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Effects of strong electric fields on hopping conductivity are studied theoretically. Monte Carlo computer
simulations show that the analytical theory of Nguyen and Shklovskii �Solid State Commun. 38, 99 �1981��
provides an accurate description of hopping transport in the limit of very high electric fields and low concen-
trations of charge carriers as compared to the concentration of localization sites and also at the relative
concentration of carriers equal to 0.5. At intermediate concentrations of carriers between 0.1 and 0.5, computer
simulations evidence essential deviations from the results of the existing analytical theories. The theory of
Nguyen and Shklovskii also predicts a negative differential hopping conductivity at high electric fields. Our
numerical calculations confirm this prediction qualitatively. However the field dependence of the drift velocity
of charge carriers obtained numerically differs essentially from the one predicted so far. Analytical theory is
further developed so that its agreement with numerical results is essentially improved.
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I. INTRODUCTION

Hopping conduction in solids governed by strong electric
fields is in the focus of intensive theoretical and experimental
studies since several decades �see, for instance, chapter 7 in
Ref. 1 and references therein�. In recent years, particular in-
terest to this research area has been caused by growing de-
vice applications of amorphous organic and inorganic mate-
rials in which the incoherent hopping transitions of charge
carriers between spatially and energetically distributed local-
ized states dominate the optoelectronic phenomena �see, for
instance, Ref. 2 and references therein�. One of the mostly
discussed topics is whether the negative differential conduc-
tivity �NDC�, i.e., the decreasing conductivity with increas-
ing electric field, is possible in the hopping regime. The dis-
cussion was, to much extent, provoked by the reports on the
apparent decrease in the drift mobility with rising electric
field at relatively high temperatures and low-field strengths
in disordered organic materials.3–10 This apparent decrease in
the mobility with increasing electric field was reported to be
succeeded by the increase in the mobility at higher-field
strengths. However, the self-consistent effective-medium
theory for drift and diffusion at low electric fields11 does not
show any decrease in the mobility with increasing field. Fur-
thermore, it has been shown experimentally12 and
theoretically13 that the apparent decrease in the mobility with
rising field at low-field strengths is an artifact. The experi-
mental data were obtained by the time-of-flight technique, in
which charge carriers are created close to one surface of a
sample with a given thickness L and the transient time �tr is
measured, which is needed for charge carriers to reach the
opposite surface of the sample at a particular strength of the
applied electric field F. Then the drift mobility is calculated
as �=L / ��trF�. However, at high temperatures and low elec-
tric fields the current transients in the time-of-flight experi-
ments are determined mostly by diffusion of charge carriers

rather than by their drift. Therefore, by using the drift for-
mula one strongly overestimates the mobility. It is the pres-
ence of the field strength in the denominator that leads to the
apparent “increase” in the mobility at decreasing F.12,13 If
one uses at low fields and high temperatures the diffusion
formulas instead of the drift ones, then no decrease in the
mobility with increasing field can be claimed at low electric
fields.12,13

This result does not exclude, however, the possibility of
the NDC in the hopping regime. Böttger and Bryksin14 and
Shklovskii and co-workers15,16 suggested analytical theories
for the mobility and conductivity decreasing with increasing
electric field in various disordered materials. Remarkably,
this effect of the negative differential conductivity is to be
expected at high-field strengths. This regime succeeds the
very strong increase in the mobility with rising field15,16 and
does not precede it at lower fields as claimed on the basis of
the drift equations.3–10

The decreasing conductivity with increasing electric field
at high-field strengths has been observed experimentally for
hopping transport in lightly doped and weakly compensated
crystalline silicon.17–19 The hopping transport mode in such
systems at low electric fields had been described theoreti-
cally in all detail,20 which made these systems particularly
attractive for studying the new non-Ohmic effects. Shk-
lovskii and co-workers15,17–19 developed an analytical theory,
which predicted the NDC effect in the lightly doped weakly
compensated semiconductors. The experimental observations
in lightly doped and weakly compensated crystalline silicon
appear in qualitative agreement with his theoretical predic-
tions. Furthermore computer simulations of Levin et al.21

confirmed qualitatively the existence of the NDC effect, al-
though no quantitative comparison with the analytical
theory15 has been attempted. Recent interest in the NDC ef-
fect has been caused by its importance for construction of
memory devices. These devices typically contain conducting
particles embedded into a nonconductive material. For such
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devices, made from both inorganic22,23 and organic24–28 ma-
terials, NDC and switching phenomena have been reported.
Since electrical conduction in the materials, which are cur-
rently tried for device applications, is dominated by hopping
of charge carriers, it is necessary to study the possibility of
the NDC in this regime in more detail.

In the present paper we report on the theoretical study of
hopping transport in high electric fields. In Sec. II we de-
scribe the theoretical model and briefly outline the analytical
approach suggested by Nguyen and Shklovskii15 for the limit
of extremely high electric fields. In Sec. III we present our
results obtained by straightforward Monte Carlo �MC� com-
puter simulations and show the range of applicability for the
analytical theory of Nguyen and Shklovskii. In Sec. IV we
further develop the analytical theory whereby we improve its
agreement with the results of computer simulations. In par-
ticular, the analytical dependence of the drift mobility on the
concentration of charge carriers comes in better agreement
with the simulation results. Section V is dedicated to the
NDC. A numerical algorithm has been developed to study
the NDC effect theoretically. Numerical results obtained in
the framework of this algorithm confirm qualitatively the
conclusion of Nguyen and Shklovskii on the possibility of
the NDC in the hopping regime. However, the field depen-
dence of the drift velocity of charge carriers obtained nu-
merically differs essentially from the one predicted so far.15

We suggest in Sec. V a further development of the analytical
theory, improving essentially its agreement with numerical
results. Concluding remarks are gathered in Sec. VI.

II. MODEL AND THEORETICAL BACKGROUND

Aiming to clarify whether the NDC effect is inherent for
the hopping transport regime, we consider first, following
Nguyen and Shklovskii,15 the simplest possible model—a
three-dimensional array of isoenergetic sites with a random
spatial distribution with the concentration N. Each site can be
either empty or occupied by a single electron. Energies of
electrons are equal on all sites so that no energy disorder and
no electron-electron interactions between different sites are
taken into account. Only in the final part of Sec. V we study
the effect of the energy disorder on the NDC. An electric
field F= �−F ,0 ,0� is put along the negative direction of the
axis X, so that the drift velocity of the negatively charged
electrons is directed along the X axis. Conduction takes place
due to tunneling hops of electrons between the localization
sites. The rate �ij for an electron hop from site i to site j is
determined as

�ij = �0 exp�−
2dij

a
� f� eF�xj − xi�

kT
�ni�1 − nj� , �1�

where dij is the distance between the sites, a is the localiza-
tion length, e is the elementary charge, k is the Boltzmann
constant, T is the temperature, and ni ,nj are the occupation
factors of the sites �ni ,nj � �0;1��. The function f is related
to the energy gain or the energy loss during the jump,

f��� = 	1, if � � 0,

exp��� , if � � 0.



In the limit of infinite electric field, the factor f�eF�xj
−xi� /kT� reduces to the Heaviside’s function ��xj −xi�.

Below we will assume that �0=e=1. As a measure of
length, we introduce the typical distance between the neigh-
boring sites R=N−1/3.

Using this simple model, Nguyen and Shklovskii15

showed analytically that the effect of the NDC is inherent for
hopping transport. Let us consider briefly their arguments
starting from the case of infinitely high fields F and ex-
tremely small electron concentrations ne. Under such circum-
stances each electron can be treated independently from the
others and electrons can move only toward the increasing
values of their x coordinate. In Fig. 1 this is the direction to
the right. At each jump, an electron moves along the axis X
to a distance �R, so that its drift velocity can be estimated as
v�R / �̄, where �̄ is an average time between jumps �dwell
time�. A dwell time �i for hopping from the site i is of the
order of exp�2ri /a�, where ri is the distance from site i to its
nearest neighbor “to the right,” i.e., with coordinate x larger
than xi. In other words, ri is the maximum radius of a hemi-
sphere centered at the site i that does not contain any other
sites �Fig. 1�a��. If ri is much larger than R �the typical dis-
tance between the neighboring sites�, such an empty hemi-
sphere can be considered as a trap for electrons. The contri-
bution of traps with radii in the range �r ,r+dr� to the
average dwell time �̄ is proportional to ��r�=exp�2r /a� and
also to the probability of the corresponding configuration of
sites p�r�dr=2�Nr2 exp�−2�Nr3 /3�dr,

�̄ = �
0

	

��r�p�r�dr = �
0

	

2�Nr2 exp�2r

a
−

2�N

3
r3�dr .

�2�

This integral is easy to evaluate, taking into account that the
integrand has a sharp maximum at r=rm
1 /��Na. Conse-
quently one obtains for the current density j=nev

jF→	,ne→0 �
neR

�̄
� ne�a3R�1/4 exp�−

4

3��
�R

a
�3/2� . �3�

Therefore, one can conclude that in the limit F→	 ,ne→0
the current is determined by hemispherical traps �Fig. 1�a��
with an “optimal” radius rm=1 /��Na.

ix

r

x

F(a)

h

r

F(b)

FIG. 1. Shape of optimal traps for the �a� infinite and �b� finite
electric fields. The dotted path in �a� is forbidden at infinite fields
but provides an escape route at finite fields.
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In the case of finite electric fields, a hemispherical trap is
not an efficient one because an electron has a possibility to
move in the energetically unfavored directions and thus to
escape the trap �for example, along the dotted arrows in Fig.
1�a��. According to Nguyen and Shklovskii,15 an “optimal”
trap for an electron in large although finite electric fields F
consists of a hemisphere to the right and of a cone to the left
of the site on which an electron is captured, with a chain of
sites along the X axis that provides an easy path into the trap
�Fig. 1�b��. The height h of the cone is chosen so that it is
equally hard to escape the trap in all directions taking the
chain along the X axes into account; h=2rkT /Fa. Therefore,
the smaller is the field, the larger is the volume of a trap with
the same dwell time and consequently the smaller is the
probability p�r� of finding such a trap. It means that the
average dwell time �̄=�0

	��r�p�r�dr decreases with decreas-
ing field strength, and concomitantly the current density j
�neR / �̄ increases with decreasing field. This is the essence
of the physical mechanism that causes the NDC effect.15 To
obtain an expression for the current density, one can substi-
tute the volume of the trap shown in Fig. 1�b�, Vtrap= �1
+kT /Fa�2�r3 /3, instead of the hemispherical trap volume
2�r3 /3 into the integral �2�. The result reads

jne→0 � ne�a3R�1/4 exp�−
4

3��
�R

a
�3/2�1 +

kT

Fa
�−1/2� .

�4�

This is the mathematical expression for the NDC. The ap-
proach leading to this expression is applicable only for fields
F
kT /R. In smaller fields, the assumption that almost every
jump is directed along the axis X is violated. Therefore one
should expect that Eq. �4� overestimates the current density
for F�kT /R.

Equations �3� and �4� are valid only if the concentration of
electrons ne is small as compared to the concentration of
optimal traps nm=N exp�−NVtrap�rm��. In the opposite case
nm�ne�N, the optimal traps are almost always occupied
and play a negligible role. In such a case the most important
traps, which determine the drift velocity of electrons, are the
ones whose concentration is equal to ne. One can estimate
the electron drift velocity as v=1 /��rn�neS, where rn is the
radius of the most important traps, ��rn� is their dwell time,
and S is their capture cross section. Assuming that S�R2


N−2/3, one obtains for the current flow j=nev
�N2/3��rn�−1. For an infinitely large field, the radius rn is
defined via

ne = N exp�− NVtrap�rn�� 
 N exp�−
2�N

3
rn

3�
that gives rn=R� 3

2� log N
ne

�1/3. Consequently, the current den-
sity is15

jF→	, nm�ne�1 �
N2/3

��rn�
� N2/3 exp�−

2

a
� 3

2�
log

N

ne
�1/3� .

�5�

The corresponding expression for the concentration range
nm�ne�N in the case of finite electric fields was also ob-

tained by Nguyen and Shklovskii �see Eq. �11� in Ref. 15�.
The case of almost filled sites ne�N is similar to the case of
almost empty sites ne�0 due to electron-hole symmetry. The
current density is a symmetrical function of the electron con-
centration; j�ne�= j�N−ne�.

Nguyen and Shklovskii15 also emphasized that a special
consideration is needed for the case of half-filled system ne
=N /2. They have shown that the concept of directed perco-
lation can be used to obtain the current density at infinitely
high electric fields. In the half-filled system the trapping of
electrons does not play any role because �due to the electron-
hole symmetry� it does not change the electron concentration
on the infinite cluster which is responsible for the current.
Current is determined by electron jumps to distances d
� �rc

d ,rc
d+a /2�, where rc

d is the percolation threshold of a
directed-percolation problem. The number of pairs of sites
with distances d� �rc

d ,rc
d+a /2� in the infinite cluster per unit

area is 1 /L�
2 , where L�=R�2rc

d /a��� is a transversal correla-
tion length of the percolation cluster and �� is a critical
index.15 The current density is equal to15

jF→	, ne=1/2 �
1

L�
2 ��rc

d�
= N2/3� a

2rc
d�2��

exp�−
2rc

d

a
� . �6�

Nguyen and Shklovskii15 also obtained the value of the per-
colation threshold rc

d= �0.93
0.01�R and that of the correla-
tion length index �=1.2
0.1.

The above arguments of Nguyen and Shklovskii15 provide
an analytical theory of non-Ohmic hopping conduction based
on the concept of the trapping-determined transport. The
theory is valid for the case of large electric fields in two
concentration ranges: ne�nm and nm�ne�N. Most remark-
ably, this theory predicts the effect of the NDC. Also a theory
for the case of the half-filled system �ne=N /2� for infinitely
high electric fields �F→	� has been suggested based on the
directed-percolation approach.15

Below we present our numerical study of the field-
dependent hopping conductivity. It shows the range of valid-
ity for the analytical theory of Nguyen and Shklovskii.15 Fur-
thermore, the analytical theory is developed below in order
to improve the agreement between the analytical and numeri-
cal results.

III. MONTE CARLO SIMULATIONS FOR INFINITELY
HIGH FIELDS

In order to calculate the electron drift velocity and the
current density at high fields, we used a Monte Carlo ap-
proach. In the limit of infinitely high fields the direction of
the electron motion is prescribed. Therefore it was possible
to simulate by a Monte Carlo algorithm the motion of an
electron in an infinite medium along the field direction and
therefore to avoid any size effects. Without losing generality
one can restrict the maximal length of electron transitions
involved into the algorithm by a reasonably large value dmax.
In order to simulate the kth Monte Carlo step in the electron
motion, one has to store information only about sites inside a
layer xk�x�xk+dmax, where xk is the electron coordinate
before the kth step. We have chosen dmax=3R, which pro-
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vides a possibility to hop to 2�dmax
3 N /3�57 neighbors in

average. For all sets of parameters used in the simulation
the size of the optimal trap rm considered by Nguyen and
Shklovskii was essentially less than dmax. Therefore, the re-
striction imposed by dmax did not lead to any loss of gener-
ality. Before making the next step, the computer can forget
all the information about sites in the layer xk�x�xk+1, but it
has to get information about new sites in a layer xk+dmax
�x�xk+1+dmax. As these “new” sites did not affect the cal-
culation at all previous steps, they can be created at random.
Therefore, each Monte Carlo step includes not only the
choice of a jump but also a generation of some new sites and
deleting some “old” sites. To make their number finite, one
should restrict the system size in the directions perpendicular
to the field, i.e., in the plane YZ. A calculation domain
0�y�120R , 0�z�120R with periodic boundary condi-
tions in the plane YZ was used. The motion of a single elec-
tron was simulated within the described algorithm in order to
evaluate the drift velocity in the limit ne→0.

For finite electron concentrations, we perform simulations
in a cubic domain with size 60R�60R�60R and with peri-
odic boundary conditions for all three axes. The rates of all
possible jumps are calculated before starting the Monte
Carlo steps but without the factor ni�1−nj� related to occu-
pation. This factor determines which jumps are allowed and
which are forbidden. Information about allowed and forbid-
den jumps is updated at each step. We used a binary-tree data
structure for storing the jump rates that gives the possibility
to “switch on” and “off” jumps efficiently.

A routine Monte Carlo procedure has been used. In each
Monte Carlo step the final site for electron hops was calcu-
lated via the probabilities proportional to the hopping rates to
different sites and the time �t spent to jump was calculated
via the reciprocal of the sum of rates of all possible jumps.
Hops from an occupied site were possible to any empty one
in the direction of increasing coordinate x with the restriction
that the hop distance is less than dmax
3R. At each hopping
event the increment �x in electron x coordinate is calculated.
An outcome of the simulation is either an average velocity of
an electron

v = � �x �� �t

in the case of single electron hopping or a flow of electrons

j =
1

�
� �x �� �t

in the case of finite electron concentrations �where � is the
volume of the calculation domain�. The summation was car-
ried out over all sequential Monte Carlo steps. For simula-
tions of the behavior of a single electron in an empty system,
107 Monte Carlo steps were used for a�0.2R, 108 steps for
a=0.10R and 0.15R, and 109 steps for a=0.07R. As a result,
for a�0.15R convergence was not worse than 1%.

For finite electron concentration, 5�107 Monte Carlo
steps were used. This gave a convergence not worse than 1%
for a given realization. At a�0.1R, there were sometimes
essential differences between current densities in different
realizations. The scatter is shown by error bars in the figures.

Simulation results for the electron drift velocity v= j /ne in
the limit ne→0 are shown in Fig. 2�a� by dots as a function
of the localization length. The analytical result of Nguyen
and Shklovskii �Eq. �3�� is shown by the solid line. One can
see that Eq. �3� correctly describes the dependence of the
drift velocity on the localization length and, furthermore, it
correctly estimates the magnitude of the velocity. The con-
cept of Nguyen and Shklovskii on the hopping drift velocity
controlled by hemispherical traps is herewith confirmed.
However, there is some deviation of the simulation data from
the analytical results. To make this deviation more transpar-
ent, we plot the ratio of the simulated drift velocity to its
analytical prediction �Eq. �3�� in Fig. 2�b�. It is seen that Eq.
�3� overestimates the electron velocity by a factor of 2–5. In
Sec. IV A, some reasons for this mismatch will be consid-
ered. The analytical theory is further developed there to give
a better agreement with the simulation data. The result of the
improved theory for the drift velocity �Eq. �11�� is also
shown in Fig. 2 by the dashed line.

The dependence of the current density on the electron
concentration is shown in Figs. 3 and 4. Figure 3 shows this
dependence in a wide concentration range, in comparison
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FIG. 2. �a� Drift velocity v in the limit of infinitely large electric
field and small electron concentration as a function of localization
length a. �b� The same data divided by the velocity value predicted
in Ref. 15 �Eq. �3��.
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with the analytical results for small �ne�nm, Eq. �3�, solid
line� and intermediate �nm�ne�N, Eq. �5�, dashed line�
concentrations. One can see that the simulated concentration
dependence can be roughly divided into three parts: for very
low concentrations �ne�nm� the dependence is linear,29 in
accordance with Eq. �3�; then, for nm�ne�0.03N, it be-
comes superlinear, as described by Eq. �5�; and finally, for
ne�0.03N, this dependence is sublinear and is not described
by the theory based on the transport controlled by traps. In
Sec. IV B, we will present an analytical approach valid for
the range of parameters covering the ranges of applicability
of Eqs. �3� and �5�. The result of this developed approach is
Eq. �12� shown by dashed lines in Fig. 3.30 One can see that
it provides an accurate description of the current density for
any concentration less than 0.03N.

For ne�0.03N, the simulated values of the current density
are smaller than those predicted by the analytical theory due

to the following reason. At sufficiently large electron concen-
trations, the conducting paths are not almost empty, as is
assumed in the theory. Moreover, there are “bottlenecks” for
the current, where the electron concentration is much larger
than the mean concentration ne. In these places, the factor of
�1−nj� in Eq. �1� turns out to be important, and due to this
factor the current density is suppressed.

In Fig. 4, the simulation results are shown for the whole
range of carrier concentrations. For convenience, all values
of current density are divided by the maximum value for the
given localization length. For large localization lengths �a
�0.15R�, the concentration dependence of the current den-
sity j obeys approximately a parabolic law, j�ne��ne�N
−ne�, at concentrations in the vicinity of the half filling. One
can interpret this behavior in terms of the hopping rates,
namely, by substituting the mean occupancy ne /N instead of
ni and nj into Eq. �1�. Concomitantly, one obtains that the
contribution of each pair of sites is proportional to ne�N
−ne�. The same concentration dependence is expected then
for the current density.

Figure 5 shows the simulated dependence of the current
density on the localization length �dots� in comparison with
the analytical theory based on the concept of directed perco-
lation �Eq. �6�, solid line� for ne=N /2. Apparently, the theory
of Nguyen and Shklovskii15 correctly describes this depen-
dence within the range of current densities of almost 15 or-
ders of magnitude. However, the theory underestimates the
magnitude of the current density by approximately a factor
of 30. Further research is necessary to clarify the reasons of
this discrepancy.

IV. ANALYTICAL THEORY FOR INFINITELY HIGH
FIELDS

Our numerical studies show that although the analytical
description of hopping conduction in very strong electric
field by Nguyen and Shklovskii is qualitatively correct the
quantitative predictions differ sometimes by more than an
order of magnitude from the numerical results. In this sec-
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FIG. 3. Current density j as a function of electron concentration
ne for values of the localization length 0.2R, 0.1R, and 0.07R �from
top to bottom�. The electric field is infinitely large.
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tion, we show how to improve the accuracy of the analytical
theory.

A. Limit of ne\0

For low electron concentrations ne�nm, where nm

=N exp�− 2�
3 �R /�a�3/2� is the concentration of the optimal

traps, the prediction of Ref. 15 for the electron drift velocity
is expressed by Eq. �3�. Now we discuss several corrections
to this equation.

�1� There is a numeric factor of �4��1/4�1.88 in �̄ arising
from the evaluation of the integral �2� that should be taken
into account. It gives a factor of �4��−1/4 for the drift veloc-
ity.

�2� The mean electron displacement along the X axis ��x�
is taken equal to R in Ref. 15. We performed Monte Carlo
calculations for ��x� as a function of the localization length
a and get the following fitting expression:

��x� = R�0.385 + 0.45a2/R2� �7�

�the accuracy of fitting is not worse than 0.3% in the range
0.05�a /R�0.2�. Therefore, the drift velocity v= ��x� / �̄
gets an additional factor approximately equal to 0.5.

�3� The dwell time ��r� of a trap with a radius r is in fact
somewhat less than the value exp�2r /a� used in Ref. 15 be-
cause an electron can escape the trap by moving not only to
the nearest site to the right but also to a more distant site. A
contribution �1 of these distant sites to the escaping rate is

�1 = �
r

	

e−2r1/a2�Nr1
2dr1 = e−2r/a�Na�r2 + ar +

a2

2
� .

Then, the dwell time ��r� is a reciprocal of the sum �0+�1,
where �0=exp�−2r /a� is the rate of a jump to the nearest
neighbor,

��r� =
1

�0 + �1
=

exp�2r/a�
1 + �Na�r2 + ar + a2/2�

. �8�

For r=rm
��Na�−1/2, ��r� is approximately half of
exp�2r /a� that results in a factor of 2 in the drift velocity.

�4� The geometrical cross sections of larger traps have
larger capture cross sections for electrons than the smaller
ones. This results in different probabilities for carriers to be
captured by traps with different radii. The probability p̃�r�dr
that the next visited site will be a trap with radius in the
range �r ,r+dr� is

p̃�r�dr =
S�r�
�S�

p�r�dr ,

where p�r�=2�Nr2 exp�−2�Nr3 /3�, S�r� is a capture cross
section of a trap with radius r, and �S�=�S�r�p�r�dr is a
mean cross section. Below we will use a notation Srel�r� for a
“relative cross section” S�r� / �S�. Then, instead of Eq. �2� we
get

�̄ = �
0

	

��r�Srel�r�p�r�dr . �9�

We calculated the relative cross sections with Monte Carlo
method as ratios Ntr�r ,r+�r� / �Njp�r��r�, where Ntr�r ,r

+�r� is a number of traps with radii in the specified range
visited by an electron and Nj is a total number of electron
jumps. We used Nj =108 and �r=0.01R. The results are pre-
sented in Fig. 6. The relative cross section is almost indepen-
dent of the localization length for r�0.3R. Its dependence
on the trap radius is described by the quadratic function

Srel�r� = 0.81 + 0.36r2/R2. �10�

For the optimal traps with r=rm
��Na�−1/2 we get Srel�rm�
�a−1 in the limit a→0. According to Eq. �9�, it results in a
factor of �a−1 for the mean dwell time �̄ and, consequently,
in a factor of �a for the drift velocity.

Now we can improve Eq. �3� of Nguyen and Shklovskii
starting from Eq. �9�. Since the integrand has a sharp maxi-
mum at rm= ��Na�−1/2, we can estimate the integral approxi-
mately as

�̄ � ��rm�Srel�rm�p�rm���R3a/4�1/4N−1.

Then, using Eqs. �7�, �8�, and �10�, we get the following
expression for the drift velocity v= ��x� / �̄:

v �
�0.85 + 0.45

a2

R2��1 + �Na� 1

�Na
+� a

�N
+

a2

2
��

�4��1/4�0.81 + 0.36
R

�a
� vNS.

Here vNS= j /ne is the drift velocity corresponding to Eq. �3�.
Finally, the latter expression can be fitted �with accuracy of
about 3% for a�0.2R� by a simple formula,

v �
a

R
�1.4 + 2.1e−10a/R�vNS. �11�

This expression is to be considered as a corrected analytical
form for the drift velocity at infinitely high fields in the limit
of small electron concentration.

A comparison of Eq. �11� with the values of the drift
velocity obtained by the Monte Carlo method is shown in
Fig. 2. The difference between the analytical and simulated
results does not exceed 20%. We believe that the main source
of this small difference is some inaccuracy in determining
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FIG. 6. Relative capture cross section as a function of squared
trap radius.
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��r� by Eq. �8�. In fact, for a given trap radius there is some
distribution of the dwell times. The quantity ��r� contributing
to Eq. �9� is the mean dwell time for radius r. However, Eq.
�8� gives the reciprocal value of the mean escaping rate that
is slightly smaller than ��r�. For this reason, Eq. �11� can
slightly overestimate the drift velocity.

B. Finite electron concentration

Let us now try to improve the analytical approach at finite
although small electron concentration ne�N /2. In this case,
electron flow can be considered as a homogeneous one on
the scale of distances between the traps that determine the
transport. Hence one can express the frequency �in of elec-
tron capture by a trap as �in= jS�1− n̄�, where j is the current
density, S is the trap capture cross section, and n̄ is its mean
occupancy. Under the steady-state conditions, �in=�out,
where �out= n̄ /� is a frequency of emission of electrons from
the trap and � is a dwell time. From this equation one can get
n̄ as follows:

n̄ =
1

1 + �jS��−1 .

Since in a snapshot of the system almost all electrons are
captured by traps, the total electron concentration ne is

ne = �
0

	

n̄�r�p�r�dr = �
0

	 p�r�dr

1 + �jS�r���r��−1 . �12�

The dwell time ��r� can be estimated by Eq. �8�. In order to
find the cross section S�r�, one should note that the mean
cross section �S� is equal to 1 /N��x�. Consequently,

S�r� =
Srel�r�
N��x�

= R2 0.81R2 + 0.36r2

0.385R2 + 0.45a2 . �13�

Equation �12� with ��r� and S�r� determined by Eqs. �8�
and �13�, respectively, gives a functional dependence be-
tween the electron concentration and the current density for
any ne�N /2. Figure 3 evidences a good agreement between
Eq. �12� and the Monte Carlo calculations for ne�0.03N.

Although there is probably no simple way to resolve Eq.
�12� with respect to j analytically in the general case, it is
possible to simplify this equation in some limiting cases. For
small ne and j �ne�nm�, the unity term in the denominator of
Eq. �12� can be dropped and we get ne= j /v, where the drift
velocity v= ��x� / �̄ is determined by Eq. �11�. In the opposite
limit �ne
nm�, one can evaluate Eq. �12� as

ne � �
rn

	

p�r�dr = N exp�−
2�Nrn

3

3
� ,

where a cutting parameter rn is given by the condition
jS�rn���rn�=1. Therefore,

j =
1

S�rn���rn�
�14�

with

rn = R� 3

2�
log

N

ne
�1/3

. �15�

Equation �14�, with parameters determined by Eqs. �8�, �13�,
and �15� is the improved version of Eq. �5� by Nguyen and
Shklovskii for the concentration range nm�ne�N /2.

V. HOPPING TRANSPORT AT FINITE ELECTRIC FIELDS

So far we have considered the limiting case of infinitely
high electric fields. Let us now turn to the field dependence
of the charge-carrier velocity in order to reveal the possibil-
ity of the negative differential conductivity predicted by
Nguyen and Shklovskii.15 Equation �4� predicts a decreasing
drift velocity with increasing electric field provided that the
field is strong enough. On the other hand, for very small
fields, Ohmic transport can be expected; i.e., the drift veloc-
ity should depend linearly on the field. In order to simulate
hopping transport at finite electric fields, we solved a system
of balance equations instead of using a direct MC simulation.
In Sec. V A we describe the details of the numerical proce-
dure, while the results are presented in Sec. V B.

A. Balance equation method

We consider a cubic system �side length L� with randomly
placed sites. Periodic boundary conditions are used in all
directions. The balance equation for the occupation probabil-
ity pi of a site i has the form31–36

�
j�i

pi�ij�1 − pj� = �
j�i

pj� ji�1 − pi� . �16�

If all occupation probabilities pi are small, i.e., the charge
carrier concentration is low, the balance equation can be lin-
earized as

�
j�i

pi�ij = �
j�i

pj� ji. �17�

These equations are solved by defining

p =�
p1

p2

p3

]

�, M =�
− �1 �21 �31 ¯

�12 − �2 �32 ¯

�13 �23 − �3 ¯

] ] ] �

� , �18�

where �i=� j�i�ij is the rate of jumping out of site i. The
equation is then Mp=0, which we solve numerically. The
matrix M defined in this way is singular, which makes a
direct solution rather difficult. By replacing one of the bal-
ance equations with the normalization

�
i

pi = 1, �19�

the matrix becomes nonsingular, and the solution can be ob-
tained more efficiently. Additionally, the solution obtained in
this way is correctly normalized. After this replacement, the
equation has the form
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�
1 1 1 ¯

�12 − �2 �32 ¯

�13 �23 − �3 ¯

] ] ] �

��
p1

p2

p3

]

� =�
1

0

0

]

� . �20�

As in Sec. III, the rates for jumps longer than dmax are
assumed to be zero. Hence, it is efficient to use a sparse
storage scheme for the matrix, where only the nonzero ele-
ments are stored. We obtained the most accurate results in
the shortest time by solving the equation by LU factorization
�in MATLAB or OCTAVE with the \ operator�. This method
demands much memory and does not work for L above about
22R on a 32-bit computer.

When the steady-state occupation probabilities are
known, the average velocity of a charge carrier along the
field direction is given by

�vx� = �
i,j�i

pi�ij�xj − xi� �21�

and the mobility is then �=
�vx�
F .

B. Field dependence of the current density

The simulated dependence of the drift velocity v on the
electric field F is presented in Fig. 7. Simulations are per-
formed for 203 sites in a cubic domain with the size L
=20R in the limit of infinitely small electron concentration.
Different symbols refer to different localization lengths
and/or different realizations of the distribution of sites in the
domain. The size of the simulated system was ten times
larger than that in the simulations of Levin et al.,21 whose
computer simulations for the first time confirmed the exis-
tence of the NDC effect for hopping transport.

In the limit of small electric field FR /kT�1, simulations
show an Ohmic conductivity, i.e., v is proportional to F, in
accordance with the Miller-Abrahams concept of the resis-
tance network.20,37 With increasing field, the drift velocity
reaches a maximum value. The field strength Fm correspond-
ing to the maximum of the velocity appears to be nearly

proportional to the localization length a within the range
0.08R�a�0.2R �see Fig. 8�. At field strengths F�Fm the
NDC appears; i.e. the drift velocity drops with increasing
field. Simulations show the presence of the NDC for local-
ization lengths up to 0.3R; when the localization length is
decreased, the NDC effect becomes more pronounced.

Figure 9 shows the comparison between the simulation
results �symbols� and the predictions of Nguyen and
Shklovskii15 �Eq. �4�, dashed lines�. For better agreement
between the theory and the simulation at F→	, we take into
account the F-independent correction �11� to Eq. �4�. Some
discrepancies between the simulated and predicted drift ve-
locities remain at large fields for a=0.10R and 0.12R. We
believe that these discrepancies are due to the small size of
the simulated system. In fact, the simulated system must be
large enough to contain a reasonable number of optimal
traps. The concentration of optimal traps decreases sharply
with decreasing localization length, so that at smaller local-
ization lengths larger systems are needed. Thus, for small
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localization length �0.10R and 0.15R�, only the shape of the
simulated field dependence should be taken as representative
and not the values of the calculated velocities themselves.

The range of applicability of Eq. �4� is determined by the
condition FR /kT
1. One can see nevertheless that even
within this range the field dependence of the velocity is
much weaker than the one predicted by Eq. �4�. This result
forced us to consider another possible optimal trap shape for
the case of a finite field as compared to the one considered in
Ref. 15.

The essential feature of the optimal trap proposed by
Nguyen and Shklovskii �Fig. 1�b�� is the chain of sites along
the axis of the cone. This chain was introduced in order to
provide an easy path for an electron into a trap. The chain
affects the trap shape and volume, as it serves also as a
channel for escaping of an electron from the trap. We suggest
that at moderate localization lengths �a�0.1R� traps without
such a chain can also play a significant role. Our next aim is
to consider the shape of traps without a chain of sites and to
estimate their influence on the electron conduction.

A sketch of such a trap is shown in Fig. 10. Its shape is
defined by the condition that the rate of jumping from the
central site to any point of the trap’s surface is the same.
From Eq. �1� one can see that in the positive direction along
the axis X the trap is bounded by a hemisphere and in the
negative direction by a surface defined by the equation

F

kT
x −

2

a
�x2 + y2 + z2 = −

2r

a
, �22�

where r is the radius of the hemisphere, and the origin is
placed at the central site of the trap. The surface determined
by Eq. �22� is a quadric surface �an ellipsoid, a paraboloid, or
a hyperboloid, depending on the values of parameters�. The
volume of the trap Vtrap� is

Vtrap� �r� =
2�r3

3
�1 +

c + 2

2�c + 1�2� , �23�

where c
Fa /2kT.
To obtain the drift velocity v �or the current density j

=nev� in the assumption that the most important traps are
those shown in Fig. 10, one can proceed in the same way as
the one applied in Sec. II to get Eq. �4�; the only difference is
using Vtrap� �r� instead of Nguyen and Shklovskii’s trap vol-
ume Vtrap�r�= 2�r3

3 �1+ kT
Fa �. The result is

jne→0 � ne�a3R�1/4 exp�−
4

3��
�R

a
�3/2�1 +

c + 2

2�c + 1�2�−1/2� .

�24�

For the optimal trap radius one gets

rm =
1

��Na
�1 +

c + 2

2�c + 1�2�−1/2

.

Since Vtrap� �r��Vtrap�r�, the new trap shape gives a weaker
field dependence of the drift velocity, and a better agreement
with the data from simulations, as one can see in Fig. 9.
However, the simulated field dependence appears even
weaker than the one expressed by Eq. �24�. It leads to the
assumption that an actual optimal trap has a shape different
from both Figs. 1�b� and 10 and hence has a different vol-
ume.

To further investigate the shape of the most efficient traps,
we collect information about the trap shape from the simu-
lations. Figure 11 shows the time average of the density of
sites around the charge carrier. To calculate this density ��r�,
the space was divided into small elements of equal volume
�V; then ��r� was evaluated as a sum over pairs of sites,

��r� =
1

�V
�
i�j

pi�ij�r� ,

where pi is an occupation probability of the ith site; �ij�r�
=1 if the vector �r j −ri� belongs to the same spatial element

x

y

r

FIG. 10. Geometry of the optimal trap at finite electric fields
without a chain of sites leading into the trap.

FIG. 11. Time-averaged density of sites around the charge car-
rier for different fields at the localization length a=0.15R. The po-
sition of a charge carrier �at the origin� is pointed out by a cross.
Boundaries of optimal traps predicted in Ref. 15 �see Fig. 1� are
depicted by solid lines and the boundary of the trap sketched in Fig.
10 by the dotted line. Spatial coordinates are in units of R. The
value 2.36 kT for FR corresponds to the maximum of the drift
velocity.
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as the vector r; otherwise, �ij�r�=0. Finally, values of ��r�
were averaged over several realizations of site distributions.

Since the carrier spends the most time in the efficient
traps, the density distribution ��r� directly reflects the shape
of these traps. At high fields �Fig. 11�a�� the hemispherical
shape and the size of the trap are in an excellent agreement
with the Nguyen and Shklovskii’s theory. However, at mod-
erate fields, in the region of the NDC �Fig. 11�b��, neither
Fig. 1�b� nor Fig. 10 describes the simulated optimal trap.
The optimal trap consists in such a case of a hemisphere in
the spatial region x�0 and of a toroidal “barrier” in the
region x�0, adjoining to a periphery of the hemisphere. The
volume of the optimal trap turns out to be smaller than the
one predicted by both Eqs. �4� and �24�, in accordance with
the result that the simulated NDC effect is weaker than the
predicted one. We would like to emphasize that the numeri-
cally obtained NDC has exactly the origin predicted by
Nguyen and Shklovskii,15 consisting in spreading of the op-
timal trap into the region x�0 at finite fields and conse-
quently in the increase in the trap volume with decreasing
the field strength. The possibility of traps in the form of
clusters instead of single chains of sites has been considered
in Ref. 18. We interpret our numerical result as a confirma-
tion of that idea.

A further decrease in the electric field F results in the
washing out the empty region in the density of sites ��r�, as
shown in Fig. 11�c� for F=Fm. Finally, at small F the trap
almost disappeared �Fig. 11�d��, which points to a negligible
role of the trapping effect in the regime of Ohmic conduc-
tion.

Materials studied experimentally usually have disorder
not only in the spatial distribution of localized states but also
in the site energies.3,5,38 It is therefore necessary to check
how stable the NDC effect is with respect to energetic disor-
der. In order to study the role of the energetic disorder for the
NDC effect, we repeated the simulation in a system with a
Gaussian distribution of site energies characterized by the
standard deviation �. Figure 12 shows that introducing a
random energy for each site �with a Gaussian distribution�
decreases the drift velocity and it also decreases the height of
the peak of the velocity as a function of the electric field as
compared to systems with only spatial disorder. This weak-
ening of the NDC effect with the increase in the energetic
disorder �or with the decrease in temperature� is in agree-
ment with experimental observations.18,19 Generally, the
NDC effect is confirmed herewith also for systems with the
energetic disorder. However, at extremely large energetic dis-
order �parameter ��, the peak in the field dependence of the
drift velocity disappears completely. The effect of energetic
disorder becomes smaller at larger fields, as expected from

the fact that in the limit F→	 the hopping rates do not
depend on site energies.

VI. CONCLUSIONS

Numerical studies of the field-dependent drift velocity of
charge carriers in the hopping regime at high electric fields
confirm the prediction of the existing analytical theories14,15

that the negative differential conductivity is inherent for this
transport mode. However, the shape of the field dependence
on the current density obtained numerically differs essen-
tially from the one predicted so far.15 The analytical theory
has been improved to give a much better agreement with the
numerical results. In the limit of the infinitely high electric
fields, the predictions of the analytical theory of Nguyen and
Shklovskii15 are to much extent confirmed by our straight-
forward Monte Carlo simulations.
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