therefore important to understand the
effects of disorder on the properties of graphene. Disorder
manifests itself in the finite lifetimes of electronic eigenstates
of the pure system. In the presence of scattering from an
impurity potential that is not diagonal in the these eigen-
states, the lifetime scattering rate of the eigenstate, �, is non-
zero and can be measured experimentally by fitting the line
shape of the low-field Shubnikov–de Haas �SdH�
oscillations.7,8 The effect of disorder scattering on the SdH
line shape is equivalent to increasing the sample temperature
and one can therefore measure this Dingle temperature �TD�

and relate it to the single-particle lifetime through ��
=2�kBTD. To avoid potential confusion, we mention that the
lifetime damping rate � discussed in this paper is not equal to
the transport scattering rate which governs the electrical con-
ductivity. The lifetime damping rate is the measure of the
rate at which particles scatters out of an eigenstate, whereas
the transport scattering rate is a measure of the rate of cur-
rent decay due to scattering out of an eigenstate. In normal
2DEGs, the transport scattering time can be much larger than
the impurity-induced lifetime � /2�, particularly in high mo-
bility modulation-doped 2D systems where the charged im-
purities are placed very far from the 2DEG.8,9 Recently, the
issue of transport scattering time versus impurity-scattering
lifetime in graphene has been discussed.10

The single-particle level broadening due to the impurity
potential changes many of the physical properties of the sys-
tem including the electronic density of states �DOS�.11,12 The
electronic density of states is an important property which
directly affects many experimentally measurable quantities
such as the electrical conductivity, thermoelectric effects,
and differential conductivity in tunneling experiments be-
tween graphene and scanning-tunneling microscope tips or
other electron gases. Changes in the density of states also
modify the electron screening,13 which is an important factor
in the determination of various properties of graphene. It is
therefore imperative to take into account the effects of dis-
order on the density of states, particularly since disorder is
quite strong in currently available graphene samples.

In the present work, we present calculations of the aver-
age density of states of disordered graphene. This problem
has been investigated using various models and techniques,
both analytical and numerical.14–21 We take into account
scattering effects from long-range and short-range impurity
potentials. We consider both unscreened and screened short-
ranged and screened charged impurities, using the Born ap-
proximation. In addition, for unscreened short-ranged �USR�
impurities, we go beyond the Born approximation and in-
clude self-consistent effects.

There is another class of disorder in graphene called “off-
diagonal” or “random gauge potential” disorder, in which the
hopping matrix elements of the electrons in the underlying
honeycomb lattice are random. In this paper we do not con-
sider in this type of disorder, which can result from height
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fluctuations �ripples� in the graphene sheet and lead to quali-
tatively different results from the ones presented in this
paper.14,19,22,23

The rest of the paper is organized as follows: In Sec. II,
we describe the approximation schemes that we use. Sections
III and IV deal with unscreened short range impurities and
screened short-range/charged impurities, respectively. In Sec.
V, we compare our results to those from other workers, and
we conclude in Sec. VI.

II. APPROXIMATIONS FOR THE SELF-ENERGY

The single-particle density of states for a translationally
invariant 2DEG is given by24

D�E� = −
g

�
�
�
� dk

�2��2 Im�G��k,E�� , �1�

where g is the degeneracy factor �for graphene g=4 due to
valley and spin degeneracies� � is the band index, G is the
retarded Green’s function, and the k integration is over a
single valley, which we assume to be a circle of radius �k�
=kc. G expressed in terms of the retarded self-energy
���k ,�� is

G��k,E� = �E − Ek,� − ���k,E� + i��−1, �2�

where Ek,� is the bare band energy of the state �k�� and � is
an infinitesimally small positive number. �In this paper,
Green’s functions and self-energies are all assumed to be
retarded.� Equations �1� and �2� show that if Ek,� and
���k ,E� are known, the density of states can be obtained in
principle from

D�E� =
g

�
�
�
� dk

�2��2

	
− Im����k,E�� + �

	E − Ek,� − Re����k,E��
2 + 	Im����k,E�� − �
2 .

�3�

For pure graphene systems, ��k ,E�=0 �excluding
electron-electron and electron-phonon interactions, which
are not considered here�, and hence Im�G��k ,E��=−�
�E
−Ek��. Close to the Dirac points �which we choose to the
zero of energy�, the dispersion for graphene is �we use �
=1 throughout this paper�

Ek,� = �vFk , �4�

where �= +1 and −1 for the conduction and valence bands,
respectively, k= �k� is the wave vector with respect to the
Dirac point, and vF is the Fermi velocity of graphene. Per-
forming the k integration in Eq. �1� for the pure graphene
case gives

D0�E� =
g

2�

�E�
vF

2 ���E� − Ec� , �5�

where Ec=vFkc is the band energy cutoff.
The average density of states for a disordered 2DEG can

be obtained by averaging Green’s function over impurity

configurations. The averaging procedure gives a nonzero �
which, in general, cannot be evaluated exactly. Various ap-
proximation schemes for � have therefore been developed,
four of which are described below.

Born approximation

In the Born approximation, the self-energy is given by the
Feynman diagram shown in Fig. 1�a� �Ref. 24� and the ex-
pression for the self-energy is

�B,��k,E� = ni� dk�

�2��2 �U�k − k���2

	 �
��

G0,���k�,E�F����k,k�� , �6�

where ni is the impurity density, U�q� is the Fourier trans-
form of the impurity potential, G0 is the bare Green’s func-
tion, and F����k ,k�� is square of the overlap function be-
tween the part of the wave functions of �k�� and �k���� that
are periodic with the lattice �here � ,�� are band indices�. For
graphene states near the Dirac point,

F����k,k�� =
1

2
�1 + ��� cos �kk�� , �7�

where �kk� is the angle between k and k�.
Self-consistent Born approximation. The Feynman dia-

gram for this self-energy is the same as Fig. 1�a�, except that
the bare Green’s function is replaced by the full one. Conse-
quently, the expression for �SB is the same as in Eq. �6�,
except with G0 replaced by G.

T-matrix approximation. The T-matrix approximation is
equivalent to the summation of Feynman diagrams shown
Fig. 1�b�. The expression for �T is the same as in Eq. �6�,
except with U replaced by T, the T matrix for an individual
impurity.

Self-consistent T-matrix approximation. The Feynman
diagram for this approximation is the same as in the T-matrix
approximation, except that the bare Green’s functions are
replaced by full ones. The expression for �ST is the same as
in Eq. �6�, except with U replaced by T, and G0 replaced by
G.

When the potentials for the impurities are not all identical
�for example, in the case where there is a distribution of

(a)

(b)

+ + + ...

X

X X X

FIG. 1. Feynman diagrams for the �a� Born and �b� T-matrix
approximations for the self-energy. The “x,” dotted line and line
with arrow signify the impurity, impurity potential, and Green’s
function, respectively. Green’s functions are either bare or
self-consistent.
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distances of charged impurities from the graphene sheet�,
one averages �U�k−k���2 or �T�k−k���2 over the impurities.

III. UNSCREENED SHORT-RANGED DISORDER

In the present context, short-ranged impurities are impu-
rities which result from localized structural defects in the
honeycomb lattice, which are roughly on the length scale of
the lattice constant. In this case, it is acceptable to approxi-
mate U�q�=U0, a real constant, for intravalley scattering pro-
cesses. In this paper, we ignore the intervalley processes.
�However, we note that if the matrix element joining inter-
valley states is constant, inclusion of intervalley scattering in
our calculations is not difficult.� This simplification allows us
to obtain some analytic expressions for the self-energies in
the approximation schemes mentioned above.

A. Self-energy for unscreened short-ranged disorder

For USR disorder, the four approximation schemes we
use give self-energies that are independent of � and k.

1. Born approximation

The self-energy for graphene with USR scatterers in the
Born approximation, using U�q�=U0, Eqs. �4� and �7� in Eq.
�6�, is

�B
�usr��E� = �̃BH0�E + i��; �8a�

�̃B =
niU0

2

2vF
2 ; �8b�

H0��� = 2vF
2�

��
� dk�

�2��2G0,���k�,��F����k,k��

= �
0

Ec dE�

2�
� E�

� − E�
+

E�

� + E�
� = −

�

2�
ln�1 −

Ec
2

�2 � .

�8c�

As a function of complex �, H0��� is real and positive �nega-
tive� along the real axis from Ec to 
 �−Ec to −
�. Further-
more, it has a branch cut in on the real axis of � in between
−Ec and Ec so that for −Ec�E�real��Ec,

H0�E � i�� = − �2��−1�E ln
Ec
2

E2 − 1
 � i��E�� . �9�

Figure 2 shows H0�E+ i��.
For real E and �E��Ec,

�B
�usr��E� � −

�̃B

2
�2E

�
ln
 E

Ec

 + i�E�� . �10�

The Born approximation damping rate for state �k�� is
�B�k�=−2 Im��B

�usr��Ek,���= �̃BvFk.

2. Self-consistent Born approximation

The self-energy �SB
�usr� for unscreened short-ranged scatter-

ers in the self-consistent Born approximation is given by the
self-consistent equation

�SB
�usr��E� = �̃BHSB�E + i��; �11a�

HSB��� = −
1

2�
�� − �SB

�usr�����ln�1 −
Ec

2

�� − �SB
�usr�����2�

= H0�� − �SB
�usr����� , �11b�

This shows that if ��SB
�usr��E��� �E�, then �SB

�usr��E���B
�usr��E�

�except possibly around E= �Ec, which is usually not ex-
perimentally relevant�.

3. T-matrix approximation

In general the impurity averaged T matrix for a potential
U�q� is

Tk0�0,k��E� = ni�
n=1


 ���
i=1

n

�
�i=�1

� dki

�2��2U�ki−1 − ki�

	G0,�i
�ki,E�F�i−1,�i

�ki−1,ki��
	U�ki − k�F�n,��kn,k�� . �12�

In this approximation, the self-energy is

�T,��k,E� = Tk�,k��E� . �13�

If U�q�=U0, a constant, the term in the square parentheses in
Eq. �12� is U0

n+1H0
n�E+ i�� / �2vF

2�n. The sum then gives

�T
�usr��E� =

�̃BH0�E + i��

1 −
U0

2vF
2 H0�E + i��

. �14�

4. Self-consistent T-matrix approximation

As in self-consistent Born approximation, the H0�E� in
Eq. �14� is replaced by the self-consistent HST�E�, giving

-2 -1 0 1 2
E/E

-1.0

-0.5

0.0

0.5

1.0

H
/E

c

c
0

Im[H ]0

Re[H ]0

FIG. 2. �Color online� Real and imaginary parts of H0�E+ i��
=�B

�usr��E� / �̃B �see Eq. �9��, where �B
�usr��E� is the self-energy for

USR impurities in the Born approximation.
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�ST
�usr��E� =

�̃BHST�E + i��

1 −
U0

2vF
2 HST�E + i��

; �15a�

HST��� = H0�� − �ST
�usr����� . �15b�

As in the self-consistent Born approximation, this shows that
if ��ST

�usr��E��� �E�, then �ST
�usr��E���T

�usr��E� �except possibly
around E= �Ec�.

B. Density of states for k-independent �

When the self-energy is k and � independent, the density
of states for graphene can be calculated analytically from Eq.
�3�. The result is

D�E� =
gsgv

2�2vF
2��

2
ln� �Ec

2 + �2 + �2�2 − 4Ec
2�2

��2 + �2�2 �
+ ��tan−1�Ec − �

�
� − tan−1�Ec + �

�
�

+ 2 tan−1��

�
��� , �16�

where ��E�=−Im���E�� and ��E�=E−Re���E��.

C. Density of states at the Dirac point

There has been considerable interest in the minimum dc
electrical conductivity of disordered graphene as the Fermi
energy moves through the Dirac point.25,26 There is still no
consensus on whether the minimum conductivity is a univer-
sal value or not. Since the electrical conductivity is directly
proportional to the density of states at the Fermi energy, it is
important to be able to determine the density of states at the
Dirac point of disordered graphene. Because the minimum
conductivity is nonzero as the Fermi energy passes through
the Dirac point, the density of states should be nonzero.

Equation �3� shows that if ��E�→0 when E→0, then the
density of states at the Dirac point D�0�=0. �Note that we
have not included the term that is first order in the impurity
potential in our self-energy. Since this first-order term merely
rigidly shifts the band by an amount niU0, ignoring this term
is equivalent to shifting the zero of the energy by −niU0, and
hence the Dirac point is still at E=0.� A nonzero density of
states at the Dirac point depends on a nonzero Im���E=0��.
Since H0�E→0�=0, it is clear from Eqs. �8a� and �14� that
the Born and T-matrix approximations give zero density of
states at the Dirac point.

For the self-consistent Born approximation, Eq. �11b� can
be rewritten as

�SB,�
�usr� �E� = E�1 +

2�

�̃B ln�1 −
Ec

2

�E−�SB,�
�usr� �E��2��−1

, �17�

which shows that �SB,�
�usr� �E→0�=0, and therefore the self-

consistent Born approximation also gives D�0�=0.
In the case of the self-consistent T-matrix approximation,

rewriting Eq. �15a� as

�ST
�usr��E� + niU0 =

niU0

1 − H0�E − �ST
�usr��E��U0/�2vF

2�
, �18�

setting E=0, using Eq. �8c� and taking the imaginary parts of
both sides of this equation gives

Im���0�� � ��0� = Im� niU0

1 − i
U0��0�

2vF
2 ln�1 +

Ec
2

��0�2�� .

�19�

In the weak scattering limit, when �̃B�1, the imaginary
term in the denominator of Eq. �19� is much less than 1 �we
check for self-consistency later�, and this gives

�w�0� � Im�i
ni�w�0�U0

2

vF
2 ln� Ec

�w�0���
= 2�̃B�w�0�ln� Ec

�w�0�� , �20�

which implies that

�w�0� = Ec exp�−
1

2�̃B
� . �21�

Note that the result is nonanalytic in U0. Inserting Eq. �21�
into the imaginary part of the denominator of Eq. �19�
�which we had assumed to be much smaller than 1 in mag-
nitude� gives the self-consistent criterion exp�−1 /2�̃B�
�niU0 /Ec for the validity of Eq. �21�. Substituting this into
Eq. �16� gives an average density of states at the Dirac point
for weak scattering of approximately

�w�0� =
gsgvEc

�2niU0
2exp�−

1

2�̃B
� . �22�

Similar results to Eq. �22� have been reported15,19,27 in stud-
ies of disordered systems of fermions with linear dispersions
using other methods.

We mention that our calculation of the graphene density
of states at the Dirac point should only be considered as
demonstrative since electron-electron interaction effects are
crucial28 at the Dirac point, and the undoped graphene sys-
tem is not a simple Fermi liquid at the Dirac point.

IV. SCREENED SHORT-RANGED AND CHARGED
IMPURITIES

Free carriers will move to screen a bare impurity potential
Vei�q�, resulting in a screened interaction U�q�=Vei�q� /��q�,
where ��q� is the static dielectric function. The ��q� results
in an q-dependent effective electron-impurity potential U,
even in the case of short-ranged �q-independent� bare impu-
rity potentials. This makes the calculations much more in-
volved than in the USR case. Therefore, in this paper, we
limit our investigation of q-dependent screened potentials to
the level of the Born approximation.

For the dielectric function ��q�, we use the random-phase
approximation �RPA� for dielectric function appropriate for
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graphene, given by ��q�=1−Vc�q��0�q� where Vc�q�
=2�e2 / ��q� is the two-dimensional Fourier transform of the
Coulomb potential �� is the dielectric constant of the sur-
rounding material�, and �0�q� is the static irreducible RPA
polarizability for graphene.29 We use Vei�q�=Vc�q� for
charged impurities, and Vei�q�=U0, a constant, for short-
range point defect scatterers.

We first look at the density of states at the Fermi surface;
i.e., at energy E=�kFvF. To obtain this, we calculate the
single-particle lifetime damping rate � in the Born approxi-
mation, which is given by

���k� = − 2 Im����k,Ek���

=
ni

2�

k

vF
�

0

�

d�
��Vei�q��2�

��q�2 �1 + cos �� , �23�

where q=2k sin�� /2�. Then, assuming that Im����k ,E�� is
relatively constant for k close to kF, we substitute 1

2���kF� for
−Im����k ,EF�� into Eq. �3�, which gives Eq. �16� with �
= 1

2���kF�.
We assume that the charged or neutral impurities are dis-

tributed completely at random on the surface of the insulat-
ing substrate on which the graphene layer lies, the areal den-
sity for the charged and neutral impurities is nic and ni
,
respectively, and the density of carriers in the graphene layer
is n=kF

2 /�, where kF is the Fermi wave vector relative to the
Dirac point. �This relationship between n and kF takes into
account the spin and valley degeneracy gs=2 and gv=2.� We
use the RPA screening function at T=0,29 to obtain the ef-
fective impurity potential. The key dimensionless parameter
that quantifies the screening strength is rs=e2 / ��vF�, which
is corresponding to the interaction strength parameter of a
normal 2D system �i.e., the ratio of potential energy to ki-
netic energy�. The Born approximation lifetime damping
rates for screened charged impurities �c and 
-correlated
neutral impurities �
 at kF are

�c�kF� =
nicEF

4n
Ic�2rs�; �24a�

�
�kF� =
2EF�̃B

�
I
�2rs� . �24b�

In these equations,

Ic�x� = x −
�x2

2
+ x3f�x�; �25a�

I
�x� =
�

4
+ 3x�1 −

�x

2
� + x�3x2 − 2�f�x� , �25b�

where

f�x� =�
1

�1 − x2
ln�1 + �1 − x2

x
� for x � 1;

1 for x = 1;

1
�x2 − 1

cos−11

x
for x � 1.� �26�

In Fig. 3 we show the calculated damping rates scaled by
�EF� / =kFvF as a function the interaction parameter rs. For
rs�1 we have �c /EF�nicrs /2n and �
 /EF� �̃B /2. For rs
�1 we have �c /EF��nic /16n and �
 /EF� �̃B / �2�rs�.
Thus, for small �large� rs the damping rate due to the short-
ranged impurity dominates over that due to the long-ranged
charged impurity. On the other hand, since �c�kF��kF

−1

�n− 1
2 and �
�kF��kF�n

1
2 �Eq. �24��, in the low �high� car-

rier density limit the lifetime damping of single-particle
states at the Fermi surface is dominated by charged impurity
�short-ranged impurity� scattering. The crossover takes place
around a density

ncross =
nic

ni


�vF
2

4U0
2

Ic�2rs�
I
�2rs�

. �27�

Using �=���kF� /2 in Eq. �16� gives �assuming EF, �
�Ec�

D�EF� � D0�EF��1

2
+

1

�
tan−1� �EF�

�
�

+
�

2��EF�
ln� Ec

2

EF
2 + �2�� . �28�

For � / �EF��1, this gives

D�EF� � D0�EF��1 +
1

�

�

�EF��ln� Ec

�EF�� − 1�� , �29�

and for �EF� /��1

D�EF� � D0�EF��1

2
+

�EF�
��

� +
gsgv

2�2

�

vF
2 ln�Ec

�
� . �30�

0.01 0.1 1
r

10
-4

10
-3

10
-2

10
-1

10
0

γ
/E

s

F

FIG. 3. �Color online� Calculated damping rates scaled by Fermi
energy � /EF as a function of rs. Graphene on a SiO2 �air� substrate
has an rs�0.7 �2�. Solid lines indicate damping rates ��c� due to
charged impurities with an impurity density nic=1011 cm−2 for dif-
ferent electron densities n=1, 10, 50	1011 cm−2 �from top to bot-
tom�, respectively. Dashed line indicates the damping rate ��
� due
to short-ranged impurity with impurity density ni
=1011 cm−2 and
potential strength U0=1 KeV Å2, which correspond to �̃B=0.11.
Note �
 /EF is independent on the electron density.
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We can apply Eq. �29� for short-ranged impurity scatter-
ing and for charged impurity scattering in high carrier den-
sity limits, and Eq. �30� for charged impurity scattering in
low-density limits. Taking the limit �EF�→0 in Eq. �30�, it
appears that for the case of screened charged impurities, we
obtain a finite density of states at the Dirac point with the
Born approximation �since ���c�kF��kF

−1�. However, recall
that in deriving Eqs. �29� and �30�, we have assumed that
��k ,EF� is constant with respect to k, which is not necessar-
ily the case at the Dirac point.

In general, the damping rate �or the imaginary part of the
self-energy� is a function of energy and wave vector rather
than a constant. From Eq. �6�, we calculated the self-energy
of disordered graphene. In Fig. 4 we show the self-energy
of a conduction-band electron ��= +1� for both screened
Coulomb scattering potential and screened neutral short-
ranged potential. For Coulomb scatterers we use the impurity
density nic=1012 cm−2, and for neutral short-ranged scatter-
ers the impurity density ni
=1011 cm−2 and potential
strength U0=1 KeV Å2. The self-energies in the valence
band ��=−1� are related to the self-energy in the
conduction band by Re �+�k,��=−Re �−�k,−�� and
Im �+�k,��=Im �−�k,−��. As �→0, −Im ���kF ,��→ ���,
and Re ���kF ,��→� ln��� for both scattering potentials.
However, for large value of ��� the asymptotic behaviors are
different, that is, as ���→
, −Im ��kF ,��� ���−1 for Cou-
lomb scattering potential and −Im ��kF ,��� ��� for short-

ranged potential. Note that by using only the �non-self-
consistent� Born approximation in this section, we assume
weak scattering and ignore multiple-scattering events in cal-
culated ��k ,��. Therefore, the results are unreliable in the
strong disorder limit �i.e., when ��k ,�� is modified signifi-
cantly from its lowest-order form�.

In Fig. 5 the density of states in the presence of impurity
is shown for different impurity densities. In Fig. 5�a� we
show the density of states for Coulomb impurity potential
with impurity densities, nic=0, 1012 cm−2, and 5
	1012 cm−2 �from bottom to top�, and in Fig. 5�b� we show
the density of states for neutral short-ranged impurity poten-
tial with densities, nid=0, 5	1011 cm−2, and 1012 cm−2

�from bottom to top� and potential strength U0=1 KeV Å2.
The calculated density of states is normalized by D0�EF�
= �gsgv /2��EF /�2. The density of states is enhanced near
Dirac point �E=0�, but as �E�→0 it goes zero as D�E�
→ �E�ln�E� for both types of screened impurity scattering.
Based on the results of Sec. III, we expect that this result is
an artifact of the Born approximation, and that the density of
states should in fact be nonzero. The enhancement of the
density of states can be explained as follows. In normal 2D
system with finite disorder the band edge Eedge,0 of the pure
conduction �valence� band is shifted to Eedge,imp�0 ��0� and
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a band tail forms below �above� the band edge of a pure
system. Thus, the density of states in the presence of impu-
rities is reduced for E�0 �E�0� because the states have
been shifted by the impurity potential into the band tail.
However, for graphene since the conduction band and the
valence band meet at the Dirac point the band tail �or shift of
band edge� cannot be formed, which gives rise to enhance-
ment of density of states near Dirac point.

Before concluding we point out that our perturbative cal-
culation of the graphene density of states assumes that the
system remains homogeneous in the presence of impurities.
It is, however, believed3,30 that graphene carriers develop
strong density inhomogeneous �i.e., electron-hole puddle� at
low enough carrier densities in the presence of charged im-
purities due to the breakdown of linear scattering. In such an
inhomogeneous low-density regime close to the Dirac point,
our homogeneous perturbative calculation does not apply.

V. COMPARISONS TO OTHER WORKS

In this section, we compare and contrast our model of
disorder and results to other works in the field.

Peres et al.16 studied the effect of disorder in graphene by
considering the effect of vacancies on the honeycomb lattice.
For a finite density of vacancies, they found that the density
of states at the Dirac point is zero for the “full Born approxi-
mation” �equivalent to our T-matrix approximation� and non-
zero for the “full self-consistent Born approximation”
�equivalent to our self-consistent T-matrix approximation�.
Our results are consistent with theirs, even though the re-
gimes that are studied are different. Vacancies correspond to
the limit where the impurity potential U0→
, whereas this
work is more concerned with the weak impurity-scattering
limit.

Pereira et al.17 considered, among several different mod-
els of disorder, both vacancies and randomness in the on-site
energy of the honeycomb lattice. They numerically calcu-
lated the density of states for these models of disorder. For
compensated vacancies �same density of vacancies in both
sublattices of the honeycomb structure� they found that the
density of states increased around the Dirac point. �Ref. 17
also studied the case of uncompensated vacancies, but that
has no analog in our model of disorder.� For the case of
random on-site impurity potential, they find that “there is a
marked increase in the density of states at ED �the Dirac
point�” and “the DOS becomes finite at ED with increasing
concentration” of impurities. Our self-consistent T-matrix
approximation result is consistent with their numerical re-

sults, although it should be mentioned again that it strictly
does not apply to the case of vacancies.

Wu et al.20 numerically investigated the average density
of states of graphene for the case of on-site disorder. They
found that for weak disorder, the density of states at the
Dirac point increased with both increasing density of impu-
rities and strength of the disorder. �In their work, they did not
absorb the shift in the band due to the impurity potential in
their definition of the energy, so the Dirac point had a shift
ED=xv where x is the concentration of impurities and v is
the on-site impurity energy.� Their numerical results for the
minimum in the average density of states �Fig. 3�b� in Ref.
20� seem to indicate a nonlinear dependence of the value of
the minimum as a function of the strength of the disorder
potential, and is at least not inconsistent with Eq. �22�.

The issue of the effect of screening of the impurity inter-
actions on the density of states discussed in Sec. IV, to the
best of our knowledge, has not yet been treated in the litera-
ture. Qualitatively, the effect of screened impurities away
from the Dirac point is the increase the density of states, and
is consistent with numerical results for random on-site
disorder.17,20 �Since our treatment of screened impurities is at
the level of the Born approximation, we do not obtain neither
a nonzero density of states at the Dirac point nor resonances
in the density of states.17,18,20�

VI. CONCLUSION

We have calculated the density of states for disordered
graphene. In the case of unscreened short-ranged impurities,
we utilized the non-self-consistent and self-consistent Born
and T-matrix approximations to calculate the self-energy.
Among these, only the self-consistent T-matrix approxima-
tion gave a nonzero density of states at the Dirac point, and
the density of states is a nonanalytic function of the impurity
potential. We investigated the density of states in the case of
screened short-ranged and charged impurity potentials at the
level of the Born approximation. We find that, unlike the
case of parabolic band 2DEGs, in graphene near the band
edge �i.e., the Dirac point� the density of states is enhanced
by impurities instead of being suppressed. At very low car-
rier densities, however, graphene develops strong carrier
density inhomogeneity in the presence of charged impurities,
an effect not captured by the homogeneous many-body
theory in our description.
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