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We make use of the first-quantized wave-packet formulation of the full counting statistics to describe charge
transport of noninteracting electrons in a mesoscopic device. We derive various expressions for the character-
istic function generating the full counting statistics, accounting for both energy and time dependence in the
scattering process, and including exchange effects due to finite overlap of the incoming wave packets. We
apply our results to describe the generic statistical properties of a two-fermion scattering event and find, among
other features, sub-binomial statistics for nonentangled incoming states �Slater rank 1�, while entangled states
�Slater rank 2� may generate superbinomial �and even super-Poissonian� noise, a feature that can be used as a
spin singlet-triplet detector. Another application is concerned with the constant-voltage case, where we gener-
alize the original result of Levitov-Lesovik to account for energy-dependent scattering and finite measurement
time, including short-time measurements, where Pauli blocking becomes important.
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I. INTRODUCTION

Charge transport across an obstacle in a wire is a statisti-
cal process, whose complete description is provided by the
probability function P�n , t�, telling how many charge carriers
n are transmitted through the wire during the time t. The
calculation of this full counting statistics usually aims at the
generating function ��� , t�=�nP�n , t�ei�n for this process,
from which the probability distribution P�n , t� follows
through simple Fourier transformation F���� , t��= P�n , t�.
The proper physical definition of the generating function
��� , t� is a nontrivial problem and has been solved by Levi-
tov and Lesovik back in 1993,1 see also Ref. 2, with numer-
ous applications to follow.3 The original definition includes a
“charge counter” in the form of a spin, coupled via the gauge
potential to the moving charges, and has been cast in a
second-quantized formalism of appreciable complexity. The
recent observation4 of the correspondence between the gen-
erating function �1��� of the full counting statistics for one
particle and the notion of fidelity in a �one-particle, chaotic�
quantum system5 has lead to a much simpler first-quantized
formulation of full counting statistics, including the generali-
zation �N��� to N particles. In fact, a first-quantized version
of charge transport to calculate noise has been already intro-
duced some years ago.6 Furthermore, such a wave-packet
formalism naturally describes the statistics of pulsed trans-
port, where unit-flux voltage pulses generate single-particle
excitations feeding the device of interest2,7–10 �a source in-
jecting individual electrons into a quantum wire has been
realized in a recent experiment11�. The simplicity of the first-
quantized formalism then has allowed us to obtain nontrivial
results on the full counting statistics for an energy-dependent
scatterer, including its dependence on the exchange symme-
try of the transported charge.12

In this paper, we make intense use of this wave-packet
formalism of charge transport and �re�derive various expres-
sions for the characteristic function �N��� in a much simpli-
fied manner. We start with an N-particle Slater determinant

made from orthonormalized single-particle wave functions
�m describing fermions incident from the left and derive the
associated characteristic function describing the full counting
statistics in determinant form,

�N��� = det��m�1 − T + Tei���n� , �1�

with the operator T describing the energy-dependent trans-
mission across the scatterer, T=	�dk /2��Tk�k��k� in momen-
tum �k� representation �here, the particle number N replaces
the time variable t in the original formula1�. The determinant
in Eq. �1� can be cast in a product form,

�N��� = 

m=1

N

�1 − �m + �mei�� , �2�

where �m are the eigenvalues of the Hermitian operator T in
the space spanned by the basis states ��n�. We denote the
distribution in Eq. �2� as generalized binomial.

In a real experiment, the unit-flux voltage pulses generat-
ing the incoming wave packets may overlap. For this situa-
tion, we rederive the simple and elegant expression �2� for
the full counting statistics, but with the coefficients �m now
replaced by the roots of a generalized eigenvalue problem
incorporating all effects of fermionic statistics and the full
energy dependence of the transmission. Results �1� and �2�
apply to a nonentangled incident state in the form of a Slater
determinant;13 an extension to include entangled states of
Slater rank 2 is provided as well.14

Next, we generalize result �1� to describe a setup where
both the scattering process and the counting window depend
on time and find a compact result in form �1� with

T → TQ = U†QU , �3�

where U denotes the single-particle time evolution operator
and the operator Q projects the wave function onto its mea-
sured �counted� part. Full counting statistics for fermionic
atoms in determinant form has been derived in Ref. 15
through transcription of the bosonic expression16 to the fer-
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mionic case �see Ref. 17 for a recent application�.
Finally, we extend the result �Eq. �3�� to the situation

where the incoming state consists of an incoherent superpo-
sition of many Slater determinants with different particle
numbers. For the case of particles incident only from the left
side, we find result �1� with

T → �TQ, �4�

where � denotes the one-particle occupation-number opera-
tor. In addition, the determinant in Eq. �1� has to be taken
over all the single-particle Hilbert space.

We make extended use of these formulas. For a two-
particle problem, we show the following: �i� an incoming
state described via a simple Slater determinant cannot gen-
erate a Fano factor F= ��n2�� / �n��1− �n� /2 �i.e., noise is
always sub-binomial and in particular also sub-Poissonian;
there is no bunching�; the above cumulants are obtained
through the generating function ���� via ��nj��
= �−i� j��

j log � ��=0; �ii� upon proper choice of Tk, an en-
tangled incoming state can generate any value for the Fano
factor F	2, and �iii� for two spin-1/2 fermions, we show
that a simple scattering experiment provides information on
the entanglement of the incoming state �cf. also Ref. 18�.

Subsequently, we analyze the situation with N fermions
and derive the full counting statistics for a constant-voltage
�V� drive, thereby generalizing the original result of Levitov
and Lesovik1 to describe transport with an energy-dependent
scattering transmission �cf. Ref. 19�. Our result,

log �N��� = N
2�
vF

eV
�

0

eV/
vF dk

2�
log�1 − Tk + Tke

i�� , �5�

admits the simple interpretation of the full counting statistics
as deriving from the transmission of the unbalanced Fermi
sea residing between energies EF and EF+eV, with EF de-
noting the Fermi energy and V the applied bias. Using an
alternative derivation based on Eq. �3� and stationary scatter-
ing states, we determine the short-time limit of the counting
statistics and rederive binomial result �5� in the long-time
situation, with the particle number N replaced by the mea-
suring time t, N→ teV /2�
. The use of our determinant for-
mula combined with Szegő’s theorem20,21 will allow us to
present a rigorous derivation of these results.

In the following, we give a short review of previous work
on the subject and then derive characteristic functions �1�
and �2� of N incoming fermions. In Sec. III, we apply these
results to discuss the statistical transport properties of two
fermions. Section IV is devoted to the calculation of the
characteristic function for the constant-voltage case starting
from N-particle trains and letting the width of the individual
wave packets go to infinity. In Sec. V, we derive results �3�
and �4� describing the setup involving a time-dependent scat-
tering and counting incoherent superpositions of incoming
particles. We rederive the constant-voltage result as an appli-
cation, including the short-time limit.

II. FULL COUNTING STATISTICS

The first suggestion22 of a generating function for full
counting statistics relied on the straightforward expression

��� , t�= �exp�i�	dt�I�t����, where I�t� denotes the current
operator. It then was soon realized1 that this definition does
not correspond to any known �even on the level of a “Gedan-
ken experiment”� measuring procedure; still, this first defini-
tion produced the correct results for all irreducible zero-
frequency current-current correlators ���I0¯I0��� �see also
the discussion in Ref. 23�. The first “practical” definition24 of
a generating function ��� , t�, corresponding �at least in prin-
ciple� to a realistic counting experiment, involved a spin gal-
vanometer as a measurement device �see also Ref. 2�. Re-
cently, it has been pointed out4 that this suggestion
�corresponding rather to a Gedanken experiment� could ac-
tually be realized with qubits serving as a measuring device,
whereby the “environmental noise” generated by the trans-
mitted charge serves as the measurement signal for the full
counting statistics. This contrasts with the usual interpreta-
tion of the environmental noise as being responsible for the
qubit’s dephasing25 expressed through the fidelity and also
relates to the competition between the gain of information
and dephasing26 in quantum measurement theory.

The insight on the equivalence between the notions of
fidelity and full counting statistics has motivated a first-
quantized formalism of the counting problem in terms of
wave packets. Fidelity ��fid�, the modulus of the overlap
�fid= ��2 ��1�, was introduces by Peres5 in the context of
chaotic systems. It measures the overlap between two wave
functions ��1,2� which describe an initial state ��0� which
has evolved under the action of two slightly different Hamil-
tonians. In the context of full counting statistics of a single
particle measured by a spin counter, the wave functions �1
and �2 are substituted by scattering states �out

+ and �out
−

interacting with the spin counter in the states �↑ � and �↓ �,
resulting in an expression for the generating function in the
form �1= ��out

− ��out
+ �. This first-quantized formulation in

terms of wave packets provides a drastic simplification as
compared to the original second-quantized formalism.2

While the use of a second-quantized formalism is mandatory
for the description of particles describing bosonic excitations
of fields �photons, phonons, etc.�, here, we deal with nonrel-
ativistic electrons where the particle number is fixed, thus
allowing for an alternative first-quantized description. More-
over, our wave-packet formalism has technical merits �e.g.,
in the description of energy-dependent scattering or in the
classification of two-particle scattering events� and also pro-
vides a better physical understanding. We remark, however,
that in dealing with finite temperatures we make use of the
second-quantized formalism in Fock space.

An alternative method, to the procedure based on a spin
counter, was pursued in several contributions27–29 where the
full counting statistics, and—in particular—its generating
function ��� , t�, was constructed using only basic quantum-
mechanical definitions; starting with an initial state in the
form of an eigenstate of the particle number operator with a
fixed particle number to the right of the scatterer �or the
“counter”�, a second projection �to eigenstates of the number
operator� onto the final state is carried out after the observa-
tion time t. Both procedures, projection and spin counting,
lead to the same expressions for the generating function �,
provided that the incoming state involves no superposition
across the scatterer. In the latter situation, the explicit calcu-
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lation using a spin counter produces a fidelity describing the
decoherence of the spin, while an interpretation in terms of a
generating function can produce probabilities for noninteger
charge transport28 and hence is unphysical. On the other
hand, the projection method, destroying such a superposition
in the course of the first measurement, always admits an
interpretation in terms of probabilities.

A. One particle

In this paper, we make extensive use of the first-quantized
formulation of the generating function: starting with a simple
one-particle problem, we exploit the equivalence between
the notion of fidelity and full counting statistics.4 Consider
an incoming wave packet ��x ; t→−� from the left of the
form

��x;t� =� dk

2�
�1�k�eikx−i��k�t �6�

with normalization 	�dk /2����1�k��2=1 �cf. Fig. 1�. In the
following, we assume �for simplicity� a linear spectrum �
=vFk with vF as the Fermi velocity; at low temperatures and
voltages the interesting physics usually takes place near the
Fermi points. The momentum 
k and the energy 
� are mea-
sured with respect to the Fermi momentum kF and the Fermi
energy EF. Here and below, the wave packets include only
momenta with k�0 in order not to disturb the Fermi sea
which is considered to be the vacuum in our analysis. The
scatterer at x=0 is characterized by momentum- �energy-�
dependent transmission �reflection� amplitudes tk �rk; particle
reflection takes us to the branch �=−vFk, with k measured
relative to −kF�. The spin �or qubit� counter, placed to the
right of the scatterer, contributes a phase factor e�i�/2 to the
wave function, where the sign depends on the state �↑ �, �↓ �
of the spin counter. The outgoing �t→� wave function as-
sumes the form �we place the counter right behind the scat-
terer at x=0�

�out
� �x;t� =� dk

2�
�rke

−ik�x+vFt���− x�

+ tke
ik�x−vFt�e�i�/2��x���1�k� �7�

and consists of reflected �x	0� and transmitted �x�0� parts;
��x� is the unit-step function. The fidelity �1��� is given by
the overlap of wave functions with slightly different pertur-
bations in their evolution; here, with coupling to opposite
spin configurations �↑ � and �↓ �,

�1��� =� dx�out
− �x;t���out

+ �x;t�

→
�t→�� dk

2�
�1 − Tk + Tke

i����1�k��2

= ��1�1 − T + Tei���1� , �8�

in the asymptotic or long-time limit, the integration over
space is trivially done by exploiting the complete separation
of the wave function into transmitted and reflected parts.
Furthermore, the time dependence disappears as soon as the
transmitted wave function has passed the counter. The trans-
mission probabilities Tk= �tk�2 are the eigenvalues of the
transmission operator T=	�dk /2��Tk�k��k�. Given the above
specific coupling to a spin, the fidelity is equivalent to the
characteristic function

���� = �
m

Pmei�m �9�

of the full counting statistics as defined in Ref. 24, where a
spin galvanometer has been used as a measuring device. The
Fourier coefficients Pm are the probabilities for transmitting
m particles. For the simple example of one incoming particle
only two outcomes are possible, particle reflection with prob-
ability P0=1− �T � and particle transmission with P1= �T �,
where �T �= ��1�T ��1� denotes the average transmission
probability. Knowing the characteristic function, the cumu-
lants ��nj�� can be obtained as the coefficients in the Taylor
series of log ����,

��nj�� = � d

id�
 j

log ������=0. �10�

The ratio F= ��n2�� / �n� between the second and the first cu-
mulants, called Fano factor, will be of special interest later.

B. N particles

Next, we extend the above description to N particles with
an incoming wave function ��k� defined in momentum
space; the vector k= �k1 , . . . ,kN� specifies the N momenta of
the particles. We consider independent particles without in-
teraction which scatter independently. After scattering, the
outgoing wave function assumes the asymptotic �t→�
form,

f1(k) f2(k)
vFS n

Tk

xxV

εF

xc

eV (t)

xs = 0

FIG. 1. Quantum wire with scattering center located at xs giving
rise to a momentum-dependent scattering probability Tk. A time-
dependent potential eV�t� applied at xV �to the left of the scatterer�
generates incoming wave packets f1, f2 with overlap S= �f2 � f1�. A
counter, placed at xc �to the right of the scatter�, measures the sta-
tistics of the number n of transmitted particles. In our analysis, we
consider incoming wave packets with momenta k�0 residing out-
side the Fermi sea. As a result, the Fermi sea, which is not ac-
counted for in our analysis, is not disturbed in the asymptotic time
limit. For finite measuring times, the presence of the Fermi sea
generates additional equilibrium noise which we do not consider in
this paper.
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�out
� �x;t� = �


m=1

N � dkm

2�
�rkm

e−ikm�xm+vFt���− xm�

+ tkm
eikm�xm−vFt�e�i�/2��xm�����k� , �11�

i.e., the evolution is the product of the single-particle evolu-
tions in expression �7�. The characteristic function of the full
counting statistics �N���=	dx�out

− �x ; t���out
+ �x ; t� then can be

cast into the form

�N��� = �

m=1

N � dkm

2�
�1 − Tkm

+ Tkm
ei������k��2. �12�

So far, we did not specify the specific type of incoming
wave function. If we limit ourselves to Slater-determinant
states composed of orthonormalized single-particle states
�m,

��k1, . . . ,kN� =
1

�N!
det �m�kn� , �13�

the expression �Eq. �12�� can be rewritten as a single deter-
minant �see Eq. �69��,

�N��� = det� dk

2�
�m

� �k��1 − Tk + Tke
i���n�k�

= det��m�1 − T + Tei���n� , �14�

involving the single-particle matrix elements ��m�O��n� of
the operator O=1−T+Tei�.

C. Nonorthogonal basis

In a physical realization of such a scattering experiment,
one usually does not populate orthogonal states as used in
the above construction of the Slater determinant. For ex-
ample, in the setup of Fig. 1 the electrons typically occupy
states f1 and f2 with a finite overlap, i.e., they are nonor-
thogonal. Of course, an N-particle Slater determinant can be
constructed as well out of nonorthogonal states �fm�, pro-
vided they are linearly independent, i.e., det�fm � fn��0. The
properly antisymmetrized and normalized wave function
�13� then acquires the form

� f�k1, . . . ,kN� =
1

�N ! det�fm�fn�
det fm�kn� . �15�

Inserting this expression into Eq. �12� and repeating the cal-
culation that led to Eq. �14�, we obtain the generating func-
tion in the form of a ratio of two determinants,

�N��� =
det�fm�1 − T + Tei��fn�

det�fm�fn�
=

det�S f − T f + T fei��
det S f

�16�

with the two N�N matrices,

Smn
f = �fm�fn�, Tmn

f = �fm�T �fn� . �17�

D. Invariance of Slater determinants under linear
transformations

It turns out that expression �16� for the generating func-
tion can be drastically simplified and rewritten in a general-
ized binomial form. As a first step toward this goal, one has
to realize that an N-dimensional Hilbert space HN, spanned
by the single-particle wave functions fn�k�, defines exactly
one properly antisymmetrized wave function or, equiva-
lently, there exists �up to a phase factor� only one associated
N-particle Slater-determinant state. The antisymmetrized
N-particle state is thus a property of the Hilbert space HN and
is independent of the basis chosen.30

Consider, as a simple example, a two-particle Slater-
determinant state �in second-quantized notation� ���
=a2

†a1
†�0�, with the vacuum state �0� and fermionic operators

a1,2. Defining the new operators a�= �a1�a2� /�2, we easily
see that the two-particle state

a+
†a−

†�0� =
1

2
�a1

† + a2
†��a1

† − a2
†��0� = a2

†a1
†�0� = ��� �18�

remains unchanged. Consider then a general N-particle
Slater-determinant state of form �15�. Transforming the basis
states fm�k� to new states gm�k� via the complex linear trans-
formation,

gm�k� = �
n

Anmfn�k�, det A � 0, �19�

the antisymmetric combination,

det gm�kn� = �det A�det fm�kn� , �20�

remains invariant up to the factor det A; here, we have used
the fact that the determinant of the product of two matrices is
the product of the individual determinants. Furthermore, the
normalized N-particle Slater-determinant states � f and �g

obey the relation

�g�k1, . . . ,kN� = sgn�det A�� f�k1, . . . ,kN� �21�

with sgn�x�=x / �x�. The only effect of adopting a new basis is
the appearance of an overall phase factor sgn�det A� which
drops out of characteristic function �12�. Therefore, the full
counting statistics calculated in the bases f and g give iden-
tical results.

E. Diagonalization

The above invariance can be used to simplify the calcu-
lation of the full counting statistics. Furthermore, even with-
out specification of the �time-independent� scatterer, one can
obtain valuable insights about the structure of possible out-
comes in the counting statistics. In particular, it turns out that
the most general full counting statistics for a Slater-
determinant state is given by a generalized binomial expres-
sion of form �2�.

Let us first investigate how the invariance under linear
transformations �Eq. �19�� manifests itself in the determinant
formula �Eq. �16��. To this end, we note that any single-
particle matrix B of form �17� transforms under the linear
transformation A of the basis functions according to

HASSLER et al. PHYSICAL REVIEW B 78, 165330 �2008�

165330-4



Bg = A†B fA, B = S,T . �22�

Since det�AB�=det A det B, we find that the characteristic
function �N �we define X f =S f −T f +T fei�� is invariant under
the change in basis,

�N =
det X f

det S f =
�det A�2 det X f

�det A�2 det S f =
det Xg

det Sg . �23�

This invariance can be exploited by going over to new or-
thogonal basis functions gm�k� with an overlap matrix Smn

g

=�mn and a transmission matrix assuming a diagonal form
Tmn

g =�m�mn. The possibility of simultaneous diagonalization
of the matrices Tmn

g and Smn
g is a consequence of transforma-

tion law �22�, characteristic of bilinear forms �as opposed to
linear transformations L which transform according to Lg

=A−1L fA�, combined with the positivity of S f. The corre-
sponding eigenbasis gm and eigenvalues �m of Tmn

g can be
found by solving the generalized eigenvalue problem,

�T f − �mS f�am = 0, �24�

with the normalization am
† S fam=1.31 The eigenvectors am

constitute the column vectors of the transformation matrix
A= �a1 , . . . ,aN�. The eigenvalues are given by the roots of
the characteristic polynomial det�T f −�S f�=0. The full
counting statistics �Eq. �16��, written in the new basis gm�k�,
assumes the generalized binomial form,

�N��� = 

m=1

N

�1 − �m + �mei�� , �25�

where the determinant has been evaluated explicitly and the
result depends only on the eigenvalues �m. The generalized
eigenvalue problem can be reduced to a normal one by re-
writing the problem in a orthogonalized basis �m�k�, with
S�=1N, which can be obtained by the Gram-Schmidt proce-
dure or by setting �m�k�=�n��S f�−1/2�nmfn�k�.

From the above, we see that the concrete form of eigen-
value problem �24� is basis dependent, whereas the eigenval-
ues and vectors are simply a property of the transmission
operator T operating in the Hilbert space HN with the scalar
product �f �g�. Indeed, it is possible to find the eigenvalues
and eigenvectors in a basis independent way using the
positive-definite quadratic forms T�g�= �g�T �g� and S�g�
= �g �g�, g�HN. Representing the bilinear form T�g� with
fixed S�g�=1 as a polar plot with T�g� as the radius and g
defining the direction in HN, we obtain an ellipsoid in
N-dimensional space. The lengths of the main axes of this
ellipsoid then constitute the eigenvalues and the associated
directions of the eigenvectors of problem �24�.32 The eigen-
values �m are constrained to the interval �0,1� as T�g��0 and
T�g��S�g� due to unitarity.

F. Full counting statistics for entangled states

The above discussion has concentrated on incoming states
described by a single Slater determinant, i.e., nonentangled
states with Slater rank 1. It is instructive to generalize this
discussion to entangled states involving a coherent superpo-
sition of Slater determinants. We start from an incoming state
of N particles with Slater rank 2,

��k� = ��I�k� + ��II�k� , �26�

where �I�k� and �II�k� are normalized N-particle Slater de-
terminants describing particles incoming from the left and
made from single-particle states fm

I �k� and fm
II�k�, m

=1, . . . ,N; the complex numbers � and � have been chosen
such as to make ��k� normalized. The characteristic func-
tion for full counting statistics �12� assumes the form

�N��� = �

m=1

N � dkm

2�
�1 − Tkm

+ Tkm
ei�������2��I�k��2

+ ���2��II�k��2 + 2 Re�����I�k��II�k���� , �27�

where Re denotes the real part. The first two terms reduce to
generating functions for simple Slater-determinant states and
we can write

�N��� = ���2�N
I ��� + ���2�N

II��� + ����N
mix��� + ����N

mix�− ���

�28�

with

�N
I ��� =

det�S fI
− T fI

+ T fI
ei��

det S fI ,

�N
II��� =

det�S fII
− T fII

+ T fII
ei��

det S fII ,

�N
mix��� =

det�Smix − Tmix + Tmixei��
�det S fI

S fII
. �29�

The matrices with superscripts f I and f II have been defined in
Eq. �17�, while the new Hermitian matrices with a super-
script “mix” are given by the mixed matrix elements,

Smn
mix = �fm

II�fn
I �, Tmn

mix = �fm
II�T �fn

I � . �30�

The first two terms in Eq. �28� can be diagonalized as before
�cf. Eq. �24��,

�N
I ��� = 


m=1

N

�1 − �m
I + �m

I ei�� , �31�

�N
II��� = 


m=1

N

�1 − �m
II + �m

IIei�� , �32�

with the eigenvalues �m
I and �m

II given by the roots of
det�TI−�ISI�=0 and det�TII−�IISII�=0.

Let us then concentrate on the characteristic function
�mix���. Unfortunately, there is no generic procedure to fol-
low in this case, as the matrices Smix and Tmix are not Her-
mitian anymore and hence expression �27� cannot be further
simplified in general. In particular, the characteristic function
�mix��� is not invariant under individual transformations of
the bases fm

I and fm
II �such basis transformations leave the

Slater determinants invariant only up to a phase factor, which
dropped out in the calculation of the characteristic function
of a single Slater-determinant state but does not when two
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Slater determinants are superimposed coherently�. In order to
proceed further, we restrict ourselves to specific situations
where Smix=0 or det Smix�0. The most trivial case is real-
ized for mutually orthogonal sets of basis functions fm

I and fm
II

where Smix=0; if, in addition, det Tmix=0, we have �mix���
=0 �see also Sec. III C below�, else �mix���=�mix�ei�−1�N

with �mix=det Tmix /�det S fI
S fII

.
Second, let us assume that Smix is invertible, det Smix

�0. Let �m
mix be the roots of the polynomial,

det�Tmix − �mixSmix� = 0. �33�

The matrix Tmix�Smix�−1 then can be brought into a Jordan
canonical form with �m

mix on the diagonal and the character-
istic function assumes the simple form,

�N
mix��� =

det Smix

�det S fI
S fII 


m=1

N

�1 − �m
mix + �m

mixei�� . �34�

The procedure outlined above is straightforwardly general-
ized to states with higher Slater rank.

III. TWO PARTICLES

A. Full counting statistics

The above findings have interesting generic consequences
for the charge transport of fermionic particles; in the follow-
ing, we discuss the simplest case of two particles �see Fig. 1�,
where nontrivial exchange properties manifest themselves.
For N=2 particles diagonalization �24� can be carried out
explicitly for arbitrary matrices T f and S f. The two eigenval-
ues �1,2 are given by

�1,2 =
� � ��2 − det T f det S f

det S f , �35�

where the parameter 2�=S22
f T11

f +S11
f T22

f −2 Re�S12
f T21

f �. Al-
ternatively, the eigenvalues 0��m�1 are given by a mini-
mum or maximum property,32

�1 = min
g�H2�S�g�=1

T�g�, �2 = max
g�H2�S�g�=1

T�g� , �36�

with the eigenvectors g1,2�k� given by those functions where
the minimum or maximum values are attained, i.e., T�g1,2�
=�1,2. Once the eigenvalues �m are known, the characteristic
function �2 assumes the simple generalized binomial form,

�2��� = �1 − �1 + �1ei���1 − �2 + �2ei�� . �37�

As a result, we find that in the new basis gm, the two particles
traverse the scatterer independent of one another, i.e., the
characteristic function is a simple product of independent
one-particle characteristic functions. Even more, the charac-
teristic function is determined by the Hilbert space spanned
by the incoming states f1,2 and is independent of the choice
of basis. Exchange effects manifest themselves when com-
paring result �37� for the Slater determinant � f�det fm�kn�
with the result �2

dist���= �1−T11
f +T11

f ei���1−T22
f +T22

f ei�� for
distinguishable particles, �dist� f1�k1�f2�k2�; exchange ef-
fects are absent if both matrix elements S21

f = �f2 � f1�=0 and

T21
f =0, i.e., for orthogonal initial and transmitted states. On

the other hand, a finite overlap of at least one pair of these
states generates finite exchange effects via the substitution of
Tmm

f in �2
dist by the eigenvalues �m in �2.

The minimum or maximum property described above en-
tails a set of a priori inequalities for the transmission prob-
abilities Pn involving the transmission matrix elements Tmin
=min�T11

f ,T22
f � and Tmax=max�T11

f ,T22
f �; note that while the

probabilities Pn do account for exchange effects, the single-
particle matrix elements Tmm

f obviously do not. With initial
�nonorthogonal� wave packets fm normalized to unity,
S�fm�=1, the search for the extrema in Eq. �36� includes
these states as well. We then obtain the set of inequalities
0��1�Tmin�Tmax��2�1. Using them to estimate P0
= �1−�1��1−�2�� �1−�2�, P2=�1�2��1, and P1=1− P0− P2,
we can derive the following bounds,

P0 � 1 − Tmax, P1 � Tmax − Tmin, P2 � Tmin, �38�

for the transmission probabilities for two particles. The
above bounds set an upper limit on bunching �P2 and P0� and
a lower limit on antibunching �P1�. Note though that the
bound on P2 does not exclude an increase �due to exchange�
in the transmission probability beyond the “classical” value
P2

dist=T11
f T22

f for distinguishable particles �see �2
dist above�.

Indeed, since T11
f T22

f �Tmin, a value P2�T11
f T22

f remains pos-
sible. Such a result has been recently observed;33 the prob-
ability of two-electron events in the electron emission from a
Cs3Sb photocathode in a photomultiplier tube has been found
to be much larger than the square of the probability for
single-electron emission. This was observed both in the case
of thermal emission without photocathode illumination and
photoemission under weak photocathode illumination. Fur-
thermore, as detailed calculation shows, a large P2 can also
be obtained for wave packets with amplitudes f2�k�= f1�k
+�k� shifted in k space and a large overlap integral S21

f ,
combined with a transmission amplitude suppressing k val-
ues in the overlap region.

B. Restrictions due to binomial statistics

An arbitrary two-particle scattering process is fully char-
acterized by the three parameters P0 , P1 , P2, from which
only two are independent; here, we assume that we can trans-
mit only integer charges �no charge fractionalization�. In
Figs. 2�a� and 2�b�, we find the regions with different statis-
tical properties that can be generated in a two-fermion scat-
tering process, both in P0-P2 parameter space as well as in
the noise ��n2�� versus average number �n� diagram. We start
with the definition of the physically accessible regime in
these diagrams: requiring that P1=1− P0− P2�0 �Fig. 2�a��
and P0 , P1 , P2�0 �Fig. 2�b��, we find that the black regions
are forbidden.

Traditionally, starting from Poissonian statistics �F=1�
relevant for the coherent light emitted from a laser or for the
transport of a classical electron gas in a vacuum tube, much
emphasis has been put on the distinction between sub- and
super-Poissonian statistics, with reduced and enhanced noise
intensities as quantified by Fano factors F	1 �sub-
Poissonian noise� and F�1 �super-Poissonian processes�. It
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appears to us that in the context of degenerate fermions, the
generic starting point is the binomial statistics, instead, and
more relevant qualifications are given by the regimes of sub-
binomial and superbinomial processes that will be introduced
below.

Nevertheless, let us start our analysis with the traditional
classification comparing a process with Poissonian statistics,
which is realized on the dotted line in Fig. 2�a� defined
through the relation

F =
P0�1 − P0� + P2�1 − P2� + 2P0P2

1 − P0 + P2
= 1, �39�

i.e.,

P2 = P0 − �2P0 − 1, P0 � 1/2. �40�

Within the dark-gray region noise is super-Poissonian, which
is usually associated with the bunching of particles and
therefore with bosonic statistics. Note that Fano factors
larger than the Poissonian value 1 require a large reflection
probability P0�1 /2; only when most of the particles are
reflected one can observe the “bunching” of the remaining
transmitted objects.

A much more natural classification for our fermion system
is in terms of �deviations from� binomial statistics. The char-
acteristic function �2 for two fermions in a Slater-
determinant state can be cast into the generalized binomial
form �Eq. �37��, which depends on two parameters �1 , �2.
As a consequence, the probabilities satisfy the additional in-
equality,

�P0 + �P2 � 1. �41�

This condition follows from expressing the parameters
�1 , �2 through the probabilities P0 , P2 using the relations
P0= �1−�1��1−�2� and P2=�1�2; requiring a positive dis-
criminant of the resulting �quadratic� equation implies con-
straint �41� which defines the light gray region in Fig. 2�a�,

naturally termed as the “sub-binomial” regime. The �thick�
black line bounding the general binomial �or sub-binomial�
region is the line of usual binomial statistics, which is real-
ized for the case of degenerate transmission coefficients �1
=�2 as they appear if the scattering does not depend on en-
ergy.

The region with super-Poissonian noise �dark gray� and
the sub-binomial region �light gray� are distinct, with the
statistics of fermions incoming in a Slater-determinant state
always residing in the sub-binomial domain. Note that the
counting statistics of an arbitrary two-particle process �with-
out specification of exchange properties� also depends on
two out of the three parameters P0 , P1 , P2 �as the con-
straint P0+ P1+ P2=1 needs to be fulfilled� but cannot be cast
into form �37� in general; hence these processes are devoid
of such an additional restriction.

The P2-P0 diagram can be transcribed to the �experimen-
tally more relevant� ��n2��-�n� diagram �cf. Fig. 2�b��. The
physical constraints 0�P0 , P1 , P2 lead to the set of inequali-
ties,

��n2�� � �n��1 − �n�� ,

��n2�� � �n��2 − �n�� ,

��n2�� � ��n� − 1��2 − �n�� , �42�

which can be cast into the more compact form �m+1
− �n����n�−m�� ��n2��� �n��2− �n��, with m=0,1. The
single large and two small parabolas bounding the unphysi-
cal �black� regions are given by the second and the two
�for m=0,1� first inequalities. For the generalized �or
sub-�binomial statistics, the additional constraint assumes the
form

1 20
0

0.5

1

0

0.5

1

0 0.5 P0 〈n〉

unphysical

Poissonian (F = 1)

generalized binomial

〈〈n2〉〉

(sub-binomial)

binomial

super-binomial

1

super-Poissonian

P2

pII

pI

FIG. 2. Diagrams describing the generic statistical properties of two-particle transmission on the left as a P2-P0 probability diagram and
on the right as a noise-charge ��n2��-�n� diagram. The black regions are unphysical with probabilities P0 , P1 , P2 residing outside �0,1�. The
light gray regions describe generalized binomial �sub-binomial� processes �Eq. �37�� bounded by the black line characterizing usual binomial
processes. The dotted lines correspond to a Fano factor F= ��n2�� / �n� equal to one. Within the dark-gray regions noise is super-Poissonian
with a Fano factor F�1. Note that in order to observe super-Poissonian noise the reflection probability has to be large, such that P0

�1 /2 and �n�	1.
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F =
��n2��

�n�
� 1 − �n�/2, �43�

with the equality applying to the binomial case with �1=�2.
Within the gray region of the diagram the noise is sub-
binomial, F�1− �n� /2, and hence trivially sub-Poissonian,
F�1. Note that noiseless transmission of charge requires
that an integer average charge is transmitted.

The generalization of the above analysis to N incoming
particles in a Slater-determinant state is straightforward. The
generalized binomial characteristic function is given by Eq.
�2�. The positivity of the probabilities Pm�0, m=0, . . . ,N,
imposes the N+1 restrictions on the first two momenta �n�
and ��n2��, �m+1− �n����n�−m�� ��n2��� �n��N− �n��, with
m=0, . . . ,N−1, defining a simple generalization of Fig. 2�b�
with one large and N small parabolas. In the generalized
binomial case, the additional constraint,

F =
��n2��

�n�
� 1 − �n�/N � 1, �44�

tells that the incoming Slater-determinant states produce a
sub-binomial noise statistics. A similar result was found
recently34 in the context of adiabatic pumping. The authors
considered a time-dependent scattering matrix in the instant
scattering approximation �i.e., an energy-independent scat-
terer� and obtained a generating function in a product form
describing a generalized binomial statistics with parameters
um�0; the um relate to our �m via �m= �1−um�−1.

C. Entangled states

The above discussion for two particles lets us conclude
that incoming Slater-determinant states generate Fano factors
F�1− �n� /2�1; such states are nonentangled. On the other
hand, an entangled two-particle state can be generated with a
sum of two Slater determinants; such an entangled state
�with 0	�	1, i.e., a state with Slater rank 2, see Sec. II F�,

��k1,k2� = ���I�k1,k2� + �1 − ��II�k1,k2� , �45�

is sufficient to generate all possible types of two-particle sta-
tistics. We choose the Slater-determinant wave functions �I

and �II �incoming from the left� such that they occupy dif-
ferent parts of momentum space, e.g., �I has only compo-
nents below kc and �II above. Furthermore, let the transmis-
sion be T1=Tk	kc

below kc and T2=Tk�kc
above. For such a

setup, all the overlap integrals vanish, e.g.,
	�dk1dk2 /4�2��II��k1 ,k2��I�k1 ,k2�=0, and we obtain �cf.
Eq. �28��

�2��� = ��1 − T1 + T1ei��2 + �1 − ���1 − T2 + T2ei��2,

�46�

that is, the generating function is simply the weighted sum of
the two individual generating functions for the Slater-
determinant states. The statistics of such entangled wave
functions is described by points in the P2-P0 diagram of Fig.
2�a� which lie on a straight line between the point pI for �I

and the point pII for �II with � parametrizing the line. Both
pI and pII are situated on the binomial line, while the line

connecting them may enter the superbinomial or even the
super-Poissonian region; for example, setting T1=0 and T2
=1, the characteristic function is given by �2=�+ �1
−��e2i� and F=2�, which assumes values between zero and
two �note that in the limit �→1, wave function �45� is of
Slater rank 1, but nevertheless, the Fano factor approaches
F=2. As the Fano factor for P0=1 assumes the form 0/0 its
value depends on the direction from which P0=1 is ap-
proached�. As simple Slater determinants produce only Fano
factors up to 1− �n� /2, a larger value serves as a test for the
entanglement of the two particles.35,36 For N incoming par-
ticles in an entangled state of rank 2, the analogous construc-
tion �cf. Sec. II F� produces a Fano factor F=N� with 0
	�	1, i.e., super-Poissonian statistics can be admitted for
sufficiently large �.

D. Two spin-1/2 particles

Next, we consider the situation in the setup of Fig. 1 with
incoming particles in normalized states f1�k� and f2�k� with
overlap S=S21

f = �f2 � f1� and carrying a spin-1/2 degree of
freedom. We consider the case of spin-independent scatter-
ing, hence the coefficients in T f depend exclusively on f1�k�
and f2�k�. The four properly symmetrized states available to
the two incoming particles are denoted by �s,ms

�k�, with
s=0 as the singlet �ms=0� state and s=1 as the three �ms
=−1,0 , +1� triplet states. The degrees of freedom k involve
the momenta km and spins sm of the particles, k
= �k1 ,s1 ;k2 ,s2�. The triplet states with ms=�1 are simple
Slater-determinant states,

�1,�1�k� =
1

�2�1 − �S�2�
�f1�k1��↑/↓�s1�f2�k2��↑/↓�s2�

− ��k1,s1� ↔ �k2,s2��� . �47�

The characteristic function �2 for the full counting statistics
then is of the generalized binomial form with �1/2 given by
Eq. �35�,

�1,�1��� = �1 − �1 + �1ei���1 − �2 + �2ei��

=
�1 − T11

f + T11
f ei���1 − T22

f + T22
f ei��

1 − �S�2

−
�S − T21

f + T21
f ei���S� − T12

f + T12
f ei��

1 − �S�2
. �48�

The states with ms=0 are more interesting as they are of
Slater rank 2. Defining

f1
I �k,s� = f1�k��↑�s�, f2

I �k,s� = f2�k��↓�s� ,

f1
II�k,s� = f1�k��↓�s�, f2

II�k,s� = f2�k��↑�s� , �49�

we have

�0/1,0�k� =
1

�2�1 � �S�2�
��I�k� ��II�k�� �50�

with �I/II�k� as the normalized two-particle Slater determi-
nants made from the states fm

I/II. The calculation of the char-
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acteristic function follows the procedure outlined above: as
the matrices Tmn

I/II=Tmm
f �mn and Smn

I/II=�mn are diagonal �par-
ticles 1 and 2 are distinguishable�, we immediately have

�I/II��� = �1 − T11
f + T11

f ei���1 − T22
f + T22

f ei�� . �51�

For the calculation of �mix���, the matrices Tmix and Smix

need to be evaluated. In the present case, they are purely off
diagonal with the off-diagonal matrix element given by
T21

mix=T21
f and S21

mix=S. Calculating the determinants in Eq.
�29�, we obtain the mixed component in the form

�mix��� = − �S − T21
f + T21

f ei���S� − T12
f + T12

f ei�� �52�

and the characteristic function is given by

�0/1,0��� =
�1 − T11

f + T11
f ei���1 − T22

f + T22
f ei��

1 � �S�2

�
�S − T21

f + T21
f ei���S� − T12

f + T12
f ei��

1 � �S�2
.

�53�

Result �53� agrees with the results in Ref. 12. The character-
istic functions for the two spin triplet states s=1 with maxi-
mal magnetization ms=�1 and the characteristic function
for the triplet s=1, ms=0 with zero magnetization coincide
with the one for a Slater determinant of spinless fermions
�Eq. �37��. This is because all three states involve identical
orbital wave functions and the scattering process does not
depend on the spin part of the wave function. The corre-
sponding average number of particles �n�1,ms

and noise
��n2��1,ms

reside within the region of generalized binomial
statistics �cf. Fig. 2�,

F1,ms
� 1 − �n�1,ms

/2. �54�

The entangled singlet state �with s=0� does not necessarily
fulfill this condition. Rather opposite, for the case where the
individual transmission probabilities of the two particles are
equal, T11

f =T22
f , the moments and the Fano factor always

reside outside the region allowed by the generalized bino-
mial statistics,

F0,0 � 1 − �n�0,0/2, �55�

as a lengthy but straightforward calculation shows. Hence,
this rather trivial setup can be used to discriminate singlet
from triplet states and also serves as an indicator of entangle-
ment �as long as the inequalities are strict which is the case
as long as S�0 and T21

f �ST11
f �.

A similar experiment was proposed by Burkard et al.,18

which had two particles with equal energy come in from
different arms in a symmetric beam splitter �see Ref. 14 for a
calculation of the full counting statistics for this setup�. Our
setup involves one single lead only at the expense of requir-
ing an energy-dependent transmission probability �otherwise
we end up on the binomial line which is devoid of any sepa-
ration power�. Furthermore, the discrimination between sin-
glet and triplet states is determined by the presence or ab-
sence of generalized binomial statistics and hence involves
the binomial bound 1− �n�0,0 /2 on F.

IV. N-PARTICLE TRAINS

We consider the case of N incoming particles, all with the
same shape of the wave function f�k� aligned regularly in
real space with separation a; the wave function of the mth
particle then is given by fm�k�= f�k�e−imak. The overlap and
transmission matrices �Eq. �17�� are given by the Fourier
transforms,

Smn
f =� dk

2�
�f�k��2ei�m−n�ka,

Tmn
f =� dk

2�
�f�k��2Tke

i�m−n�ka. �56�

These are Toeplitz matrices as their elements depend only on
the difference m−n between indices. In the limit N→, the
determinants of the Toeplitz matrices S f and S f −T f +T fei�

can be evaluated by reducing the integral over k space to an
integral over the first Brillouin zone �0,2� /a� and using
Szegő’s theorem20,21 �see Ref. 20 and Appendix�,

log det S f � N�
0

2� d�

2�
log�1

a
�

m�Z
�f��� + 2�m�/a��2� ,

log det�S f − T f + T fei�� �57�

�N�
0

2� d�

2�
log�1

a
�

m�Z
�f��� + 2�m�/a��2

�1 − T��+2�m�/a + T��+2�m�/aei��� .

The logarithm of these determinants scales linearly with N, a
result that has to be expected as correlations between par-
ticles vanish at large separation. Combining the results �Eq.
�57�� and replacing the integration over the angle � by an
integration over the first Brillouin zone k� �0,2� /a�, we
find the generating function in the form

log �N��� = Na�
0

2�/a dk

2�
log�1 − �k + �ke

i�� �58�

with the effective scattering probabilities,

�k =

�
m�Z

�f�k + 2�m/a��2Tk+2�m/a

�
m�Z

�f�k + 2�m/a��2
, �59�

which denote transmission probabilities �with 0��k�1� av-
eraged over higher harmonics 2�m /a with weight �f�k
+2�m /a��2.

Let us apply this result to wave packets generated by
Lorentzian voltage pulses. As shown in Ref. 10, a unit-flux
�i.e., c	dtV�t�=hc /e=�0� Lorentzian voltage pulse eVt0

�t�
=2
� / ��t− t0�2+�2�, parametrized by its width � and time of
appearance t0, excites a single particle with wave function
fx0

�k�=�4��e−�k−ix0k��k� moving through the quantum wire
���k� denotes the unit-step function; we remind that k is
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measured with respect to the Fermi momentum kF�. Here e is
the charge of the particle, x0=vFt0 parametrizes the position,
and �=vF� is the real-space width of the wave packet. A
periodic sequence of unit-flux voltage pulses V�t�
=�m�ZVma/vF

�t� applied to an interval to the left of the scat-
terer and driving one particle per time interval a /vF gener-
ates the transmission probabilities,

�k = �1 − e−4��/a� �
m�0

e−4�m�/aTk+2�m/a. �60�

For nonoverlapping wave packets ��a �cf. Fig. 3�a��, ex-
change effects are absent. The sum in Eq. �60� becomes an
integral and the transmission probabilities assume the simple
form �k=	�dk� /2���f�k���2Tk�= �T � �as easily obtained from
Eq. �59� by replacing the sums with integrals�, independent
of k; every particle probes the transmission probabilities with
its weight �f�k��2. In the opposite limit, ��a, i.e., for flat
wave packets which are strongly overlapping, the result for
distinguishable particles is �k

dist→T0. However, exchange ef-
fects force the system to fill the first Brillouin zone k
� �0,2� /a� and the particles probe the transmission within
this energy interval �k=Tk �as obtained from Eq. �60� retain-
ing only the m=0 term� �cf. Fig. 3�b��. Taking the limit �
→ corresponds to the case of a constant applied voltage V
of magnitude eV=2�
vF /a �we remind that the time integral
over one voltage pulse generates one flux unit �0=hc /e and
pulses are separated in time by a /vF� and the generating
function assumes the form

log �N��� = N
2�
vF

eV
�

0

eV/
vF dk

2�
log�1 − Tk + Tke

i�� .

�61�

This result then is the characteristic function for the full
counting statistics for a constant voltage V applied to the left
of the scatterer including an energy-dependent scatterer. The
equivalent result has been found in Ref. 19 if we perform the
ad hoc replacement of the particle number N by a “measur-
ing time” t, N→ tvF /a= teV /2�
 �note that, although this
replacement appears sensible, it is nonrigorous as we have
assumed the limit t→ within the present scattering formal-
ism; we will further comment on this later�.

The next order term in the asymptotic expansion for N
→ can be obtained using the generalization of Szegő’s
theorem20,21 �Fisher-Hartwig conjecture, cf. Eq. �A10�� and
is given by

� log �N��� =
log N

4�2 log2�1 − T2�/a + T2�/aei�

1 − T0 + T0ei� � . �62�

The logarithmic nature of this correction is due to the energy
dependence of the transmission coefficient Tk, in particular,
its jump T0�T2�/a across the first Brillouin zone k
� �0,2� /a� �for T0=T2�/a the correction term is of order
unity; see Eq. �A7��. The correction for the noise term is
given by

���n2�� =
�T2�/a − T0�2

2�2 log N �63�

and similar corrections are obtained for the third- and higher-
order cumulants.

V. GENERALIZATIONS

A. Unitary evolution and time-dependent counting

We want to generalize the generating function �N as given
by Eq. �14� to account both for the specific time evolution of
the scattering state and for different counting procedures.
Throughout this discussion, it is convenient to apply the
Dirac notation and we rewrite Slater determinant �13� in the
form

��� =
1

�N!
�
��SN

sgn�������1�� � ¯ � ����N�� . �64�

Equation �64� describes the initial N-particle wave function
at time t=0 composed of orthonormalized one-particle states
��m� �here, � denotes an element of the permutation group
SN�. The choice of orthonormalized wave packets is only for
convenience: as seen in Sec. II D, a Slater determinant is
invariant under general linear combination of states; it is
composed of, in particular, an orthonormalized basis that can
be chosen.

Let

(a)

(b)

ξ

a

Tk

Tk

1/ξ
a

ξ
2π/a

k

1/ξ

2π/a

0

k

FIG. 3. �a� Train of nonoverlapping wave packets, ��a. Each
particle is transmitted independent of the others with a transmission
probability 	�dk /2���f�k��2Tk depending only on its momentum dis-
tribution f�k�. For wave packets with width �, these probe transmis-
sion probabilities for momenta up to 1 /�. �b� Train of strongly
overlapping wave packets, ��a. If the particles were transmitted
independent of each other �no exchange effects�, they would probe
transmission probabilities Tk in the range up to 1 /��0. Due to
exchange effects, the particles fill up a Fermi sea determined by the
density 1 /a. Therefore, the particle train probes transmission prob-
abilities for momenta in the interval �0,2� /a�. This �stationary�
state can be seen as a wave-packet analog of the constant-voltage
setup.
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U = exp�−
i



�

0

t

dt�H�t��� �65�

be the unitary evolution operator generated by the single-
particle Hamiltonian H�t�.37 In the absence of interaction,
the evolution of the total system is governed by the product
operator  N�U�, where, given a one-particle operator O, we
define the N-particle operator,

�N�O� = O � ¯ � O
N times

,
�66�

acting simultaneously on all N particles. While we restrict
ourselves to noninteracting systems, we still allow for a
time-dependent scattering potential which can generate in-
elastic processes. The final state at time t is given by ��out�
= N�U����. Including the counting field e�i�/2, the wave
function assumes the form

��out
� � =  N�e�i�Q/2���out� =  N�e�i�Q/2U���� , �67�

where Q is a projector �Q2=Q and Q†=Q� on that part of
the wave function that has been counted. For example, in the
original setup of Ref. 4 with a spin at position x0 and par-
ticles incoming from the left, the operator Qt=	Idx�x��x�
projects onto the causal interval I= �x0 ,x0+vFt� �no such op-
erator Q mimicking a spin counter can be defined for par-
ticles incident from both sides�; hence that part of the wave
function which passed the counter during the time t picks up
an additional phase e�i�/2. Note that it is always the full
phase � which is picked up, as the particle is either measured
�eigenvalue 1 of Q� or not �eigenvalue 0 of Q�. The charac-
teristic function of the full counting statistics is given by the
overlap �fidelity�,

�N��� = ��out
− ��out

+ � = ��� N�U†ei�QU���� , �68�

of the forward- and back-propagating wave functions mea-
sured with opposite spin states.

Next, we exploit that the expectation value of a product
operator  N�O� in a Slater-determinant state can be written
as a determinant of one-particle matrix elements ��m�O��n�
in the Hilbert space HN spanned by the states ��m�,

��� N�O���� =
1

N! �
�,���SN

sgn�� � ���

m=1

N

����m��O�����m��

=
1

N! �
�,���SN

sgn����

m=1

N

��m�O�����m��

= det��m�O��n� . �69�

This formula is at the origin of �most� results which cast the
characteristic function of the full counting statistics into a
determinant form. Making use of Eq. �69�, we can rewrite
the characteristic function �Eq. �68�� as the determinant

�N��� = det��m�ei�U†QU��n� = det��m�1 − TQ + TQei���n�

�70�

with

TQ = U†QU . �71�

In going from the first to the second line in Eq. �70�, the
exponential has been expanded and use has been made of the
fact that TQ is a projector. With TQ as a projector in the
one-particle Hilbert space H, its eigenvalues in the subspace
HN lie between 0 and 1 and Eq. �70� leads to a generalized
binomial statistics.

In order to familiarize us with this new formula, we re-
produce the results of Section II B. We then are interested in
the situation where the initial state ��� is localized to the left
of the scattering region and the final state describes the t
→ asymptotic behavior where all particles have completed
the scattering process. Within the basis of states left or right
of the scatterer with momentum k, the asymptotic form of the
propagator is given by the unitary �scattering� matrix,

Uk
 = �rk tk�

tk rk�
 , �72�

where the coefficients rk �rk�� and tk �tk�� are the reflection and
transmission amplitudes of a particle incoming from the left
�right�. The total propagator assumes the form U

=	�dk /2���k�outUk in
 �k� where we have introduced the

asymptotic states �k�in�out�= ��k�L,in�out� , �k�R,in�out�� which are
in- �out-� going plane waves in the left or right lead; in a
formal derivation, we have to consider the t→ limit of the
evolution in Eq. �65� within an interaction picture with a
trivial reference dynamics U0=	�dk /2��e−ivFkt��k�in in�k�
+ �k�out out�k��. The counting operator Q is given by the pro-
jection on the right outgoing lead, QR= �0,1�†�0,1�, and we
obtain

TQR

 =� �dk/2���k�in�tk,rk��
†�tk,rk��in�k� . �73�

Since the initial single-particle wave functions in�k ��m�
= ��k ��m� ,0� are located to the left of the scatterer, the char-
acteristic function assumes the form

���� = det��m�1 − T + Tei���n� , �74�

with T=	�dk /2��Tk�k��k�, in agreement with Eq. �14�; here,
we have shortened the notation �k�= �k�in,L in agreement with
the notation above. The generalization of the result �Eq. �74��
to many channels is straightforward; the propagator �Eq.
�72�� exhibits a block structure with matrices tk and rk de-
scribing the transmission and reflection in the channel basis,
the transmission probabilities Tk= tk

†tk assume a matrix form,
and the state vector ��m� adopts an additional channel index.
Assuming an implicit summation over channel indices, the
form of Eq. �74� remains unchanged. The same comment
holds for the spin index.

B. Density matrix: Finite temperatures

The determinant in Eq. �70� is restricted to the subspace
spanned by the initial states ��m�. Introducing the projection
operator P=�m=1

N ��m���m� onto the subspace spanned by the
initial states ��m�, the determinant can be elevated to cover
the whole Hilbert space. We split the total Hilbert space into
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the sector defined by the projector P and its complement
projected onto P�=1−P. The operator 1−PTQ+PTQei� can
be expressed in block form,

�1 + PTQ�ei� − 1�� = �1 + TQ�ei� − 1� TQ�ei� − 1�

0 1
� ,

�75�

with the blocks operating in the PH and P�H subspaces.
The determinant of the upper block-diagonal matrix �Eq.
�75�� is given as the product of determinant �70� in the P
block and the determinant of 1 in the P� block and thus the
generating function assumes the form

�N��� = det�1 − PTQ + PTQei�� , �76�

where the determinant is taken over the entire one-particle
Hilbert space H.

Interestingly, this formula can be generalized to the case
when the initial state is not a single Slater determinant but an
incoherent superposition of many Slater determinants with a
density matrix of the form  �!� /Z in Fock space F= �NHN,
 �O�= �N N�O�, Z=TrFa

 �!�, and ! is the one-particle
density matrix, e.g., !=e−��H−"� for a thermal ensemble with
temperature �−1, chemical potential ", and time-independent
single-particle Hamiltonian H; here Fa denotes the antisym-
metric sector of the Fock space. Using the trace formula,38

TrFa
� �O��=det�1+O�, where the determinant is over the

one-particle Hilbert space, the characteristic function ����
=TrFa

� �!� �U†ei�QU�� /Z �cf. Eq. �68�� assumes the form

���� = det�1 + !ei�U†QU�/det�1 + !� = det�1 − � + �ei�TQ�

= det�1 − �TQ + �TQei�� �77�

with the one-particle occupation-number operator �=! / �1
+!� �and arbitrary one-particle density matrix !�; note again
that the spectrum of �TQ resides between 0 and 1 so that Eq.
�77� denotes a generalized binomial statistics.

As an example, consider the situation of two particles
incident from the left, with wave functions �1�k� and �2�k�,
where the process of particle generation is not deterministic
but involves some success probability: let p1 �p2� be the
probability that the first �second� particle is successfully cre-
ated. In order to keep the discussion simple, we assume
�1�k� and �2�k� to be orthonormalized ��m ��n�=�mn. The
initial state can be written as a density matrix  �!� /Z with
the one-particle density matrix,

! =
p1

1 − p1
��1���1� +

p2

1 − p2
��2���2� . �78�

The weights in Eq. �78� are chosen to make the single-
particle occupation operator �=! / �1+!� have the form

� = p1��1���1� + p2��2���2� , �79�

i.e., p1 �p2� are the probabilities to occupy state 1 �2�. The
normalized density matrix �we use the fact that Z
=TrFa

 �!�=det�1+!�=1 / �1− p1��1− p2��,

 �!�/Z = �1 − p1��1 − p2� � p1�1 − p2���1���1�

+ p2�1 − p1���2���2� � p1p2��1���1� � ��2���2� ,
�80�

consists of three terms. The first term describes the zero par-
ticle sector which occurs with probability �1− p1��1− p2�.
The second term involves one-particle states: p1�1− p2�
�p2�1− p1�� is the probability that only the first �second� par-
ticle is created. The third term shows that the probability to
observe a Slater determinant of both states �1 and �2 is p1p2;
we have omitted terms which involve tensor products of
more than one projector on the same state as they have no
weight on the antisymmetric part of the Hilbert space. The
generating function of full counting statistics is given by Eq.
�77�,

���� = det�1 − �TQR

 + �TQR

 ei��

= �1 − p1T + p1Tei���1 − p2T + p2Tei�� , �81�

for the simplest case of asymptotic scattering with an energy-
independent transmission probability, Tk=T.

VI. CONSTANT VOLTAGE

Many results in the literature so far have been obtained in
the stationary regime where a constant voltage V is applied
across the wire for long measuring times teV /
�1.1,39–41

Here, we discuss a wave-packet analog of the constant-
voltage case. Contrary to the discussion in Sec. IV involving
a nonstationary finite train of N particles with the spin
counter measuring all the time t→, here, we consider a
stationary situation in the thermodynamic limit �N ,L→
with fixed density n=N /L, where L is the system size� with
two reservoirs disbalanced by the applied voltage V and the
counting extending over a finite time t.

We start with N particles residing in �left incident� scat-
tering states,

#k�x� = �eikx + rke
−ikx���− x� + tke

ikx��x� , �82�

with energies 
$=
vFk between EF and EF+eV. The scat-
terer is positioned at the origin. In order to regularize the
problem, we go over to wave packets �m�x�: we split the
momentum interval �0,eV /vF� into compartments of width

%=eV /vFN and define the weights

fm�k� = ��2�/% if %�m − 1� � k � %m

0 elsewhere,
� �83�

with m� �1, . . . ,N�. With the real weights fm�k�, the �nor-
malized� wave packets

�m�x� =� dk

2�
fm�k�#k�x� �84�

define states centered around the origin. Note that adding
arbitrary global phases to the wave packets �m�x� does not
change their Slater determinant �up to a trivial global phase
of the many-body wave function, see Eq. �64��. Keeping V
constant and letting %→0, the wave packets spread out in
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real space, the particle number N goes to infinity, the homo-
geneous particle density assumes the finite value eV /2�
vF,
and the resulting current �I�= �e /h�TV is constant in time �cf.
Eq. �101��. This procedure then properly emulates the
constant-voltage setup, as it generates the identical zero-
temperature density matrix as the one obtained in a second
quantization formulation by filling scattering states within
the interval of width eV.

In making use of expression �70�, we need the time evo-
lution of the wave packets,

�m�x;t� =� dk

2�
e−ivFktfm�k�#k�x� , �85�

as well as the counting operator Qt=	Idx�x��x� projecting
particles on the space interval I= �x0 ,x0+vFt�, where we as-
sume the counter to be placed to the right of the origin, x0
�0.

A. Generalized binomial statistics

The characteristic function �t��� is the determinant of the
matrix �cf. Eq. �70��,

��m�ei�U†QtU��n� = ��m�t��ei�Qt��n�t��

=� dx�m�x;t���x�ei�Qt�x��n�x;t�

= �mn + �ei� − 1�Qmn, �86�

�t��� = det��mn + �ei� − 1�Qmn� �87�

with

Qmn =� dk�dk

4�2 tkfn�k�Kt�k − k��tk�
� fm

� �k�� �88�

and the kernel

Kt�q� = �
x0

x0+vFt

dxeiq�x−vFt� =
eiqx0�1 − e−iqvFt�

iq

= 2eiq�x0−vFt/2�sin�qvFt/2�
q

. �89�

The matrix Qmn is a Hermitian matrix with real eigenvalues
0��m�t��1; hence the associated full counting statistics is
generalized binomial for all times. The same result can be
retrieved from Ref. 34 with an appropriate choice for the
time-dependent scatterer. In the following, we discuss vari-
ous limits for the generating function �t���.

B. Short measuring time

Assuming that N is large enough so that tk does not
change appreciably over the interval %, i.e., %�ktk�1, the
amplitude tk can be taken out of the integral in Eq. �88�.
Assuming furthermore that the measurement time t is short,
�q�vFt� teV /
�1, we can expand Kt�q� and obtain �to low-
est order in teV /
�

�t
���� = det��mn + �ei� − 1�t%m

� t%n%vFt

� ei%x0�n−m�2 sin2�%x0/2�
�%2x0

2 � . �90�

The second term involves a matrix product
�v1 ,v2 , . . . ,vN�†�v1 ,v2 , . . . ,vN� of a vector and its dual,
where vm= t%mei%x0m, and hence can be written as a projector,
in Dirac notation, "�v��v� with "=2�ei�

−1�%vFt sin2�%x0 /2� /�%2x0
2. The determinant det�1

+"�v��v�� then is given by the product of eigenvalues 1
+"�v �v� �in the direction of �v�� and 1 �in the complement�,
det�1+"�v��v��=1+"�v �v�, and we obtain

�t
���� = 1 + �ei� − 1�%vFt

2 sin2�%x0/2�
�%2x0

2 �
m=1

N

T%m

→
�%→0�

1 + ��ei� − 1� , �91�

with �note that N%=eV /
vF�

� = tvF�
0

eV/
vF dk

2�
Tk � teV/2�
 � 1 �92�

�note that the dependence on the counter position x0 has dis-
appeared from the parameter �� t in the constant-voltage
limit %→0�. Pushing the calculation to higher order in
teV /
, we find that in the expansion of �t

���� both, second-
and third-order terms, vanish and the next correction appears
only in fourth order,

��t
���� =

�ei� − 1�2�tvF�4

24
�

0

eV/
vF dkdk�

�2��2 TkTk��k − k��2

� � ei� − 1

24�
2� teV



4

. �93�

Hence, for short measuring times the majority of counts in-
volve either no or a single particle, while the observation of
two-particle events P2� �teV /
�4 / �24��2 is strongly sup-
pressed, a consequence of the Pauli exclusion principle. Note
that in the short measuring time limit, the specific nature of
the counting device matters. Above, we have assumed that
all intrinsic time scales of the counter are much shorter than
the measuring time. Furthermore, we have neglected the ef-
fect of the Fermi sea which will produce an additional con-
tribution. Nevertheless, even modeling the counter more re-
alistically, the Pauli principle with its reduction in two- and
more-particle events is expected to reveal itself. Further-
more, it is possible to realize an experiment where the effect
of the additional Fermi sea is absent: by applying a voltage
to a quantum wire which is larger than the Fermi energy,
particles incident from the right are blocked by the band
bottom and only left going states within an energy interval
EF �replacing the bias eV� contribute to the particle current.42

Note that the generalized binomial statistics �Eq. �3�� re-
duces to the simple Poissonian result,
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log ���� = �
m

�m�ei� − 1� , �94�

in the limit of small generalized transmission probabilities
�m�1; the result then only depends on one parameter
�m�m=tr TQt

. In the limit of short measuring times, the
smallness of the transmission eigenvalues is imposed by the
small space interval in the projection Qt and �m�m=� �see
Eq. �92��. The same result is obtained in the long-time limit
�see Eq. �98��, provided the transmission probabilities Tk
themselves are small.

C. Large measuring times

In the asymptotic limit of t→, the kernel Kt�q� ensures
energy or momentum conservation, rendering the problem
diagonal in the momentum basis.1,19 However, adopting the
t→ asymptotic limit is incompatible with a regular deriva-
tion of a finite result. Here, we consider instead the case of
large but finite measuring time t while adopting the limit of
infinite particle number N→ when letting the width 
%
=eV /vFN go to zero at constant voltage V.

In the limit N→, the characteristic function �t���,
which is the determinant of the matrix in Eq. �86� �cf. Eq.
�70��, is given by

�t��� = det�1 − PTQt + PTQte
i�� , �95�

where P=	0
eV/
vF�dk /2���k��k� is the projector on the sub-

space of occupied states; form �95� can be obtained from Eq.
�86� introducing the projector P to extend the determinant
over the whole Hilbert space �cf. Eqs. �75� and �76�� and
using the determinant identity det�1+AB�=det�1+BA� to
shuffle tk�

� to the left of Kt, which itself is the momentum
representation of the projector Qt. The expression �Eq. �95��
then corresponds to Eq. �76� with the substitution TQ=TQt.
As Qt is a projector, Qt

2=Qt, we can rewrite Eq. �95� as
det�1+ �ei�−1�QtPTQt�. This determinant only needs to be
calculated in the subspace QtH as the matrix is unity in the
complement. In the subspace QtH, we use the orthonormal
real-space �rather than k space; see Eq. �83�� basis,

gl�x� = �1/�� if ��l − 1� � x − x0 � �l

0 elsewhere,
� �96�

with �= tvF /L as the width of a real-space segment and l
� �1, . . . ,L�. The matrix elements of PT assume the form

�gl�PT �gm� = �
0

eV/
vF dk

2�
Tk�gl�k��k�gm�

= �
0

eV/
vF dk

2�
Tk

4 sin2��k/2�
�k2 ei�l−m�k�, �97�

i.e., they form a Toeplitz matrix. Applying Szegő’s
theorem20,21 and taking the limit of large t and L with �
=vFt /L fixed but small ���
vF /eV, hence
4 sin2��k /2� /�k2��� we obtain the generating function

log �t��� = tvF�
0

eV/
vF dk

2�
log�1 − Tk + Tke

i�� �98�

�cf. Appendix�.
Using the generalization of Szegő’s theorem20,21 �Fisher-

Hartwig conjecture; see Eqs. �A7� and �A10��,43 it is possible
to calculate the next order term. As the argument of the loga-
rithm �cf. Eq. �A10�, note that x��� is to be replaced by
�n�ZP��+2�n�/��1+ �ei�−1�T��+2�n�/�� with Pk=1, k
� �0,eV /
vF�, and Pk=0 otherwise� exhibits discontinuities
at k=0 and k=eV /
vF, the correction to the leading term is
given by the two contributions originating from the jumps at
k=0,eV /
vF,

� log �t��� =
log�t/t0�

4�2 �
k=0,eV/
vF

log2�1 + �ei� − 1�Tk� ,

�99�

with t0 as some small time cutoff; this result leads to loga-
rithmic corrections for the second-order and all higher cumu-
lants. For the noise, the correction is given by19,27

���n2�� =
T0

2 + TeV/
vF

2

2�2 log�t/t0� . �100�

Here, the logarithmic corrections in Eqs. �99� and �100� are
due to fluctuations in the number of particles in a finite in-
terval of length vFt. Therefore, fluctuations do not disappear
for T=1 as in Eqs. �62� and �63� where the number of par-
ticles is fixed and noise stems only from partitioning. In ad-
dition to the noise originating from the voltage bias, there is
an equilibrium contribution due to the Fermi sea at any finite
measuring time �cf. Sec. VI B�. For asymptotically large
times, the first contribution grows logarithmically in time.2

The reason why Szegő’s theorem20,21 is applicable to the
matrix �Eq. �97�� is the presence of time translation invari-
ance: matrix elements between states localized at two differ-
ent places or times depend only on their space or time sepa-
ration and hence they form a Toeplitz matrix. The same
reasoning does not apply to the momentum basis and that is
why we could not apply Szegő’s theorem20,21 directly to the
matrix in Eq. �86�. The result �Eq. �98�� �and its generaliza-
tion to finite temperatures; cf. Eq. �113�� has been found by
Schönhammer19 using a double projection in his counting
procedure: instead of relying on Szegő’s theorem,20,21 use
has been made of the relation log det�1+M�=tr log�1+M�,
followed by an expansion of the logarithm. Evaluating the
trace of each term, the phase factors �see Eq. �89�� appearing
in the cyclic product of the kernel Kt cancel mutually. In the
long-time limit, the kernels become diagonal �ensuring en-
ergy conservation� with one of them contributing a factor of
t, thus rendering the cumulant generating function log �t���
linear in t. In alternative approaches, use has been made of a
mapping onto the Riemann-Hilbert problem27 �this procedure
enables the calculation of the leading term as well as the
logarithmic correction �Eq. �99��� or of time periodicity2,8

introduced in order to render log �t extensive in t �this way,
only the term linear in t is obtained�.
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D. Fano factor for intermediate regime

In order to understand the crossover between the short-
and long-time behaviors of the carrier distribution, we calcu-
late the Fano factor F and present the result as a function of
&t= teV /2�
 �the incident-particle number during time t� in
Fig. 4�a� for several values of the transmission coefficient T
�for a scatterer with energy-independent transmission�. For
small times, the distribution is Poissonian and hence F�&t
→0�→1. The binomial distribution valid at large times pro-
vides the asymptotics F�&t→�→ �1−T�. In order to find the
crossover in between, we determine the matrix Q �see Eq.
�88��,

Qmn →
�%→0�

t%m
� t%nei�n−m�%�x0−vFt�sin��n − m�%vFt/2�

��n − m�
,

in terms of which the characteristic function assumes simple
form �87� and hence log �t���=tr log��mn+ �ei�−1�Qmn�
�again, we consider the limit %→0 at fixed voltage V�. The
average transmitted charge �n�=−i�� log �t ��=0,

�n� = tr Q = tvF�
0

eV/
vF dk

2�
Tk, �101�

grows linearly with the measuring time t; the above result
coincides with those obtained from the short and long-time
expressions �91� and �98�. The noise ��n2��=−��

2 log �t ��=0
assumes the form

��n2�� = tr Q − tr Q2

= �n� − �
0

eV/
vF dk�dk

�2 Tk�Tk
sin2��k� − k�vFt/2�

�k� − k�2

�102�

�in the limit %→0 considered here, both momenta do not
depend on the position x0 of the counter, as the wave packets
are infinitely spread�. In order to keep the analysis simple,
we assume an energy-independent transmission probability,

Tk=T, over the interval �0,eV /
vF�. The average charge then
is given by

�n� = TteV/2�
 = T&t. �103�

The Fano factor F= ��n2�� / �n� can be cast into the form

F = 1 − Tf�&t� �104�

with

f�&t� = �
−1

1

dx�1 − �x��
sin2��&tx�
�2&tx

2 . �105�

For small times &t�1,

f�&t� = &t −
�2

18
&t

3 + O�&t
5� , �106�

while f approaches unity in the long-time limit &t�1 ��
�0.5772 is Euler’s constant�,

f�&t� = 1 −
log�2�&t� + 1 + �

�2&t
+ O�&t

−3� . �107�

The corrections to the simple binomial result produce a loga-
rithmic in time increase in the noise ��n2��; result �107� co-
incides with Eq. �100� for the case of energy-independent
scattering probabilities Tk=T. This logarithmic dependence
in the noise is due to the fluctuations in the number of elec-
trons in a finite segment of the wire.1 Analogously, the third
cumulant ��n3�� can be calculated; the �numerical� results,
shown in Fig. 4�b�, interpolate between the Poissonian value
��n3�� / �n�=1 for short times and the binomial result
��n3�� / �n�=T�1−T��1−2T� for long measuring times.

E. Finite temperature

We consider the case where particles are emitted from a
lead at finite temperature into vacuum, i.e., we assume a
single Fermi reservoir of particles �incident from the left�
which are scattered with energy-dependent transmission

T = 0.25

T = 0.5

T = 0.75
T = 1

νt

〈〈
n

3
〉〉

/
〈n

〉

1001010.10.010.001

1

0.8

0.6

0.4

0.2

0

-0.2

T = 0.25

T = 0.5

T = 0.75

T = 1

νt

F

1001010.10.010.001

1
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0.4

0.2

0

(a) (b)

FIG. 4. Fano factor F= ��n2�� / �n� in �a� and third moment ��n3�� / �n� in �b� for constant voltage with energy-independent transmission
probabilities T=0.25,0.5,0.75,1, as a function of the incident-particle number &t= teV /2�
. Note that the Fano factor approaches the
binomial value F=1−T for &t�1 whereas for &t�1 it is always close to 1 irrespective of the transmission probability T. The third cumulant
interpolates as a function of &t between the Poissonian value ��n3�� / �n�=1 �cf. Eq. �94�� and the binomial result ��n3�� / �n�=T�1−T��1
−2T� �cf. Eq. �98��. The oscillations �especially around &t�1 for T=1� are due to the sharp edge in the occupation number at k=eV /
vF.
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probabilities �to the right�. At finite temperature, scattering
states are occupied according to the Fermi-Dirac occupation
as described by the one-particle operator �= �e��H−"�+1�−1.
The characteristic function �t��� is given by Eq. �77�, with
TQ=TQt and the interval I= �x0 ,x0+vFt� defining the projec-
tor Qt �cf. Sec. VI C�. Following essentially the calculation
in Sec. VI C, i.e., calculating the determinant in basis �96�
and applying Szegő’s theorem,20,21 the result

log �t��� = tvF� dk

2�
log�1 + TknL�k��ei� − 1�� , �108�

with nL�k�= �k���k�= �e��
vFk−"�+1�−1 can be obtained for
fixed but long measurement times t. For high temperatures
at constant particle density ��→0, nL�k��e−��
vFk−"��, all
transmission eigenvalues �k=Tk / �e��
vFk−"�+1�
�Tke

−��
vFk−"� approach zero. The logarithm in Eq. �108�
can be expanded and the emission statistics for electrons
leaving a Fermi reservoir in the high-temperature regime is
given by a Poissonian statistics,44

log �t��� = �ei� − 1�tvF� dk

2�
Tke

−��
vFk−"�. �109�

The Fano factor assumes the value F=1, independent of Tk.
To complete the analysis, we discuss the extension of the

constant-voltage result with two reservoirs to finite tempera-
tures. We model the setup by two Fermi reservoirs with oc-
cupation numbers nL/R�k�= �exp���
vFk−"L/R��+1�−1 for
particles incoming from the left �L� or right �R�, respectively.
The voltage enters via the bias of the chemical potentials
eV="L−"R.

Unfortunately, it is not possible to define a projection op-
erator Q which acts after the evolution and which can emu-
late the action of the spin counter �cf. the discussion below
Eq. �67��. The reason is that there is no way to tell for a
particle outgoing to the left at time t→ whether it was
coming in from the left and was reflected at the scatterer
�hence, no counting is done with the counter to the right of
the scatterer� or whether it was coming in from the right and
has been transmitted through the scatterer �hence passing the
spin counter once�. One solution to this problem is to per-
form a first projective measurement at the initial time;27,29

this corresponds to replacing Eq. �77� by the expression

�t��� =
det�1 + !U†ei�QtUe−i�Qt�

det�1 + !�
, �110�

with the occupation operator �=! / �1+!�
=	�dk /2���k�in diag�nL�k� ,nR�k��in�k�, the single-particle
evolution U involving the scatterer but not the spin counter
�cf. Eq. �72��, and Qt a projector emulating the counting
measurement of transmitted particles via projection of the
wave functions onto the lead to the right of the scatterer. The
additional factor exp�−i�Qt�, as compared to Eq. �77�, cor-
responds to the additional measurement before the evolution.

In this paper, we want to stick with the spin counter as a
measurement apparatus. Contrary to the situation in Sec. V,
the action of the spin counter cannot be modeled by a pro-
jection onto the outgoing states, i.e., the operators U� do not
separate anymore into factors describing the scatterer and the

counter, U��e�i�Qt/2U. Therefore, we have to make use of
the full evolution operators U�, ��out

� �= �U�����, in the
presence of both the scatterer and the spin counter, where the
index “�” refers to the two spin states of the counter. The
overall evolution �cf. Fig. 5� then can be written as

U� = e�i�Qt/2Ue�i�Qt/2, �111�

where U �cf. Eq. �72�� is the evolution without accounting for
the presence of the spin counter. The generating function for
the full counting statistics assumes the form

�t��� =
det�1 + !e−i�Qt/2U†ei�QtUe−i�Qt/2�

det�1 + !�
. �112�

The two counting procedures �Eqs. �110� and �112�� agree if
the particles are only incident from the left, as the additional
counting factors, compared to Eq. �77�, contribute unity. For
particles incoming from both left and right the two counting
procedures do not necessarily coincide; only if Qt commutes
with !, we can shift the factor e−i�Qt/2 to the left of ! and then
cyclically permute the factors in the second term of the de-
terminant to assert the equivalence of Eqs. �110� and �112�.

The interpretation of Eq. �112� as the generating function
for the full counting statistics using the spin counting proce-
dure faces problems since Eq. �111� is not necessarily 2�
periodic and hence the counting may involve a noninteger
number of particles. In certain situations, however, the spin
counter nevertheless leads to sensible results. In particular,
for asymptotically long measuring times t→, the counting
projection operator Qt becomes basically diagonal in the en-
ergy or momentum basis. Commuting exp�−i�Qt /2� with !
and repeating the calculation in Sec. VI C, i.e., calculating
the determinant in basis �96� and applying Szegő’s
theorem,20,21 the result

e−iλ/2 t → −∞

eiλ/2

in
out

t → +∞e−iλ/2

FIG. 5. Sketch of incoming �t→−, above the dashed line� and
scattered �large gray box� outgoing �t→ +, below the dashed line�
states measured by a spin counter �small gray boxes� placed to the
right of the scatterer. Left-incoming and scattered states are de-
scribed by black arrows; right-incoming and scattered states corre-
spond to gray arrows. The action of the spin counter �in the up
state� is included in the expression U+ �see Eq. �111��; the evolution
U+ involves two projections, one described by exp�−i�Qt /2� at time
t→− and the second exp�+i�Qt /2� at time t→. The right �gray
arrow� incoming state at t→− acquires a phase factor exp�
−i� /2� �gray box on the right� in the first projection; this provides
the correct counting field for its transmitted part �gray box on the
left�. The phase factor of the reflected part is canceled by the second
counting operator �crossed box on the right�. The left incoming state
is unaffected by the first counting and its transmitted part acquires a
phase exp�i� /2� at time t→.
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log �t
���� = tvF� dk

2�
log�1 + Tk�nL�k��1 − nR�k���ei� − 1�

+ nR�k��1 − nL�k���e−i� − 1��� , �113�

is obtained; alternatively, result �113� can be obtained by
expanding the determinant using the relation log det�1+M�
=�k=1

 �−1�k tr Mk /k and determining the leading contribution
in each order.19 Away from the asymptotic limit �including
also the calculation of next-to-leading-order corrections� the
above commutation cannot be carried out and half-integer
charges might show up.28 A thorough discussion of the
equivalence of counting procedures �110� and �112� for finite
measuring times is still lacking.

VII. CONCLUSION

We have used the first-quantized wave-packet formalism
to calculate the generating function �N��� of full counting
statistics of fermionic particles in various physical situations,
such as N particles incident in Slater-determinant states of
rank 1 �nonentangled�, rank 2 �entangled�, or incoherent su-
perpositions of Slater determinants in Fock space with unde-
termined particle number. Our formalism captures various
features such as energy-dependent scattering probabilities as
well as time-dependent scattering and time-dependent count-
ing.

We have presented our results in determinantal form, with
further simplifications explicitly unveiling a generalized bi-
nomial statistics in various cases. Applications of our results
include a classification of possible statistical behavior of
two-particle scattering events and a particularly simple
singlet-triplet and entanglement detector. In the context of
coherent transport of noninteracting �degenerate� fermions,
the natural reference point in the discussion of statistical
properties is the binomial distribution; energy-dependent
scattering naturally shifts the noise into the sub-binomial �or
generalized binomial� regime, whereas additional correla-
tions through entanglement can generate superbinomial noise
statistics.

Our results, calculated at zero temperature, remain valid
for �−1�
vF /�, i.e., sufficiently narrow wave packets with a
small width � in real space. Furthermore, we have calculated
the generating function for the constant-voltage case in the
long-time limit for any temperature. For short measuring
times our results are valid in the temperature regime �−1

�eV and we have found a strong suppression of Pn�2 due to
Pauli blocking.

The central element underlying the appearance of a
�sub-�binomial statistics in fermionic systems is the absence
of interparticle interactions and entanglement. This result re-
mains valid for a time-dependent scattering potential and fi-
nite temperature. We have analyzed the modification intro-
duced by entanglement and have found that superbinomial
statistics may be generated. The inclusion of interaction, par-
ticularly within the scatterer where interacting particles be-
come entangled, remains an interesting open problem.
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APPENDIX: (STRONG) SZEGŐ THEOREM
(REFS. 20 and 21)

The �strong� Szegő theorem20,21 applies to Toeplitz matri-
ces and reduces the calculation of the asymptotic behavior of
their determinants to a simple integration �plus summation�
problem. We define a Toeplitz matrix starting from a
complex-valued periodic function a��� with a��+2��=a���.
In addition, we require that its winding number with respect
to the origin is equal to zero. We define the Fourier coeffi-
cients

am = �
0

2� d�

2�
a���e−im� �A1�

and the associated N�N Toeplitz matrix with elements

�AN�a��m,n = am−n �A2�

depending only on the difference between the indices m and
n �banded matrix�, m ,n=1, . . . ,N. The strong form of the
Szegő theorem21,45 states that

log det AN�a� � N�log a�0 + �
n=1



n�log a�n�log a�−n

�A3�

asymptotically for N→, with

�log a�n = �
0

2� d�

2�
log�a����e−in� �A4�

As the Fourier coefficients of log�a����. The first term in Eq.
�A3� scaling with N1 is the result of Szegő’s theorem,20,21

while its strong form applies once the sum in the second term
converges—this correction then scales with N0.

Given the Toeplitz matrix X f =S f + �ei�−1�T f �cf. Eq.
�56��, we show how to find its determinant �Eq. �57�� in the
asymptotic limit of large N. Specifying the matrix elements,

xm−n =� dk

2�
�f�k��2�1 − Tk + Tke

i��ei�m−n�ka, �A5�

we find the original periodic function x��� by calculating the
Fourier series,

x��� = �
m�Z

xmeim� =
1

a
�

m�Z
�f��� + 2�m�/a��2

� �1 − T��+2�m�/a + T��+2�m�/aei�� . �A6�

Note that, while the original function x�k�= �f�k��2�1−Tk
+Tke

i�� was defined on the real axis, the new expression
'�k�=x��=ak� is restricted to the first Brillouin zone k
� �0,2� /a�. Fourier transforming the logarithm of x��� ac-
cording to Eq. �A4�, we obtain the asymptotic expression for
the determinant,
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log det XN
f = N�

0

2� d�

2�
log�x���� + �

n=1



n�log x�n�log x�−n

+ o�1� , �A7�

consisting of a main term �N, a first correction staying con-
stant as N→, and a remaining correction o�1� vanishing as
N→. The �logarithm of the� determinant S f in Eq. �57� is
derived by setting T�0 in Eq. �A6�. Finally, we obtain the
�log of the� characteristic function by simple subtraction �we
replace the angle � on the unit circle �0,2�� by k=� /a in the
first Brillouin zone �0,2� /a�� to leading order in N,

log �N��� = Na�
0

2�/a dk

2�
log�1 − �k + �ke

i�� , �A8�

with the effective scattering probabilities

�k =

�
m�Z

�f�k + 2�m/a��2Tk+2�m/a

�
m�Z

�f�k + 2�m/a��2
. �A9�

For a function x��� which is continuous on the unit circle,
i.e., x�2��=x�0�, the sum in Eq. �A7� converges and the
corrections to Eq. �A8� are constant when N→ �and similar
for s���=�m�Z�f���+2�m� /a��2 /a in the calculation of
log det SN

f �. A more subtle situation appears in the situation
where x��� and/or s��� are discontinuous across the Brillouin
zone �Fisher-Hartwig conjecture�.43 This situation is the
usual case as the wave function f�k� is discontinuous at the
Fermi level k=0. Thus, the sum in Eq. �A7� is divergent and
the next term in the expansion of Eq. �A8� scales with log N
�cf. also Eq. �99��,

� log �N��� =
log2�x�0+�/x�0−�� − log2�s�0+�/s�0−��

4�2 log N ,

�A10�

and is followed by a constant term. Here, the number of
particles N is fixed and noise is due to partitioning; hence,
the logarithmic corrections �Eq. �A10�� have to be attributed
to partitioning �and not to fluctuations in the number of par-
ticles as for the constant-voltage result �Eq. �99���. This is
also consistent with the vanishing of correction �A10� for T
=1 where x���=ei�s��� and x�0+� /x�0−�=s�0+� /s�0−�.
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