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The nonlocal dielectric-response theory is extended to describe oblique reflection of light from quantum
wells subjected to the magnetic field. This allows us to calculate the dispersion and polarization of the
exciton-polariton modes in semiconductor microcavities in the presence of a magnetic field normal to the plane
of the structure. We show that, due to the interplay between the exciton Zeeman splitting and TE-TM splitting
of the photon modes, four polariton dispersion branches are formed with a polarization gradually changing
from circular in the excitonlike part to linear in the photonlike part of each branch. Faraday rotation in quantum
microcavities is shown to be strongly enhanced as compared with the rotation in quantum wells.
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I. INTRODUCTION

Cavity polaritons are half-light half-matter quasiparticles
resulting from the strong coupling of the photon mode of a
microcavity with an exciton resonance of the embedded
semiconductor structure.1 Being mixed exciton-photon qua-
siparticles, the cavity polaritons have integer spins and can
reveal bosonic properties2 responsible for a number of inter-
esting effects both predicted and observed, namely, stimu-
lated scattering,3 polariton lasing,4 Bose-Einstein
condensation,5,6 superfluidity,7,8 etc. Many important proper-
ties of the polaritonic systems are connected with their spin
degree of freedom.9 It was shown that an external magnetic
field strongly affects nonlinear dynamics of the polaritons
and optical properties of polariton condensates. Recently, the
magnetic field induced suppression of polariton superfluidity
and the so-called “spin Meissner effect” have been
predicted.10

For understanding the rich variety of nonlinear phenom-
ena induced by magnetic field in microcavities, a thorough
knowledge of the linear properties of magnetopolaritons �i.e.,
polaritons subject to a magnetic field� is needed. Although
the problem on the surface seems simple, it becomes really
complex if the polarization of light is included into consid-
eration. In particular, to the best of our knowledge, there was
no accurate analysis of the dependence of eigenenergies of
exciton-polariton modes and their polarization on the mag-
netic field. The present paper is aimed at filling the apparent
gap in the theory of cavity polaritons. We expand the nonlo-
cal dielectric-response theory to describe oblique reflection
and transmission of light through quantum wells �QWs� in
the presence of the magnetic field normal to the QW plane.
We present also the transfer-matrix calculation of the
eigenenergies and polarization of exciton-polaritons account-
ing for the TE-TM splitting of cavity modes. Finally, Fara-
day rotation of the polarization plane of light passing through
the microcavity is analyzed.

The polarization of cavity polaritons depends on many
factors. In the absence of the external magnetic field, the
exciton-polariton states having a nonzero in-plane wave vec-
tor �k�0� are linearly polarized due to the long-range
electron-hole exchange interaction11 and TE-TM splitting of
the photonic mode of the cavity.12 Application of a magnetic
field normal to the QW plane �Faraday geometry� results in
the Zeeman splitting of the exciton doublet and thus changes
the polarization of the polariton eigenstates from linear to
elliptical or circular. As the bare photonic modes are unaf-
fected by the magnetic field, the degree of circular polariza-
tion of exciton-polariton states is strongly dependent on the
relative weights of photonic and excitonic components
within the given polariton state. In strong magnetic fields
these weights are field dependent due to the shrinking of the
wave function of the relative motion of the electron and hole
in the real space, resulting in an increase in the exciton-
photon coupling strength. The interplay between these phe-
nomena has not been addressed in its complexity to the best
of our knowledge.

Experimentally, the magnetic field effect on the spectrum
of exciton-polaritons in microcavities has been studied in
1990s by several groups.13–15 The magnetic field induced
weak–strong coupling transition has been observed, and the
enhancement of the Rabi splitting of the exciton-polariton
modes with the magnetic field increase has been measured
by means of cw and time-resolved optical spectroscopies.
The shape and polarization of the polariton dispersion curves
have not been studied, however. Later on, mixing of the
bright-polariton and dark exciton states due to the magnetic
field applied in the cavity plane has been studied using the
polarized photoluminescence16 and time-resolved Kerr
rotation17,18 techniques. Theoretically, the dispersion of
exciton-polaritons in microcavities in the absence of the
magnetic field has been described in the 1990s;19,20 the mag-
netic field effect on the exciton-photon coupling strength has
been calculated in Ref. 15, and the exciton-polariton
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longitudinal-transverse splitting has been studied in detail in
Ref. 12.

The present paper is organized as follows. In Sec. II we
calculate the reflectivity of a QW structure in the presence of
the external magnetic field applied perpendicular to the well
plane. In Sec. III we calculate the dispersion of magnetopo-
laritons in a microcavity and analyze their polarization. In
Sec. IV Kerr and Faraday effects in microcavities are dis-
cussed.

II. REFLECTION OF LIGHT FROM A QUANTUM WELL
IN THE MAGNETIC FIELD

For a heavy-hole exciton usually being the lowest energy
exciton state in a QW, the allowed spin projection Jz on the
structure growth axis is either �2 or �1, depending on the
mutual orientation of the electron and hole spins. The states
with Jz= �2 are decoupled from the cavity modes while the
coupling of the �1 states with the right or left circularly
polarized cavity photons gives rise to the polariton doublets.
In the following we shall bound ourselves to consider only
the bright states Jz= �1.

Let us consider the reflection of light incident at oblique
angle on a QW which is sandwiched between the semi-
infinite barriers and subject to the magnetic field B normal to
its plane. We shall take into account the Zeeman splitting of
the exciton resonance and neglect for a while the magnetic
field effect on the orbital motion of electron and hole in the
exciton. Then the resonance frequencies of the +1 and −1
excitons can be presented, respectively, by ��

=�0�k��g�BB /2�, where �B is the Bohr magneton, g is the
exciton g factor, and �0�k� is the exciton resonance fre-
quency given by

��0�k� = Eg
QW − EB +

�2k2

2M
, �1�

where Eg
QW is the effective band gap of the QW calculated

with allowance for size-quantization energy, EB is the exci-
ton binding energy, M is the exciton translational mass, and k
is its in-plane wave vector.

The electric field of the electromagnetic wave is presented
in the standard form E�r�e−i�t+E��r�ei�t, where the light fre-
quency � lies in the vicinity of the QW exciton resonance.
The wave equation for the vector E�r� can be written as

�2E + q2E = − 4���

c
�2�P +

1

q2grad div P� , �2�

where q=��� /c, with � being the background dielectric
constant of the material surrounding the QW, and P is the
exciton polarization induced by the electromagnetic wave. In
our further consideration we denote the structure growth axis
as z and suppose that the light propagates in the xz plane.
The electric field of TE-polarized light is parallel to the y
axis while the electric field of TM-polarized light lies in the
xz plane. Let � be the incidence angle, i.e., the angle between
z axis and light wave vector. Representing the solution in the
form E�r�=E�z�eiqxx, taking into account that qx=kx�k and
using one-dimensional Green’s function of the wave equa-

tion G�z ,z��= �i /2qz�exp�iqz�z−z���, one can reduce Eq. �2�
to the following integral equation:

E = E0ei�qzz+kxx� +
2�i

qz
��

c
�2�

−	

+	 �P +
1

q2grad div P�

eiqz�z−z��dz�. �3�

This equation should be completed by the material relation
linking the electric field and polarization. The latter can be
written assuming the nonlocal dielectric response of the QW
in the exciton resonance frequency region.21,22 In order to do
so, we remark that the amplitudes of the right and left circu-
larly polarized components, E� or P�, are related to those of
linearly polarized components by

E� = Ex � iEy, P� = Px � iPy . �4�

Note that we consider only the polarization induced by
heavy-hole exciton and do not take into account the z com-
ponent of the excitonic polarization which may be induced
due to a light-hole exciton23 so that Pz�0.

In the basis of circular polarized components, the material
equation has the form

4�P��z� =
Q��z�

�� − � − i
�

−	

+	

��z��E��z��dz� =
Q��z���

�� − � − i
.

�5�

Here ��z� is the exciton wave function taken with equal
electron and hole coordinates,

� j = �
−	

+	

��z��Ej�z��dz�, �6�

 is the homogeneous broadening of the exciton resonance
caused by the acoustic phonon scattering and the QW imper-
fections, Q=��LT�aB

3 with �LT and aB being the
longitudinal-transverse splitting and Bohr radius of bulk ex-
citons, respectively.

Equation �5� represents the generalization of the expres-
sion for the dielectric polarization within the framework of
the nonlocal model of the dielectric response for QWs with a
spin-degenerate exciton resonance. The condition Pz=0 al-
lows one to decouple the equation for the z component of the
electromagnetic field from those for the x and y components,
which read

Ex�z� = E0xe
iqzz + i

�Qqz

q2 ��

c
�2

��+ + �−�


�
−	

+	

��z��eiqz�z−z��dz�,

Ey�z� = E0ye
iqzz −

�Q

qz
��

c
�2

��− − �+��
−	

+	

��z��eiqz�z−z��dz�,

�7�

where
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�+ =
�x − i�y

�+ − � − i
, �− =

�x + i�y

�− − � − i
. �8�

Multiplying both parts of Eq. �5� by ��z� and integrating
over z from −	 to +	, one can obtain a closed set of equa-
tions for �x,y:

�x = �0x +
qz

q

i�0 − ��p

2
��+ + �−� ,

�y = �0y + i
q

qz

− ��p + i�0

2
��− − �+� . �9�

Here

��p =
2�Q

q
��

c
�2�

−	

+	 �
−	

+	

��z����z�sin�qz�z − z���dz�dz

�10�

is a shift of the exciton resonance frequency due to the light-
matter coupling effect at normal incidence in the absence of
the external magnetic field,

�0 =
2�Q

q
��

c
�2�

−	

+	 �
−	

+	

��z����z�cos�qz�z − z���dz�dz

�11�

is the exciton radiative broadening in the same conditions,
and

�0j = E0j�
−	

+	

��z��eiqzz�dz� �j = x,y� . �12�

In general, both the exciton resonance frequency and os-
cillator strength depend on the magnetic field due to the or-
bital motion of electron and hole. The magnetic field presses
an electron and a hole to each other, thus increasing its bind-
ing energy and oscillator strength.24,25 These effects are ne-
glected in the following calculation but they can be readily
taken into account by renormalizing the values of �0 and �0.

The solution of linear Eqs. �9� can be presented in the
form

�x = �x�0x + �y�0y ,

�y = �x�0x + �y�0y , �13�

where

�x = �1 +
qz

2q

��p − i�0

�+ � 1

D
, �y =

iqz

2q

��p − i�0

D�− ,

�x = −
iq

2qz

��p − i�0

D�− , �y = �1 +
q

2qz

��p − i�0

�+ � 1

D
,

D = �1 +
q

2qz

��p − i�0

�+ ��1 +
qz

2q

��p − i�0

�− �
− ���p − i�0

2�− �2

, �14�

and ����−1= ��+−�−i�−1� ��−−�−i�−1. In order to find
the reflection and transmission coefficients of the QW, we
should find the asymptotic values of the electric field far
beyond the QW. Coming back to Eq. �7� and putting z
→ �	, one easily obtains

Ex�z → � 	� = E0xe
iqzz + ie�iqzz

�Qqz

q2 ��

c
�2

��+ + �−�


�
−	

+	

��z��e�iqzz�dz�,

Ey�z → � 	� = E0ye
iqzz − e�iqzz

�Q

qz
��

c
�2

��− − �+�


�
−	

+	

��z��e�iqzz�dz�. �15�

The transmission and reflection coefficients are polarization
dependent and can be represented in the form of 2
2 ma-
trices r̂ and t̂ defined by

E�z → − 	� − E0eiqzz = r̂E0e−iqzz,E�z → + 	� = t̂E0eiqzz.

�16�

Using Eqs. �13�–�16� one obtains after simple algebra the
reflection matrix elements,

rxx =
i�0

2
� 1

�+ +
q

qz

��p − i�0

��+ − � − i����− − � − i��� ,

ryy =
i�0

2
� 1

�+ +
qz

q

��p − i�0

��+ − � − i����− − � − i��� ,

rxy = − ryx =
�0

2�−D
. �17�

The transmission and reflection coefficients are interrelated
by

tij = �ij + rij , �18�

where �ij is the Kronecker delta. Note that, due to the Zee-
man splitting of the exciton resonance into a circularly po-
larized doublet, the coupling of light with an exciton leads to
the mixing of TE and TM polarizations both in reflection and
transmission. This results in the resonant Faraday and Kerr
rotation and dichroism.17

Figure 1 shows the angle of rotation of the polarization
plane of transmitted light with respect to the polarization
plane of incident light �which is assumed to be TE polarized�
versus the angle of incidence for different energies close to
the exciton resonance for the magnetic field of 2 T �the in-
duced Zeeman splitting is 0.1 meV�. We have considered a
10 nm GaAs QW with �0=0.026 meV. The homogeneous
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broadening is 0.5 meV. The effect includes both linear-
circular dichroism and Faraday rotation. The angle of Kerr
rotation can be calculated by using the following equation,
see, e.g.,26

�K =
1

2
arctan

2 Re	ryy
� r̃xy


�ryy�2 − �r̃xy�2
. �19�

Here r̃xy =rxy /cos �. The Faraday rotation angle �F is ob-
tained by the replacement rij→ tij. For small rotations a sim-
plified equation �K�Re	rxy / �ryy cos ��
 can be applied. One
can check that the effect is strongest at the resonance and
decreases with the increasing angle of incidence. The angle
of Faraday rotation changes its sign in the vicinity of the
resonance frequencies of left-circular and right-circular po-
larized excitons. This is because the phase of the transmis-
sion coefficient of light changes its sign at the frequency of
the exciton resonance in the QW �see Eqs. �17� and �18�. In
other words, the Faraday rotation angle is proportional to the
real part of the QW response, which changes its sign in the
vicinity of resonance.

III. DISPERSION OF EXCITON-POLARITONS IN
MICROCAVITIES SUBJECTED TO THE MAGNETIC

FIELD

Let us now consider a QW embedded in the center of a
planar microcavity in the external magnetic field parallel to
the structure growth axis �Fig. 2�. We shall calculate the
dispersion of the exciton-polaritons in such a system using
the generalized transfer-matrix formalism. Then we compare
this exact approach with a simple model of coupled oscilla-
tors where exciton and photon states are represented by the
effective classical oscillators.

The eigenstates of the cavity can be found from the con-
dition that a nonzero field exists inside the cavity without
any external field. We choose the QW center as an origin z
=0 and present the electric field inside the cavity �but outside
the QW� in the form

eikx�EL
+eiqzz + EL

−e−iqzz� and eikx�ER
+eiqzz + ER

−e−iqzz� ,

�20�

respectively, on the left- and right-hand side of the QW. The
fields EL,R

� are interrelated by the transfer matrix through the
QW as follows:

T̂QW�EL
+

EL
− � = �ER

+

ER
− � . �21�

Here T̂QW is a 4
4 matrix, its explicit form is given later,
and EL,R

� are two-component columns with components
EL,x

+ ,EL,y
+ , etc. According to Fig. 3 EL

+ and ER
− can be ex-

pressed via EL
− and ER

+ by

EL
+ = r̂BEL

−eiqz�, ER
− = r̂BER

+eiqz�, �22�

where � is the width of the active layer and r̂B is a 2
2
diagonal matrix of reflection from the Bragg mirror. Note
that, at oblique incidence �qx=k�0�, its components rB,xx
and rB,yy are different. Equation �22� can be interpreted as
follows. A QW exciton creates the outgoing electromagnetic
waves EL

− and ER
+ propagating to the left and to the right,

respectively. The waves reaching the Bragg mirror acquire
the phase qz� /2; the field reflected from the mirror returns to
the QW with the phase qz� and the additional factors rB,ii.
Hence, we obtain Eq. �22� for the incoming waves. From
Eqs. �21� and �22� we arrive at the matrix dispersion equa-
tion,

T̂QW�r̂BEL
−eiqz�

EL
− � = � ER

+

r̂BER
+eiqz�

� . �23�

The considered structure is symmetric; therefore the solu-
tions of Eq. �23� can be classified as even �EL

�=ER
� in Eq.

�23� and odd �EL
�=−ER

�� with respect to the mirror reflec-
tion in the QW plane. The electric field in odd solutions is
uncoupled from the even lowest-exciton state; thus these
modes are purely photonic. On the contrary, the even-parity
cavity mode is coupled with the QW exciton to form mixed
exciton-polariton modes. The matrix Eq. �23� is equivalent to
four scalar equations. Among them, for the waves of certain
parity, only two are linearly independent. If we present the
transfer matrix in the block form

FIG. 1. �Color online� Faraday rotation angle by a single QW
versus the angle of incidence for different energies close to the
exciton resonance. ��0=1.4 eV, ��0=0.026 meV, �=0.5 meV,
and Zeeman splitting is 0.1 meV. The inset shows Faraday rotation
angle calculated as a function of energy for the same quantum well
at normal light incidence.

FIG. 2. Schematic of the microcavity with QW. Arrows show
the direction of electromagnetic field propagation inside the cavity.
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T̂QW = �T̂�11� T̂�12�

T̂�21� T̂�22�
� , �24�

where T̂�ij� are 2
2 matrices, then, for the even modes, the
dispersion equation relating the frequency � with the in-
plane wave vector k can be reduced to

det�T̂�21�r̂Beiqz� + T̂�22� − r̂B� = 0. �25�

Using the definition of reflection and transmission coeffi-

cients �Eq. �16�, one can present the blocks T̂�ij� in the form

T11
�11� = �txytxxtyx − txyrxxryx − txx

2 tyy − tyxrxxrxy + ryxtxxrxy

+ rxx
2 tyy�/� ,

T12
�11� = �tyxtxy

2 − txyryyrxx − txytxxtyy − tyxrxy
2 + ryytxxrxy

+ rxytyyrxx�/� ,

T21
�11� = �− txxtyytyx + txxryxryy + txytyx

2 + tyyrxxryx − ryx
2 txy

− rxxtyxryy�/� ,

T22
�11� = �− txxtyy

2 + txxryy
2 + txytyxtyy + tyyrxyryx − ryytxyryx

− rxytyxryy�/� , �26�

T̂�12� =
1

�
�rxytyx − rxxtyy txyrxx − txxrxy

tyxryy − txxryx ryxtxy − ryytxx
� ,

T̂�21� =
1

�
�rxxtyy − txyryx rxytyy − txyryy

ryxtxx − tyxrxx txxryy − rxytyx
� , �27�

and

T̂�22� =
1

�
�− tyy txy

tyx − txx
� , �28�

where �= txytyx− txxtyy.
In general, Eq. �25� has four solutions for each incidence

angle which corresponds to four exciton-polariton dispersion
branches. The polarization of polariton eigenmodes is deter-
mined by the electric-field complex amplitudes Ex and Ey.
The degree of polariton circular polarization is given by the
standard expression,26

�c =
2 Im	Ex

�Ey

�Ex�2 + �Ey�2

. �29�

In the absence of an external magnetic field the cross-
polarized reflection and transmission coefficients vanish,
rxy =ryx= txy = tyx=0, and Eq. �25� reduces to a couple of in-
dependent equations for TE- and TM-polarized polariton
modes satisfying the dispersion equation:25

�2rii + 1�rB,iie
iqz� = 1, �30�

where i=x �TM� or i=y �TE�. In this case exciton-polariton
modes have definite linear polarizations.

In order to demonstrate underlying physics of the light-
matter coupling, we also put forward a simplified model of

four coupled oscillators representing the TE- and TM-
polarized optical modes of empty cavity, and two excitonic
modes split by the Zeeman interaction. The effective disper-
sion equation can be written as

det�
��0�k� − E ig�BB/2 V/2 0

− ig�BB/2 ��0�k� − E 0 V/2
V/2 0 Eph

�TE��k� − E 0

0 V/2 0 Eph
�TM��k� − E

�
= 0. �31�

Here V is the Rabi splitting determined by the system param-
eters while Eph

�TE��k� and Eph
�TM��k� are dispersions of the TE

and TM bare-cavity photons.
The difference between this approach and the rigorous

formalism presented above consists in �i� neglecting of the
coupling of four polariton modes with all other light modes
in the cavity and �ii� disregarding of the polarization depen-
dence of the light-matter coupling constant V.27

Figure 3 shows the exact dispersion of cavity polaritons
for the magnetic field of 11.5 T allowing the making visible
of all peculiarities of the dispersion. This field corresponds to
the Zeeman splitting of 0.6 meV. We consider a � cavity with
a 10 nm GaAs QW �parameters are the same as in Fig. 1�.
The distributed Bragg reflectors �DBRs� are typical 20-
period GaAs /Al0.18Ga0.82As mirrors. The Rabi splitting is
�3 meV. The dispersion curves calculated from Eq. �31� are
not shown because they do not differ from the exact one in
the range of angles considered. Four branches of exciton-
polaritons having a characteristic nonparabolic dispersion are
clearly seen. The anticrossings take place between branches
having the same circular polarization. At low angles, all po-
lariton states are circularly polarized due to their strong ex-
citonic components. At high angles, the upper polariton
states are purely photonlike and, therefore, their dispersion
and polarization are governed by the TE-TM splitting.

We show the circular polarization degree of the cavity
eigenstates in the exact and approximate models for a small

FIG. 3. �Color online� Dispersion of exciton-polaritons in the
cavity in strong magnetic field B=11.5 T �g�BB=0.6 meV� calcu-
lated for the exact Eq. �25�. Green �light gray� and black mark
lower and upper polariton branches, correspondingly, and solid and
dashed lines correspond to different polarizations. Cavity width is
�=246 nm. Other parameters are the same as in Fig. 1.
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magnetic field of 0.04 T �Zeeman splitting is 2 �eV� in Fig.
4. The results match well except for the excitonlike branch
�green�. The difference is related with the fact that the dif-
ference of the exciton oscillator strengths in the TE and TM
polarizations and, hence, the difference of the coupling con-
stants was neglected in the approximate model. In this case
the excitonlike branch becomes fully circularly polarized be-
cause TE-TM splitting is determined by the photon mode
only. In the exact calculation the difference of the quantum
well reflection coefficients in TE and TM polarizations �rxx
�ryy in Eq. �17� is fully taken into account; therefore even
in the excitonlike branch the circular polarization degree de-
creases with an increase in the incidence angle. It is worth
noting that, although the eigenmodes possess a significant
degree of circular polarization, the secondary emission of the
microcavity is expected to be depolarized because the line-
widths exceed by far the Zeeman splitting.

The circular polarization degree has been calculated using
Eq. �29� in both models, the difference being that in one case
the complex amplitudes are the eigenvectors of exact system
�Eq. �25� and in the other case they are the eigenvectors of
approximate system �Eq. �31�. For such a small field, the
splittings that appear in the polaritonic branches are invisible
relative to the Rabi splitting; therefore we do not show the
corresponding dispersions.

IV. KERR AND FARADAY ROTATIONS IN QUANTUM
MICROCAVITIES

In this section we consider Kerr and Faraday effects in
quantum microcavities. It is assumed that s or p polarized
light is incident on a microcavity from the vacuum, and the
rotation of polarization plane of reflected �Kerr effect� and
transmitted �Faraday effect� waves is monitored as a function
of incidence angle.

The Kerr and Faraday rotation angles can be determined
once the matrices of amplitude reflection �transmission� co-
efficients rc,ij �tc,ij� of the whole microcavity are known. The

latter can be found from the microcavity transfer matrix T̂qmc

which, in accordance with its definition, can be recast as a
product,

T̂qmc = T̂BT̂lT̂QWT̂lT̂B, �32�

where T̂B is the transfer matrix through the Bragg mirror, T̂l
is the transfer matrix through a half of the cavity, and TQW is
the quantum well transfer matrix, determined in Eqs. �24�
and �26�–�28�. The transfer matrix through the homogeneous
layer of the thickness � /2 is diagonal and given by

T̂l = �eiqz�/2Î 0

0 e−iqz�/2Î
� , �33�

where Î is the 2
2 unit matrix.
For example, the transmission and reflection coefficients

in the s polarization can be determined from the following
system of equations,

T̂qmc�
0

1

rc,xy

rc,yy

� =�
tc,xy

tc,yy

0

0
� . �34�

Figure 5 shows calculated Faraday rotation angle at ob-
lique incidence as a function of incidence angle. The figure
clearly demonstrates that Faraday rotation angles are almost
by an order of magnitude larger than those for the Faraday
rotation in the case of a single-quantum well presented in
Fig. 1. This enhancement can be interpreted as a result of
multiple passage of a photon inside a cavity.28

Namely, consider a cavity mode as a beam of light trav-
eling back and forth inside the cavity. Let N be an average
number of photon round trips between the Bragg mirrors
made during its lifetime �N�Q, where Q is the cavity qual-
ity factor�. At each trip the polarization plane of the photon

FIG. 4. �Color online� Circular polarization degree in the case of
magnetic field B=0.04 T �g�BB=2
10−3 meV� �solid line—
exact model, dashed line—approximate model; green color �light
gray� shows excitonlike branch and black color shows photonlike
branch.

FIG. 5. �Color online� Faraday rotation angle as a function of
the incidence angle for the s polarized light. The QW and cavity
parameters are the same as before. The Zeeman splitting is 0.1 meV.
The inset shows energy dependence of Faraday rotation angle at the
same parameters at normal light incidence.
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exhibits a rotation by �� and the Faraday effect is strongly
enhanced. The observable Faraday rotation angle is smaller
than N�� because there is a finite probability for the photon
to escape cavity after any number of passages.28 The abso-
lute value of the Faraday rotation angle decreases with the
increase in the incidence angle due to the decrease in the
polariton lifetime in the cavity �assuming that the exciton
lifetime is shorter than the photon lifetime in the cavity�. In
this case, in average, the polaritons make less round trips
inside the cavity at oblique angles than at normal angle. This
tendency can be inversed in low Q-factor cavities, where the
exciton states have longer lifetimes than the photonlike
states. We note that the Kerr rotation angles �observed in
reflection geometry� are smaller than the Faraday rotation
angles because the light reflection from the microcavity is
dominated by a surface reflection of the Bragg mirror.

An inset in Fig. 5 presents the Faraday rotation angle as a
function of energy. The function shows a nonmonotonous
behavior reflecting the resonant character of light reflection
and transmission in microcavities. It can be expected that
sign of the Faraday rotation angle changes at each resonance
�i.e., at each of four polariton branch� similar to the case of
the single-quantum well shown in the inset of Fig. 1. How-
ever, due to the large broadening of the polariton modes,
only minima corresponding to the polariton branches are

seen while their fine structure is not resolved because Zee-
man splitting is smaller than the broadening of the modes.

V. CONCLUSIONS

In conclusion, we have analyzed the dispersion of the
exciton-polaritons in a microcavity subjected into the exter-
nal magnetic field, taking into account both Zeeman splitting
of the exciton and TE-TM splitting of the photonic modes.
We have shown that the polarization of the polariton eigen-
states is neither linear nor circular but elliptical, in general. It
is very sensitive to the polariton in-plane wave vector.

We have also studied theoretically the Faraday rotation in
the planar microcavities. We found that the giant Faraday
rotation due to the multiple passages of light across the quan-
tum well takes place at normal incidence while this effect is
reduced at oblique incidence angles.
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