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Existing interatomic potentials for the iron-carbon system suffer from qualitative flaws in describing even
the simplest of defects. In contrast to more accurate first-principles calculations, all previous potentials show
strong bonding of carbon to overcoordinated defects �e.g., self-interstitials, dislocation cores� and a failure to
accurately reproduce the energetics of carbon-vacancy complexes. Thus any results from their application in
molecular dynamics to more complex environments are unreliable. The problem arises from a fundamental
error in potential design—the failure to describe short-ranged covalent bonding of the carbon p electrons. We
describe a resolution to the problem and present an empirical potential based on insights from density-
functional theory, showing covalent-type bonding for carbon. The potential correctly describes the interaction
of carbon and iron across a wide range of defect environments. It has the embedded atom method form and
hence appropriate for billion atom molecular-dynamics simulations.
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I. INTRODUCTION

Spanning more than ten orders of magnitude in length and
twenty in time, materials modeling is an essentially multi-
scale challenge. With different physics at each level, practi-
cal approaches are hierarchical, with well defined methods
such as density-functional theory �DFT�, kinetic Monte
Carlo �kMC�, molecular dynamics �MD�, dislocation dynam-
ics, and finite-element modeling all well developed for mod-
eling steels.

These techniques were developed independently and have
evolved to a high degree of sophistication. However, each
requires extrinsic inputs: correlation functionals, migration
energies, interatomic potentials, Peierls stress, Burgers vec-
tor, materials properties, etc. Correctly bridging the existing
hierarchy is perhaps the most challenging problem facing
multiscale modeling. This is most prominent at the interface
between DFT and MD, where an interatomic potential is
required to capture, in a few parameters, the essential physics
described by millions of variables in DFT. Ideally, the inter-
atomic potential should also be compatible with community
MD codes.1–5 Meeting these multiple constraints makes the
creation of empirical potentials a challenging and often inel-
egant task.

Steel is such an important material that it may seem sur-
prising that few good interatomic potentials have been pro-
posed. There are a number of reasons for this. Iron itself is
difficult to model due to ferromagnetism and phase transi-
tions at temperature and pressure. These two phenomena are
intimately entangled, the ambient bcc � phase is stabilized
by its ferromagnetism, the high-pressure hcp � phase is non-
magnetic, and a proper description of the high-T fcc � phase
should include paramagnetism. Including explicit magnetic
degrees of freedom is possible but undesirable: it increases
complexity and would be incompatible with current MD
codes. Consequently, previous iron potentials have confined
themselves to a single phase, typically �,6–9 modeled using
the embedded atom method10 �EAM� or a computationally
equivalent scheme.11–15 Here the energy is a species-
dependent function of a sum of pairwise interactions. This

idea dates back to the second-moment approximation to tight
binding,11,16,17 which gives clear indication of the systems
and properties where it is appropriate �primarily, close-
packed transition metals�. The absence of explicit magnetism
in such models has been justified by recent work showing
that a treatment of ferromagnetism in the two-band second-
moment tight-binding approximation gives EAM-equivalent
potentials12,18,19 but not the essential physics determining
crystal structure, i.e., the shape of the bands.20

Carbon is also problematic; neither the graphite nor dia-
mond phase is close packed but can be modeled within EAM
by ensuring that the chosen equilibrium structure is energeti-
cally saturated by four near neighbors.13–15 In iron, carbon
adopts an off-lattice position—the octahedral �O� site—
which has much lower energy than the tetrahedral �T� site.
Carbon atoms do not bond covalently to one another in the
matrix, preferring to bond directly with iron, but exhibit
covalent-type bonding in vacancies.21

A further reason for the lack of progress is that pair po-
tentials by Johnson,22 both for pure iron and carbon in iron,
were in accord with the known experimental data in the
1960’s. Recently, however, ab initio data has extended the
number of configurations for which energies are reliably
known and better parametrizations for pure iron have be-
come available.6,7 Such calculations in iron-carbon21–26 have
exposed two major failings of existing potentials.

Firstly, the carbon solvation energy �i.e., the energy re-
leased when free carbon enters solid solution� is large at
around 6 eV. In contrast to carbon, the nitrogen solvation
energy is approximately 5 eV lower.21 DFT shows that three
p-type electronic states of both carbon and nitrogen lie well
below the Fermi energy of iron.21 For nitrogen these states
are filled by three atomic p electrons whereas for carbon one
state remains unfilled. Donation from the iron d band to fill
this state provides an intuitive mechanism for the additional
solvation energy seen for carbon. This electron transfer oc-
curs whenever carbon atoms come close to solid.

The second main failing of existing iron-carbon potentials
is the absence of covalent bonding. Ab initio charge-density
data21 shows that octahedrally sited carbon forms p-type co-
valent bonds to its two near neighbors with a bond length of
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1.77 Å, and no significant bonding to second neighbors. A
tetrahedrally sited carbon shows no such bond formation. In
contrast, existing potentials stabilize the octahedral site over
the tetrahedral by having six iron-carbon bonds rather than
four. A consequence of this incorrect heuristic is that carbon
is also attracted to high-coordination defects, in conflict with
the repulsion seen between carbon and self-interstitial de-
fects in ab initio calculations.

Ab initio calculations have also provided evidence for co-
valent bonding between carbon atoms in vacancy-type
defects.21,24,26 In particular Domain et al.21 show that two
carbons in a vacancy form a dimer with a short bond length
of 1.42 Å, an additional binding of 0.56 eV �Ref. 21� above
that for two carbon atoms in separate vacancies and a build
up of charge density between the two carbons, all consistent
with covalent bond formation.

In this work we present a resolution to these problems by
incorporating the effects of solvation and covalent bonding
within the EAM framework. We first present and motivate
the functional forms we have used to model the iron-carbon
system, then discuss our fitting strategy, and finally compare
the performance of our potential with that of existing poten-
tials and with ab initio calculations.

II. INTERATOMIC IRON-CARBON POTENTIAL

The most general form for the energy, U, for EAM-type
potentials is given by

U��rab�� = �
a,b�a

V�Xa,Xb��rab� + �
a

F�Xa���a� , �1�

�a = �
b�a

��Xa,Xb��rab� , �2�

where V�Xa,Xb�, ��Xa,Xb�, and F�Xa� are parametrized functions
dependent on element types, Xa and Xb. F�Xa� represents the
local band-structure energy of atom a of type Xa. It is worth
noting that the cross-species pair potentials are assumed
identical here, i.e., V�X,Y��V�Y,X� when X�Y, but the cross-
species � functions are not equivalent in general.

In this work we confine our potential to describing the
ferromagnetic bcc � phase, taking our iron interactions, i.e.,
V�Fe,Fe��r�, ��Fe,Fe��r�, and F�Fe����, from a recent potential
fitted to a wide range of defect configurations.6 For steels the
elemental environment of carbon is irrelevant so we have not
attempted to model pure carbon here. Instead we concentrate
on modeling carbon-iron and carbon-carbon interactions
within iron.

For the iron-carbon and carbon-carbon pair potentials, we
take the universal screened electrostatic potential of Biersack
and Ziegler27 at short range connected to an empirically fit-
ted spline function with cutoff. The spline function is deter-
mined by specifying a set of function values, �f i , i� �1,n
−1��, at a set of spline points, �si , i� �1,n−1��. Continuity of
the function between these points is ensured down to the
second derivative level using polynomial interpolation func-
tions, Vi

�X,C��r�, with coefficients determined appropriately.
We use quartic polynomials for V0

�X,C� and Vn−1
�X,C�, and cubic

polynomials otherwise. In detail,

V�X,C��r� =	
ZXZCe2

4��0r
	�r/rs� r 
 s0

Vi
�X,C��r� si � r � si+1, i � �0,n − 1�

f i r = si, i � �1,n − 1�
0 r � sn = rc


 ,

�3�

where X can be either Fe or C, ZX and ZC are the atomic
numbers of species X and carbon, respectively, rs

=0.88534ab /�ZX
2/3+ZC

2/3, ab is the Bohr radius, and

	�x� = 0.1818e−3.2x + 0.5099e−0.9423x + 0.2802e−0.4029x

+ 0.02817e−0.2016x. �4�

For notational simplicity the radius at which the spline joins
the Biersack-Ziegler part is specified as s0 and the cut-off
radius, rc, specified as sn. The spline points, �si , i� �0,n��,
and the function values, �f i , i� �1,n−1��, are taken as the
adjustable parameters for the purposes of fitting.

We have modeled the large solvation energy of carbon in
iron and the associated electron transfer by requiring that the
carbon embedding function, F�C�, takes a value appropriate
for solvation whenever ��C,Fe� registers the presence of iron.
We also assign the energy from carbon covalent bonding to
F�C�, which band structure suggests is due to the carbon p
orbitals.21

The actual functional form for the carbon embedding
function is given by

F�C���� =	
0 � 
 0

F1
�C���� 0 � � 
 �1

Esol �1 � � 
 �2

F2
�C���� �2 � � 
 2�2

Esol + Ebond � � 2�2


 , �5�

where the cubic interpolating polynomials, Fi
�C�, ensure con-

tinuity of the function and its derivative. Carbon can be said
to be in solution for ���1, where we fix �1=0.001, and the
covalent bonding initiated for ���2=0.5, becoming fully
formed only when ��2�2=1. The two energies, Esol and
Ebond, which determine how much energy is gained by car-
bon upon entering solution and upon forming covalent
bonds, respectively, are the only fitting parameters from this
function.

The function, ��C,Fe��r�, had the following complementary
form for the description of solvation and carbon-iron cova-
lent bonding,

��C,Fe��r� =	
�2 r 
 r1

�1
�C,Fe��r� r1 � r 
 r2

�1 r2 � r 
 r3

�2
�C,Fe��r� r3 � r 
 r4

0 r � r4


 , �6�

where the cubic interpolating polynomials, �i
�C,Fe�, ensure

continuity of the function and its derivative between the pla-
teau regions. The radii, r3 and r4, set the range over which
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carbon dissolves in iron and have been chosen to ensure that
a substitutionally sited carbon is in solution. The radii, r1 and
r2, set the range of covalent bond formation and have been
empirically fitted here.

We implement carbon-carbon bonding through ��C,C�. A
simple-cubic form with cutoff was found to be sufficient,

��C,C��r� = a�rc − r�3H�rc − r� , �7�

where H is the Heaviside step function. The coefficient, a,
and cutoff, rc, were empirically fitted here.

Overall the above forms ensure that F�C� initially saturates
upon solvation of carbon and further saturates, following the
Tersoff and Brenner style,13–15 when carbon bonds to two
near-neighbor irons �through ��C,Fe�� or one near-neighbor
carbon atom �through ��C,C��.

Finally, we model the effect of carbon on nearby iron
atoms, through ��Fe,C�, as additional broadening of the iron d
band due to hybridization with the carbon s and p states. We
take the following saturating form,

��Fe,C��r� = 	�sat r 
 r1

�1
�Fe,C��r� r1 � r 
 r2

0 r � r2

 , �8�

where the cubic interpolating polynomial, �1
�C,Fe�, is chosen

to ensure continuity down to the first derivative. We initially
fitted with standard forms such as splines but they were
found to be less effective at modeling the data. The satura-
tion value, �sat, and the two radii were fitted empirically
here.

The resulting forms for the embedding parts of the poten-
tial are shown in Fig. 1.

III. FITTING STRATEGY

To parametrize our potential we used ab initio data21 de-
scribing the energetics and local geometries of carbon in
pure � iron, and the binding of carbon to vacancy and
�110-self-interstitial type crystal defects. This data is consis-
tent with experiment, including the binding of one and/or
two carbons to a vacancy, as a rate theory analysis28 of pos-
itron lifetime measurements29 has shown. For self-
consistency and on account of its wider database, we fit to
DFT throughout except for the solvation energy for atomic
carbon in � iron of 6.27 eV which was inferred from
experiment:30 DFT is known to give a poor description of the
free atom.

We initially fitted to data from configurations where
carbon-carbon interactions do not play a part, similar to the
strategy used by Lau et al.25 This allowed us to determine the
iron-carbon interaction parts of the potential first before pro-
ceeding to determine the carbon-carbon interactions using
the remaining data.

Constant volume relaxation was used within the fitting
procedure for consistency with the ab initio data and to favor
accurate energy reproduction �at 0 K� over that of configu-
ration geometry. Occasionally, this relaxation algorithm
failed to find the global energy minimum for a configuration
during the fit. This was especially true of those configura-
tions containing interacting �110-self-interstitial defects and
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FIG. 1. Fitted forms for the embedding functions showing the implementation of solvation and bonding via the embedding parts of our
potential. The regions associated with solvation and bonding within the carbon embedding function, F�C�, are indicated. Energies are in
electron volts and distances in angstroms.
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carbon. The problem was resolved by including the true glo-
bal minima as restart points for the relaxation algorithm and
refitting.

The final fitted parameters for our iron-carbon potential
are given in Tables I–III. The polynomial interpolation func-
tions defined earlier for the potential functions can be deter-
mined directly from these parameters.

IV. RESULTS AND DISCUSSION

In Table IV we compare the present potential with ex-
amples of pair �Johnson�,22 Finnis-Sinclair �Lau�,25 and con-
ventional EAM potentials �Raulot�.31 Our own attempts to
parametrize these forms of potential gave similar results. We
concentrate on configurations which are important in MD
and kMC, either as bound states or migration barriers.

We define the binding energy of n defects and impurities,
�Ai�, to be

Eb��Ai�� = ��
i=1

n

E�Ai�� − �E��Ai�� + �n − 1�E0� , �9�

where E�Ai� is the energy for a configuration containing Ai
only, E��Ai�� refers to a configuration containing all the in-
teracting entities, and E0 refers to a configuration containing
no defects or impurities, i.e., bulk � iron.

All potentials reproduce the relaxed ab initio geometries
around octahedrally and tetrahedrally sited carbon accu-
rately, and correctly fit the octahedral site as the more stable
of these two. The solvation energy was not fitted by Johnson

or Raulot, leading to an error of several electron volts. This
can be interpreted as an error in describing free carbon at-
oms, and so is not serious unless one is interested in deposi-
tion or sputtering. The dynamics of carbon in � iron is gov-
erned by the migration barrier energy. Resistivity recovery
measurements yield a barrier height of 0.88 eV,32 in good
agreement with ab initio values21,25 of 0.90 eV and 0.86 eV.
Only the Lau potential fails here, causing carbon to diffuse
some five orders of magnitude too fast at room temperature
and faster than vacancies. An MD simulation at 1400 K of a
2000 atom bcc iron lattice containing a single carbon atom
showed that carbon migrates exclusively from octahedral to
adjacent octahedral site via a tetrahedral intermediary with
our potential.

Positive carbon-carbon binding is not observed in the ab
initio calculations for nearby octahedral sites in � iron and
only the Johnson potential stabilizes carbon there. At longer
range carbons can interact via strain fields, an effect which
gives rise to tetragonal martensite. Correct coupling to strain
fields is important for modeling Cottrell atmospheres around
dislocations, the atomistic explanation for the strength of
steel.33 All the potentials correctly show this effect.

The interaction of carbon with vacancies is relevant for
creep resistance and radiation damage. Ab initio calculations
show that at low temperature vacancies bind to a single car-
bon by about 0.5 eV. A second carbon can also bind to the
vacancy either opposite or preferably adjacent to the first
with an additional 1 eV of binding. Previous potentials fail to
capture this effect, either by overestimating the binding of a
single carbon �Lau�, the absence of positive carbon-carbon
interactions �Johnson�, or both �Raulot�. In these models car-
bon binds more strongly to a second vacancy than one al-
ready containing a single carbon. Our potential, in contrast,
describes this situation well by avoiding excessive carbon-
vacancy binding and by including covalent carbon-carbon
bonding. In order to investigate the dynamics of carbon in
the presence of a vacancy defect at a qualitative level, we
performed an MD simulation under the same conditions as
specified previously for carbon in bcc iron but now with a

TABLE II. Fitted parameters for the pair potential, V�C,C�. Ener-
gies are in electron volts and lengths in angstroms.

V�C,C�

i si f i

0 1.0

1 1.2857838598417968 7.506546603651753

2 1.8008513964923578 0.9366343321217112

3 2.2863452818753887 0.4256080873202003

4 3.5

TABLE III. Fitted parameters for the embedding parts of the
iron-carbon potential. Energies are in electron volts and lengths are
in angstroms.

F�C�

Esol Ebond

−3.0046321427471687 −2.0181254292659294

��C,Fe� r1 r2

1.7554340024999981 1.8220492635

r3 r4

2.5 3.5

��Fe,C� r1 r2

1.9203 1.9635780468749997

�sat

1.766097265625

��C,C� a rc

0.9130368825588165 2.350400993501056

TABLE I. Fitted parameters for the pair potential, V�Fe,C�. Ener-
gies are in electron volts and lengths in angstroms.

V�Fe,C�

i si f i

0 0.92

1 1.7286 1.4445301451182067

2 1.88 −0.11197619824300484

3 2.25 −0.03712159216974577

4 2.42 −0.24932947183918894

5 2.7244 0.05596022455557193

6 3.1581 −0.1716858029483243

7 3.5
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vacancy present. The simulation showed that carbon acts as a
trap for the faster moving vacancies and that escape is pos-
sible by making successive jumps in �111 directions. The
first escape jump was exclusively from �0,0 , 1

2 � to � 1
2 , 1

2 ,1�,
i.e., no instance of the alternative jump to � 1

2 , 1
2 ,0�. Energeti-

cally this is the preferred jump, as can be seen from the
binding energies. The � 1

2 , 1
2 ,1� site in fact shows positive

binding for all potentials, a result that is currently not veri-
fied by ab initio but seems likely. From this site the most
likely jump was a return to �0,0 , 1

2 � but successive jumps
away from the carbon did occasionally result in escape for
the vacancy.

Iron self-interstitials are typically only important in irra-
diated samples. However, they represent the simplest model

TABLE IV. Comparison of our potential and those of Raulot �Ref. 31�, Lau �Ref. 25�, and Johnson �Ref.
22� with ab initio energy data �Ref. 21�. The solvation energy, Es, has been inferred from Ref. 30. The
migration energy for carbon, Em, is the energy difference between tetrahedrally and octahedrally sited carbon
�see Fig. 2�a��. All other reported values are binding energies as defined in Eq. �9� between an octahedrally
sited carbon �C� and a second carbon �C�, vacancy �V�, or SI defect or between two carbons and a vacancy.
When two binding entities are present, the configuration is identified by the notation introduced in Figs. 2�b�
and 3, and additionally by their separation vector in lattice units before relaxation. For carbon-carbon-
vacancy binding the carbons are either on opposite sides of the vacancy �e.g., at �0,0 , 1

2 � and �0,0 ,− 1
2 �� or

adjacent to one another �e.g., at � 1
2 ,0 ,0� and �0,0 , 1

2 ��.

Energies �eV� Ab initio This work Raulot Lau Johnson

Es +6.27 +6.27 +10.05 +7.15 +1.32

Em +0.90 +0.89 +0.85 +0.63 +0.86

Eb�C,C�
2:� 1

2 , 1
2 , 1

2 � −0.09 −0.07 −0.17 −0.19 +0.12

7:�1,1,1� +0.16 +0.05 +0.03 +0.01 +0.04

Eb�C,V�
1:�0,0 , 1

2 � +0.47 +0.49 +0.83 +0.76 +0.41

2:� 1
2 , 1

2 ,0� −0.01 −0.08 +0.01 −0.11 −0.42

4:� 1
2 , 1

2 ,1� +0.17 +0.17 +0.24 +0.15

Eb�C,C,V�
Adjacent +1.50 +1.38 +0.52 +1.39 +0.83

Opposite +1.07 +0.65 +1.13 +0.94 +0.82

Eb�C,SI�
1a:�0,0 , 1

2 � −0.19 −0.14 +0.37 +0.68 +0.55

2a:�0, 1
2 , 1

2 � −0.09 −0.04 +0.23 +0.20 +0.24

2c:�− 1
2 , 1

2 ,0� −0.31 −0.29 +0.07 +0.12 +0.10

5a:�1,1 , 1
2 � +0.09 +0.20 +0.19 +0.08 +0.22

6a:�0,0 , 3
2 � +0.20 +0.12 +0.21 +0.13

T

O

1
2

3

4
5

6 7

(b)(a)

FIG. 2. �a� O and T interstitial sites for carbon �black circles� in an unrelaxed bcc unit cell of iron atoms �white circles�. �b� Configu-
rations containing two interacting carbon atoms in neighboring octahedral sites. Distinct configurations are labeled by the position of the
second carbon atom.
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for the binding of carbon to overcoordinated defects such as
those present in grain boundaries and dislocations, and so
represent an important test of potential transferability. The ab
initio data shows a strong repulsion between overcoordinated
defects and nearby carbon atoms. By contrast previous po-
tentials all show strong binding. Despite significant effort,
we were unable to refit these potentials to reproduce this
repulsion in addition to the other targets from our fitting
database. Thus we conclude it is the functional form of these
potentials, not the parametrization, which gives the binding.
Our covalent-style potential has saturation of the carbon em-

bedding function, which means that any extra nearby iron
atoms do not give increased binding. Thus we were able to
successfully fit the carbon-�110-self-interstitial �SI� energies
by better describing the physics involved.

All potentials and the ab initio data show positive binding
between interstitials and carbon at separations where strain
field effects are expected to dominate. This is consistent with
experiment29,32 which shows a similar binding of 0.1 eV be-
tween carbon and a highly mobile point defect, and corrobo-
rates their interpretation that this defect is a self-interstitial.

V. CONCLUSIONS

In conclusion, we used electronic structure to devise heu-
ristics for building an interatomic force model for iron-
carbon. The model incorporates the magnetic second-
moment tight-binding picture for iron, charge transfer from
iron to carbon, and a covalent picture of localized p bonding
around carbon atoms. The potential is suitable for large scale
MD, being short-ranged and computationally equivalent to
EAM. The formalism allows us to correctly predict the inter-
actions between carbon and a range of defects in iron, many
of which are intractable with conventional potentials. This
gives us good confidence in its transferability to different
environments in ferritic steels.
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FIG. 3. Distinct octahedral sites for carbon surrounding a
�110-self-interstitial defect. The site nomenclature is also valid for
a vacancy defect after removing the superfluous letter.
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