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We investigate the spin relaxation of p-type GaAs quantum wires by numerically solving the fully micro-
scopic kinetic spin Bloch equations. We find that the quantum-wire size influences the spin-relaxation time
effectively by modulating the energy spectrum and the heavy-hole–light-hole mixing of wire states. The effects
of quantum-wire size, temperature, hole density, and initial polarization are investigated in detail. We show
that, depending on the situation, the spin-relaxation time can either increase or decrease with hole density. Due
to the different subband structure and effects arising from spin-orbit coupling, many spin-relaxation properties
are quite different from those of holes in the bulk or in quantum wells, and the intersubband scattering makes
a marked contribution to the spin relaxation.
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I. INTRODUCTION

Spintronics is continuing to attract considerable interest
because of its potential application to information
technology.1 Several spintronics devices have been proposed
that manipulate spin via spin-orbit coupling �SOC�.2–4 In re-
cent years, progress in nanofabrication and growth tech-
niques has made it possible to produce high-quality quantum
wires �QWRs� and investigate spin physics in semiconductor
nanostructures.5–7 The energy spectrum of QWR systems
with strong SOC has been extensively studied.10–21 It is well
known that, even in the absence of an external magnetic
field, the Rashba8 and Dresselhaus9 SOCs lift the spin degen-
eracy in wire subbands at nonzero wave vectors. The sub-
band structure for quantum-confined valence-band states is
particularly interesting since they are subject to an especially
strong SOC.13–22

As a long spin-relaxation time �SRT� is desirable for the
operation of spintronic devices, many investigations have
been performed to better understand the electron-spin relax-
ation in quantum structures,23–46 e.g., using the single-
particle model23,25,26,31–34 or Monte Carlo simulations.29–31

However, it was shown by Wu et al.35–39 that the single-
particle approach is inadequate in accounting for the spin
relaxation. A fully microscopic kinetic spin Bloch equation
�KSBE� theory, which takes full account of the inhomoge-
neous broadening from the Dresselhaus and/or Rashba SOC
and the effect of scattering, has been developed to study spin
relaxation.35–40 Cheng et al.46 applied this approach �exclud-
ing the Coulomb scattering� to study electron-spin relaxation
in QWR systems and showed the feasibility of manipulating
spin decoherence. Investigations of spin relaxation of holes
in QWRs are relatively limited34 even though knowledge of
hole spin relaxation in p-type QWRs is important for assess-
ing the feasibility of hole-based spintronic devices.47 The
spin-relaxation mechanism in hole QWRs can be expected to

be quite different from that in electron systems, and two-
dimensional �2D� or bulk-hole systems, due to the strong
SOC and the complex wire-subband structure. These effects
have not been addressed previously.

In this paper, we investigate hole spin relaxation in a
p-doped �001� GaAs QWR. An idealized system of quantum
wire with rectangular confinements and hard-wall potential is
considered in our calculation. First, we obtain the subband
structure by diagonalizing the hole Hamiltonian including
the quantum confinement. Here the light-hole �LH� admix-
ture is dominant in the lowest spin-split subband, but the
heavy-hole �HH� admixture becomes also important in
higher subbands due to the strong HH-LH mixing. Then we
investigate the time evolution of holes by numerically solv-
ing the fully microscopic KSBEs in the obtained subbands
with all the scattering, particularly the Coulomb scattering,
explicitly included. We find that the QWR size influences the
SRT effectively because the SOC and the subband structure
in QWRs depend strongly on the confinement. When the
QWR size increases, the lowest spin-split subband and the
second-lowest spin-split subband will get very close to each
other at an anticrossing point. If the anticrossing is close to
the Fermi surface, the contribution from spin-flip scattering
reaches a maximum and, correspondingly the SRT will reach
a minimum. Moreover, we show that the dependence of the
SRT on confinement size in QWRs behaves oppositely to the
trend found in quantum wells. It is also found that, when the
QWR size is very small, the SRT can either increase or de-
crease with hole density, depending on the spin mixing of the
subbands. However, the behavior of holes in QWRs where
the SRT increases or decreases with hole density is quite
different from the one of LHs in quantum wells with small
well width.45 These features originate from the subband
structure of the QWRs and the spin mixing which give rise to
the spin-flip scattering. The spin mixing and intersubband
scattering are modulated more dramatically in QWRs by
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changing the hole distribution in different subbands. We also
investigate the effects of temperature and initial spin polar-
ization, showing that the intersubband scattering and the
Coulomb Hartree-Fock contribution can make a marked con-
tribution to the spin relaxation.

This paper is organized as follows: in Sec. II we set up
our model and the KSBEs. Our numerical results are pre-
sented in Sec. III. We conclude in Sec. IV.

II. MODEL AND KSBE

Our investigation considers a rectangular p-doped �001�
GaAs QWR confined in both x and y directions as shown
schematically in Fig. 1. The potential height of the barrier
layer is assumed to be infinite, and the QWR size in the x �y�
direction is ax �ay�. Here the x, y, and z directions correspond
to the �100�, �010�, and �001� crystallographic directions, re-
spectively. We assume that the conduction and valence bands
are decoupled, and the effect of the split-off band is ne-
glected because the spin-orbit split-off energy in bulk GaAs
is much larger than the energy gap between the subbands
caused by the confinement considered here. Then, based on
the four-band Luttinger-Kohn model,48 the explicit matrix
form of the 4�4 bulk-hole Hamiltonian in the basis of spin-
3/2 projection �Jz� eigenstates with quantum numbers + 3

2 ,
+ 1

2 , − 1
2 , and − 3

2 can be written as49

Hh =�
Hhh S R 0

S† Hlh 0 R

R† 0 Hlh − S

0 R† − S† Hhh

� + H8v8v
r + H8v8v

b + Vc�r� ,

�1�

where Vc�r� is the hard-wall confinement potential in x and y
directions and

Hhh =
1

2m0
���1 + �2��Px

2 + Py
2�� + ��1 − 2�2�Pz

2, �2�

Hlh =
1

2m0
���1 − �2��Px

2 + Py
2�� + ��1 + 2�2�Pz

2, �3�

S = −
�3�3

m0
Pz�Px − iPy� , �4�

R = −
�3

2m0
��2�Px

2 − Py
2� − 2i�3PxPy	 , �5�

H8v8v
r =

�41
8v8v

�
�Jx�PyEz − PzEy� + Jy�PzEx − PxEz�

+ Jz�PxEy − PyEx�� , �6�

H8v8v
b =

b41
8v8v

�3 �Jx�Px�Py
2 − Pz

2�� + Jy�Py�Pz
2 − Px

2��

+ Jz�Pz�Px
2 − Py

2��	 . �7�

In these equations, m0 denotes the free-electron mass, �1, �2,
and �3 are the Luttinger parameters, E is the electric field,
and Ji are spin-3/2 angular-momentum matrices.48 H8v8v

r is
the SOC arising from the structure inversion asymmetry
�SIA� and H8v8v

b is the SOC from the bulk inversion asym-
metry �BIA�. These two terms turn out to be 1 or 2 orders of
magnitude smaller than the intrinsic SOC from the four-band
Luttinger-Kohn Hamiltonian �the first term in Eq. �1��. This
can be seen from Appendix where we present a comparison
between spin splittings due to the SIA and BIA and the split-
ting from the intrinsic SOC. Moreover, from the first term in
Eq. �1�, one can see that the LH spin-up states can be directly
mixed with the HH states by S and R, but the mixing be-
tween LH spin-up states and LH spin-down states has to be
mediated by the HH states. All the mixing is related to the
confinement. When the confinement decreases, the mixing
increases due to the decrease in the energy gap between the
LH and HH states.

We construct the KSBEs by using the nonequilibrium
Green’s-function method as follows:40

�̇k + �̇k
coh + �̇k
scatt = 0. �8�

Here �k represents a single-particle density matrix of holes
with wave vector k along the z axis. One can project �k in the
collinear spin space which is constructed by basis �s	, with
�s	 obtained from the eigenfunctions of the diagonal part of
Hh�k�. 
s�= 
m ,n�
�� with �r 
m ,n�= 2

�axay
sin� m�y

ay
�sin� n�x

ax
�eikz

and 
�� standing for the eigenstates of Jz. Then the matrix
elements in the collinear spin space �k,s1,s2

c is written as
�k,s1,s2

c = �s1
�k
s2�. Here the superscript “c” denotes the quan-
tum number distinguishing states in the collinear spin space.
One can also project �k in the “helix” spin space which is
constructed by basis ��	 with � being the eigenfunctions of
Hh�k�

Hh�k�
�� = E�,k
�� . �9�

This basis function is a mixture of LH and HH states and is
k dependent. Then the matrix elements in the helix spin
space �k,�,��

h can be written as �k,�,��
h = ��
�k
���, with the

superscript “h” denoting the helix spin space. The density
matrix in the helix spin space can be transformed from that
in the collinear one by a unitary transformation: �k

h

=Uk
†�k

cUk, where Uk�i ,	�=�	
i �k� with �	

i �k� being the ith el-
ement of the 	th eigenvector after the diagonalization of
Hh�k�.

x

y

z

FIG. 1. Schematic geometry of the QWR.
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In this paper we project the density matrix in the helix
spin space41 and then the coherent terms can be written as

�̇k
h
coh = − i�

Q
VQUk

†IQUk−q�k−q
h Uk−q

† I−QUk,�k
h�

− i�Uk
†Hh�k�Uk,�k

h� , �10�

where �A ,B�=AB−BA denotes the commutator, and IQ is the
form factor in the collinear spin space with wave vector Q
��qx ,qy ,q�. The first term in Eq. �10� is the Coulomb
Hartree-Fock term, and the second term is the contribution
from the intrinsic SOC from the Luttinger-Kohn Hamil-
tonian. IQ can be written as IQ,s1,s2

= �s1
eiQ·r
s2�
=
�1,�2

F�m1 ,m2 ,qy ,ay�F�n1 ,n2 ,qx ,ax�, with

F�m1,m2,q,a� = 2iaq�eiaq cos ��m1 − m2� − 1�

� 1

�2�m1 − m2�2 − a2q2

−
1

�2�m1 + m2�2 − a2q2� . �11�

For small spin polarization, the contribution from the
Hartree-Fock term in the coherent term is negligible38,42 and
the spin precession is determined by the SOC, �̇k,�,��

h 
coh=
−i�k,�,��

h �E�,k−E��,k�, which is proportional to the energy gap
between � and �� subbands.

The scattering terms include the hole-nonmagnetic-
impurity, hole-phonon, and hole-hole Coulomb scatterings.
In the helix spin space, the scattering terms are given by

�̇k
h
scat = �Ni �

Q,�1,�2


UQ
i 
2
�E�1,k−q − E�2,k�Uk

†IQUk−q��1 − �k−q
h �Tk−q,�1

Uk−q
† I−QUkTk,�2

�k
h − �k−q

h Tk−q,�1
Uk−q

† I−QUkTk,�2
�1 − �k

h��

+ � �
Q,�1,�2,�


MQ,�
2Uk
†IQUk−q�
�E�1,k−q − E�2,k + �Q,����NQ,� + 1��1 − �k−q

h �Tk−q,�1
Uk−q

† I−QUkTk,�2
�k

h

− NQ,��k−q
h Tk−q,�1

Uk−q
† I−QUkTk,�2

�1 − �k
h�� + 
�E�1,k−q − E�2,k − �Q,���NQ,��1 − �k−q

h �Tk−q,�1
Uk−q

† I−QUkTk,�2
�k

h

− �NQ,� + 1��k−q
h Tk−q,�1

Uk−q
† I−QUkTk,�2

�1 − �k
h��	 + � �

Q,k�
�

�1,�2,�3,�4

VQ
2 Uk

†IQUk−q
�E�1,k−q − E�2,k + E�3,k� − E�4,k�−q�

���1 − �k−q
h �Tk−q,�1

Uk−q
† I−QUkTk,�2

�k
h Tr��1 − �k�

h �T�3,k�Uk
†IQUk−qTk�−q,�4

�k�−q
h Uk−q

† I−QUk�

− �k−q
h Tk−q,�1

Uk−q
† I−QUkTk,�2

�1 − �k
h�Tr��k�

h T�3,k�Uk
†IQUk−qTk�−q,�4

�1 − �k�−q
h �Uk−q

† I−QUk�	 + h.c. �12�

in which Tk,��i , j�=
�i
�j. VQ in Eq. �12� reads VQ
=4�e2 / �0�q2+q�

2+2��, with 0 representing the static di-
electric constant and 2=4�e2Nh / �kBT0a2� standing for the
Debye screening constant. Ni in Eq. �12� is the impurity den-
sity and 
UQ

i 
2= �4�Zie
2 / �0�q2+q�

2+2��	2 is the impurity
potential with Zi standing for the charge number of the im-
purity. 
MQ,�
2 and NQ,�= �exp��Q,� /kBT�−1�−1 are the ma-
trix element of the hole-phonon interaction and the Bose
distribution function with phonon energy spectrum �Q,� at
phonon mode � and wave vector Q, respectively. Here the
hole-phonon scattering includes the hole-longitudinal optical
�LO�-phonon and hole-acoustic �AC�-phonon scatterings
with the explicit expressions of 
MQ,�
2 can be found in Refs.
38 and 44.

It is noted that in the scattering terms �Eq. �12��, the en-
ergy spectra E�,k are from Eq. �9� with full SOC included. As
discussed by Cheng and Wu, this spectrum leads to the so-
called helix statistics in the equilibrium,41 i.e., the Fermi dis-
tribution with SOC included in the energy spectrum. In most
of our previous works,35–39,44–46 the energy spectra in the
scattering terms do not include the SOC, i.e., the energy
spectra from the Hamiltonian without the SOC. The corre-
sponding equilibrium statistics is referred to as the collinear
statistics.41 It has been demonstrated that when the SOC is

weak, the collinear statistics is good enough. However, the
SOC for holes in QWR system can be very strong. There-
fore, it is important to adopt the helix statistics in this inves-
tigation.

Finally we comment on the reason we solve the KSBEs in
the helix spin space �k

h. This is because the numerical calcu-
lation becomes faster in the helix spin space. This can be
understood from the fact that even the lowest helix subband
is a mixture of many collinear basis states �s	 due to the
strong SOC. Therefore, a large number of basis states have to
be included in the calculation if we project the KSBE in the
collinear spin space.

III. NUMERICAL RESULTS

We first solve Eq. �9� to obtain the subband structure. In
Fig. 2 we show six typical energy spectra for different con-
finements. Each subband is denoted as l+ �l−� if the domi-
nant spin component is the spin-up �-down� state. One can
see from Fig. 2 that 1+ and 1− are very close to each other,
so are the subbands 2�. The spin splitting between them is
mainly caused by the SOC arising from BIA, for that the
spin splitting caused by the SOC arising from SIA is 3 orders
of magnitude smaller than the diagonal terms in Eq. �1� and
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cannot be seen in Fig. 2. The spin splitting caused by the
BIA is proportional to �Px

2− Py
2�, which disappears when the

confinement in x and y directions are symmetrical. There-
fore, l� are almost degenerate when ax=ay =10 nm. If one
excludes the SOC from the BIA and SIA, l� are always
degenerate because of the Kramers degeneracy. One also ob-
serves that when ax gets larger, the subbands are closer to
each other. Especially, in the case of ax=ay =10 nm, there
are anticrossing points due to the HH-LH mixing in the Lut-
tinger Hamiltonian. When ax keeps on increasing, the anti-
crossing point at small k between the 1� and 2� gradually
disappears. However, at large k region, the lowest two sub-
bands become very close to each other. These will lead to
significant effect on SRT.

In order to show the situation of hole’s population in these
subbands clearly, We introduce a quantity �E�, with

�E� =

�
l
�

−�

+�

dk��k,l+,l+
h − �k,l−,l−

h ��El+,k + El−,k�

2�
l
�

−�

+�

dk��k,l+,l+
h − �k,l−,l−

h �
, �13�

to represent the energy region where spin precession and
relaxation between the + and − bands mainly take place. Due
to the small spin polarization, �E� is approximately equal to
the Fermi energy at very low temperature. In Fig. 2 we plot
�E� for Nh=4�105 cm−1 and 2�106 cm−1 at T=20 K. It is
seen that �E� only intersects with the 1� and 2� subbands,
which means holes are mainly populated in 1� and 2�
subbands.50 Therefore, only the 1� and 2� subbands are
taken into account in the present investigation. Higher sub-
bands should be included if one considers higher hole den-
sity, higher temperature, or larger QWR size. It is further

noticed that the dominant spin component in 1+ �1−� state is
the spin-up �spin-down� LH state. At small k, the spin-up
�spin-down� LH admixture remains at more than 90%. More-
over, the HH-LH mixing in 2� subbands is much stronger.

After the energy spectrum is obtained, we numerically
solve the KSBEs and obtain the temporal evolution of the
hole-density matrix �k

h�t� in helix spin space. Then we project
�k

h�t� back into the collinear spin space �k
c�t� and obtain the

temporal evolution of the spin polarization

Sk
c�t� = Tr��k

c�t�J� , �14�

in which J is the operator for spin-3/2 angular momentum,
written as a matrix in the basis of z-projection eigenstates
with eigenvalues m= +3 /2, +1 /2,−1 /2,−3 /2. We include
the hole-phonon and hole-hole scatterings throughout our
computation. The material parameters of GaAs in our calcu-
lation are the same as those used in Refs. 44 and 45. The
initial condition at t=0 is set to be spin polarized with a
small initial spin polarization P which is given, in the helix
spin space, by P= �N1++N2+−N1−−N2−� /Nh where Nh is the
total hole density. Therefore, we have initial spin polarization
along all the directions in the collinear spin space. Then as
discussed in the previous papers,38 the SRT � can be defined
by the slope of the envelope of the spin polarization along
the z axis

Sz
c = �

k

Sk,z
c �t� . �15�

A. Spin-relaxation mechanisms

There are three mechanisms leading to spin relaxation.
First, the spin-flip scattering, which includes the scattering
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FIG. 2. Typical energy spectra for �a� ax

=6 nm; �b� ax=8 nm; �c� ax=10 nm; �d� ax

=12 nm; �e� ax=15 nm; and �f� ax=20 nm. ay

=10 nm. �E� at T=20 K is also plotted: solid
line for Nh=4�105 cm−1 and dashed line for
Nh=2�106 cm−1.

LÜ, ZÜLICKE, AND WU PHYSICAL REVIEW B 78, 165321 �2008�

165321-4



between l+ and l− subbands and the scattering between l+
and l�− subbands �l� l��, can cause spin relaxation. The SRT
decreases with the spin-flip scattering, with the scattering
strength being proportional to the spin mixing of the helix
subbands. Second, because of the coherent term �̇k

h 
coh, there
is a spin precession between different subbands. The fre-
quency of this spin precession depends on k and this depen-
dence serves as inhomogeneous broadening. As shown in
Refs. 35–40, in the presence of the inhomogeneous broaden-
ing, even the spin-conserving scattering can cause irrevers-
ible spin relaxation. As a result, the spin-conserving scatter-
ing, i.e., the scattering between l+ and l�+ and the scattering
between l− and l�−, can cause spin relaxation along with the
inhomogeneous broadening. At last, the spin-flip scattering
along with the inhomogeneous broadening can also cause an
additional spin relaxation.

It is seen from Fig. 2�a� that when Nh=4�105 cm−1 and
ax=6 nm, �E� only intersects with the 1� subbands and is
far away from the 2� subbands. Therefore, holes populate
the 1� subbands only. As pointed out before, the coherent
term �̇k,1+,1−

h 
coh is proportional to �E1+,k−E1−,k�. As holes are
only populating states in the small k region where the spin
splitting between 1� is negligible, the spin precession be-
tween these two states, and thus the inhomogeneous broad-
ening, is very small. Consequently the main spin-relaxation
mechanism is due to the spin-flip scattering, i.e., the scatter-
ing between 1� subbands.

In the case of larger ax and Nh as shown in Figs. 2�c�–2�f�,
where �E� is close to or intersects with the 2� subbands,
holes populate both the 1� and 2� subbands. The spin-flip
scattering here includes the scattering between 1� states, the
scattering between 2� states, and the spin-flip scattering be-
tween 1� and 2� subbands. This spin-flip scattering is still
found to be the main spin relaxation mechanism. Besides,
differing from the case of Fig. 2�a�, the coherent term
�̇k,1�,2�

h 
coh is proportional to the energy gap between 1�
and 2�, and it is much larger than �̇k,1+,1−

h 
coh. As a result,
there is a much stronger spin precession between 1� and 2�
subbands with a frequency depending on k, and the inhomo-
geneous broadening caused by this precession along with
both the spin-conserving scattering and the spin-flip scatter-
ing can make a considerable contribution to the spin relax-
ation.

B. Wire width dependence of the SRT

In Fig. 3 we plot the SRT as a function of the QWR width
in x direction, ax, for various temperatures. Here ay
=10 nm, the hole density is taken to be Nh=4�105 cm−1 in
Fig. 3�a� and Nh=2�106 cm−1 in Fig. 3�b�. It is seen from
Fig. 3�a� that in the case of low density and T=20 K, the
SRT first decreases with ax when ax�10 nm, then increases
with ax when 10 nm�ax�14 nm, and finally decreases
with ax when ax�14 nm. To understand this behavior, let us
look at the energy spectra for a wire with ax=6 and 10 nm in
Fig. 2. When the wire width increases, the energy gap be-
tween the 1� and 2� becomes smaller, and the spin mixing
in the helix subbands increases. Therefore, the contribution
from all of the spin-flip scattering increases, and the SRT

decreases with increasing ax. From this point of view, one
can expect a minimum of SRT when all of the spin mixing
reaches a maximum at the Fermi surface as we can approxi-
mately make the assumption that the spin relaxation occurs
mainly around the Fermi surface. In order to show this effect,
let us look at �E� at T=20 K for Nh=4�105 cm−1 in Fig.
2�c�. One can see that in the case of ax=ay =10 nm, the
lowest two subbands have an anticrossing and �E� is very
close to the anticrossing point. From our calculation, we find
that all of the spin mixing, including the HH-LH mixing, the
mixing between the LH up states and the LH down states,
and the mixing between the HH up states and the HH down
states, reaches a maximum because of the anticrossing. As a
result, this anticrossing point leads to a strong spin-flip scat-
tering and accounts for the minimum of SRT in Fig. 3�a� at
T=20 K as expected. When ax keeps on increasing, �E� will
move into the larger-k region and the anticrossing point will
disappear gradually as shown in Fig. 2, and the energy gap
between the lowest two helix subbands at the Fermi surface
gets larger. Therefore, the spin mixing at the Fermi surface
becomes smaller, and the SRT will slightly increase with ax.
However, when ax�14 nm, the effect of reducing the en-
ergy gap between the lowest two subbands and increasing
the spin mixing are more important and the SRT decreases
with ax again.
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We also plot the SRT as a function of ax at 100 and 300 K
in Fig. 3�a�. One finds that the SRT decreases with tempera-
ture. This could be understood as follows: first, when the
temperature increases, holes are populating the higher-k
states, for which all of the spin mixings in the 1� and 2�
subbands are stronger; second, the strength of total scattering
is enhanced. Both effects increase the contribution of spin-
flip scattering and speed up the spin relaxation.

It is seen from Fig. 2�f� that the lowest two subbands are
very close to each other in large k region. Therefore, one can
expect a very short SRT when the Fermi surface enters this
region as the spin mixing here is very large and the contri-
bution from the spin-flip scattering could be very strong. In
order to show this effect, we take the hole density to be Nh
=2�106 cm−1 to place the Fermi surface into the larger k
region in Fig. 3�b�. It is seen from the figure that the SRT
decreases monotonically with ax. This could be easily under-
stood from the fact that the LH-HH mixing increases with ax
due to the decrease in the energy gap between the LH and
HH states. In the case of ax=20 nm, the SRT is nearly 2
orders of magnitude smaller than the SRT at ax=6 nm as
expected.

In Fig. 4 we plot the SRT as a function of ax with different
ay at Nh=4�105 cm−1 and T=100 K. It is seen that, when
ay =5 nm, the SRT decreases monotonically with ax. This is
because when the confinement is strong, there is no anti-
crossing point between the lowest two subbands in the region
where holes are distributed. As a result, the SRT decreases
with ax because of the effect of reducing the energy gap
between the lowest two subbands. When ay is increased, the
anticrossing point appears and the SRT shows a minimum
similar to the case shown in Fig. 3�a�.

C. Hole density and temperature dependence of SRT

Now we turn to study the hole-density dependence of the
SRT at different temperatures and confinement sizes. In Fig.
5�a� we plot the SRT as a function of Nh at various tempera-
tures and ax=ay =6 nm. From the figure one can see that
when T�50 K, the SRT first increases then decreases with

Nh. To understand this behavior, let us look at the energy
spectrum for ax=ay =6 nm shown in Fig. 5�c�. The dashed
line in Fig. 5�c� represents �E� for Nh=12�105 cm−1 at T
=20 K. One can see that the energy gap between 1� and
2� is large because of the small QWR size. When the tem-
perature is low, �E� only intersects with the 1� subbands and
is far away from the 2� subbands. Therefore, holes populate
the 1� subbands only. The main spin-relaxation mechanism
is from the spin-flip scattering, i.e., the scattering between
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1� subbands. Furthermore, it can be seen that the 2� sub-
bands have a maximum at the wave number where the 1�
subbands intersect with �E� for Nh=12�105 cm−1 at T
=20 K. In the region where k is smaller than the intersection
point of �E� and the 1� subbands, the energy gap between
1� and 2� subbands increases, and our calculation shows
that the spin mixing of the 1� states decreases. Therefore,
when T=20 K and Nh�12�105 cm−1, the spin mixing at
the Fermi surface decreases with increase in Nh, and the SRT
increases with Nh because of the decrease in the spin-flip
scattering. In the region where k is larger than the intersec-
tion point, the energy gap between 1� and 2� subbands
decreases, and the spin mixing of the 1� states increases. As
a result, the SRT increases with Nh when Nh�12
�105 cm−1. The case of T=50 K is similar to that of T
=20 K, but the holes are distributed in a wider k region and
reach the maximum of the 2� subbands at a smaller Nh.
Therefore, the SRT begins to decrease at Nh=8�105 cm−1.
One can further see that the SRT for T=20 K is smaller than
that for T=50 K at small Nh but larger than it at large Nh.
This can be easily understood as when the Fermi wave vec-
tor is smaller than the wave vector where the maximum of
the 2� subbands occurs, the spin mixing decreases with T
and the SRT increases with T. Otherwise, the SRT decreases
with T.

We also plot the SRT as a function of Nh at 100 and 300
K in Fig. 5�a�. One finds that the SRT decreases with Nh.
This can be understood as follows: first, holes are populated
at high-k states that are larger than the wave vector where the
maximum of the 2� subbands occurs, and the spin mixing
increases with Nh; second, due to the larger temperature, the
holes are also distributed in 2� states. Therefore, the spin-
flip scattering includes not only the scattering between 1�
subbands but also the intersubband spin-flip scattering, i.e.,
the spin-flip scattering between 1� and 2� subbands. The
strength of this intersubband spin-flip scattering is enhanced
with the increase in Nh because of the increase in the hole
population in 2� states. Both effects increase the contribu-
tion of spin-flip scattering and boost the spin relaxation.

The results shown in Fig. 5�a� are quite different com-
pared with those of LHs in quantum wells with small well
width where the SRT decreases monotonically with Nh at
low temperature but increases with Nh at high temperature.45

The difference originates from the fact that the energy spec-
trum of the QWR is modulated dramatically by the QWR
size, and one can modulate the spin mixing strength by
changing the region where holes are distributed. In order to
better show this modulation, we also plot the results of ax
=ay =10 nm in Fig. 5�b�. In this situation the energy gap
between the lowest two subbands gets smaller as shown in
Fig. 2�c�, and consequently both the spin mixing and the
strength of the intersubband spin-flip scattering increase with
Nh like the case of T�100 K in Fig. 5�a�. Therefore, the
SRT decreases with Nh as expected. The case of Nh�5
�105 cm−1 is not calculated in Fig. 5�b� as higher subbands
should be included when Nh�5�105 cm−1 and T�200 K,
while only the 1� and 2� subbands are taken into account
in our investigation.

To see more detail of how the temperature affects the spin
relaxation, we plot in Fig. 6 the SRT as a function of T with

the QWR size of ax=ay =6 nm. When Nh=4�105 m−1, the
SRT first increases then decreases with T for the reason men-
tioned in the paragraph above. When Nh=2�106 m−1, one
can see a fast decrease in the SRT around T=100 K. To
understand this behavior, we plot the hole distribution in the
2� subbands in Fig. 6, from which one can see a fast in-
crease in population in the 2� subbands around T=100 K,
as the energy scale of the gap between the 1� and 2� sub-
bands is close to kBT of T=100 K. This fast increase in the
hole occupation in the 2� subbands leads to an increase in
intersubband spin-flip scattering which accounts for the fast
decrease in the SRT around T=100 K. To further reveal the
contribution of intersubband scattering, we plot the results
which exclude the intersubband hole-phonon scattering and
intersubband hole-hole scattering as dashed curves in Fig. 6.
One finds that the fast decrease in the SRT around T
=100 K disappears. We also plot the results without the co-
herent term but including all the scattering as the chain
curve. One can see that when T�100 K and the holes are
populated at the 1� subbands only, the chain curve coincides
with the solid curve for that the coherent term only includes
�̇k,1+,1−

h 
coh which is negligible. When T�100 K and holes
populate both the 1� and 2� subbands, there is difference
between the chain curve and the solid curve which is due to
the inhomogeneous broadening in the coherent term
�̇k,1�,2�

h 
coh. This inhomogeneous broadening, together with
the intersubband scattering, can cause spin relaxation as dis-
cussed in Sec. III A. However, the difference between the
chain and the solid curves is small. This indicates that the
contribution of this spin-relaxation mechanism is not as im-
portant as the contribution from the spin-flip scattering.

D. Spin-polarization dependence of SRT

Finally, we investigate the initial spin-polarization depen-
dence of the spin relaxation. In Fig. 7 we plot the SRT as a
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function of hole density for both low- and high-spin polar-
izations with different QWR sizes at T=100 K. It can be
seen from the figure that the SRT of the case with high spin
polarization is larger. This originates from the Hartree-Fock
contribution of the hole-hole Coulomb interaction, which
serves as an effective magnetic field and can effectively re-
duce the spin relaxation at large spin polarization.38,42

IV. CONCLUSION

In conclusion, we have investigated the spin relaxation of
holes in p-type GaAs QWRs. The SRT is calculated by nu-
merically solving the fully microscopic kinetic spin Bloch
equations in the helix spin space. Differing from our previ-
ous works in n-type quantum-well and QWR
systems35–39,44–46 where the SOC is weak and the collinear
statistics is good enough, the helix statistics is adopted in this
investigation because of the strong SOC for holes in QWR
system. Using this approach, we have studied in detail how
the hole spin relaxation is affected by the wire size, the hole
densities, temperature, and the spin polarization. The con-
finement potential is assumed to be rectangular hard-wall
potential with infinite-depth throughout the paper. In real
sample, the SRT can be quantitatively different from our re-
sults due to the different confinements. However, the leading
features such as the strong HH-LH mixing and the anticross-
ing points will be retained,13 and the qualitative results will
remain unchanged accordingly.

We show that when holes are populated at the lowest
helix subbands 1� only, the main spin-relaxation mechanism
is the spin-flip scattering which is proportional to the spin
mixing of the helix subbands. When holes are populated in
both 1� and 2� subbands, there are three mechanisms lead-
ing to spin relaxation: first, the bare spin-flip scattering; sec-
ond, the spin-conserving scattering along with the inhomo-
geneous broadening; and third, the spin-flip scattering along
with the inhomogeneous broadening. However, the bare

spin-flip scattering is still the dominant spin-relaxation
mechanism.

The QWR size influences the SRT effectively because the
spin mixing and the subband structure in QWRs depend
strongly on the confinement. When the wire width gets
larger, the subbands are closer to each other and the spin
mixing of the subbands gets larger, therefore, the SRT de-
creases. Especially, in the case of ax=ay =10 nm, there is an
anticrossing point. If the Fermi surface happens to be close
to this point, this anticrossing point leads to a strong spin-flip
scattering which accounts for a minimum of the SRT. When
ax=20 nm, ay =10 nm, the anticrossing point at small k be-
tween the 1� and 2� disappears. However, at large k, the
lowest two subbands become very close to each other. If we
take the hole density to be Nh=2�106 cm−1 to place the
Fermi surface at this large k region, the SRT is nearly 2
orders of magnitude smaller than the SRT at small wire
width because the spin mixing here is very large and the
contribution from the spin-flip scattering is very strong.

The hole density influences the SRT by modulating the
strength of spin mixing and the strength of intersubband
spin-flip scattering. In most of the cases we considered the
strength of spin mixing and the intersubband scattering in-
crease with Nh as the holes are populated in high-k states. As
a result, the SRT decreases with Nh. However, when the con-
finement is very strong and the energy gap between 1� and
2� is large, there is a small region where the spin mixing
decreases with k. If we choose a small Nh and a low tem-
perature to make the holes be distributed in this small region
only, one finds that the SRT increases with Nh because of the
decreasing spin mixing.

The influence of temperature on the SRT is similar to the
case of the hole-density dependence. The strength of both the
spin mixing and the spin-flip scattering increases with T, and
the SRT decreases with T. Especially, when the energy scale
of the gap between the 1� and 2� subbands is close to kBT,
there is a fast increase in the distribution on the 2� sub-
bands, which leads to an increase in intersubband spin-flip
scattering and leads to a fast decrease in the SRT. This de-
crease in the SRT also proves that the intersubband spin-flip
scattering makes a marked contribution to the spin relax-
ation. We further show that the Hartree-Fock term increases
with spin polarization and can reduce the spin relaxation.
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APPENDIX: A COMPARISON OF BIA, SIA, AND THE
INTRINSIC SOC

The SOC contributions for holes arising from the BIA and
SIA can be obtained by quasidegenerate perturbation theory

10
0

10
1

0 1 2 3 4 5

Nh (10
5

cm
-1

)

τ
(p

s)

FIG. 7. SRT vs the hole density Nh at different QWR sizes and
initial spin polarizations. The solid �dashed� curves are the results
obtained for an initial spin polarization P=2.5% �40%�. �: ax=ay

=6 nm; �: ax=ay =10 nm. T=100 K.

LÜ, ZÜLICKE, AND WU PHYSICAL REVIEW B 78, 165321 �2008�

165321-8



�Löwdin partitioning� from the extended Kane model.49 For
an external electric field along the x direction, the dominant
terms of the SIA contribution can be written, in an explicit
matrix notation, as follows:49

H8v8v
r =

�41
8v8vEx

� �
−

3

2
Py −

�3

2
iPz 0 0

�3

2
iPz −

1

2
Py − iPz 0

0 iPz
1

2
Py −

�3

2
iPz

0 0
�3

2
iPz

3

2
Py

� .

�A1�

The coefficient �41
8v8v for GaAs is −1.462�10−19 e m2 and is

2 or 3 orders of magnitude smaller than the off-diagonal
terms in Eq. �1�.49 Besides, this term couples the two LH
states directly while in Eq. �1� the two LH states can only
mix with each other mediated by the HH states. However,
this direct coupling is still very small compared to the intrin-
sic mixing due to the first term in Eq. �1�. To show this, we
study a simplified case including only the lowest eight col-
linear subbands of 
1,1 ,�� and 
1,2 ,�� with �= �

3
2 and �

= �
1
2 , and we use the second-order Löwdin partitioning to

convert this 8�8 matrix expanded by Eq. �1� to a block-
diagonal form in which the off-diagonal matrix elements be-

tween 
1,1 , �
1
2 � and the other states are zero. Then the ef-

fective coupling between these two lowest LH states can be
written as

H1/2,−1/2
�2� =

�1,1, 1
2 
S†
1,2, 3

2��1,2, 3
2 
R
1,1,− 1

2�
E1,1,1/2 − E1,2,3/2

+
�1,1, 1

2 
R
1,2,− 3
2��1,2,− 3

2 
 − S†
1,1,− 1
2�

E1,1,1/2 − E1,2,−3/2

=
�2

2m0

64�2�3k

a�3�1 − 13�2�
, �A2�

in which we assume ax=ay =a for simplicity. Then we com-
pare this term to the coupling between 
1,1 , �

1
2 � contributed

by SIA, and find
�41

8v8vExk

H1/2,−1/2
�2� =4.1�10−3 when a=6 nm and Ex

=100 kV /cm �in experiments with quantum wells, the val-
ues of Ex are typically of the order of several kV/cm�.51

Therefore, the contribution from SIA is very small.
The SOC contribution from the BIA is also very small.

The BIA coefficient b41
8v8v in Eq. �7� is −8.193

�10−29 eV m3 for GaAs �Ref. 49� and is 1 order of magni-
tude smaller than the intrinsic mixing due to the first term in
Eq. �1�. Furthermore, when only the lowest four collinear
states �two for HHs and two for LHs� are included, one finds
from Eq. �7� that only the third term is nonzero. However,
the third term is diagonal and does not contribute any cou-
pling. Therefore, the spin coupling due to the BIA contribu-
tions must be mediated by higher collinear states.
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