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Berezinskii-Kosterlitz-Thouless phase transition for the dilute planar rotator model
on a triangular lattice
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The Berezinskii-Kosterlitz-Thouless (BKT) phase transition for the dilute planar rotator model on a trian-
gular lattice is studied by using a hybrid Monte Carlo method. The phase-transition temperatures for different
nonmagnetic impurity densities are obtained by three approaches: finite-size scaling of plane magnetic suscep-
tibility, helicity modulus, and Binder’s fourth cumulant. It is found that the phase-transition temperature
decreases with increasing impurity density p and the BKT phase transition vanishes when the magnetic
occupancy falls to the site percolation threshold: 1-p.=p.=0.5.
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I. INTRODUCTION

It is well known that the Berezinskii-Kosterlitz-Thouless
(BKT) phase transition'? caused by the unbinding of vortex-
antivortex pairs is found to be common in two-dimensional
ferromagnetic spin models, such as the planar rotator model,
XY model, and easy-plane Heisenberg model. Recently, the
study of nonmagnetic impurities in these spin models has
been the subject of much interest.>~ It is found that the BKT
phase-transition temperature decreases with increasing non-
magnetic impurity density p. However, a Metropolis algo-
rithm Monte Carlo (MC) simulation® of the planar rotator
model on a square lattice showed that the phase-transition
temperature 7 falls to zero for a magnetic occupation den-
Sity Pmag=1—p above the site percolation limit p.~0.59 on a
square lattice. This phenomenon was also found in the dilute
system of Josephson junctions.® These results were some-
what surprising because they suggested that a mechanism
besides the disordered (or disconnected) geometry of the
impurity-occupied lattice was responsible for permanently
leaving the magnetic system in a high-temperature disor-
dered phase. On the other hand, through extensive hybrid
MC simulation, Wysin et al.® found that the phase-transition
temperature drops to zero at pp,,=~0.59, which is the site
percolation limit where there is no more percolating cluster
of spins. The disorder due to impurities, especially near the
percolation limit, greatly increases fluctuations in the Monte
Carlo, making hybrid schemes that include cluster and over-
relaxation updates a necessity for precise results. This is
counterintuitive because one might naively expect that the
weaker connectivity of the lattice near the percolation limit
should make the calculations easier. The problem is interest-
ing, however, because just as the impurity concentration is
getting near that limit that causes 7 to fall to zero, and the
lattice is less and less connected, the correlation length is still
diverging causing all the usual problems that MC faces near
a critical point.

The previous works were all focused on the spin system
for the square lattice but, of course, there is also a BKT
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phase transition in the planar rotator model on the triangular
lattice. The site percolation threshold of a triangular lattice is
p.=0.5.2 On a triangular lattice, cluster MC simulation of the
pure system shows that the percolation temperature, defined
as the temperature at which spanning clusters start to appear
in a large system, equals the BKT phase-transition tempera-
ture for the planar rotator model.'? Therefore, the study of
the BKT phase transition for the dilute planar rotator model
on a triangular lattice is also interesting as a comparison to
the square lattice. The main question to be answered is
whether the BKT transition temperature falls to zero when
the magnetic occupation density equals the site percolation
limit or whether this happens at an occupation density higher
than the percolation limit. We carry this out here using a
hybrid MC simulation that includes over-relaxation and clus-
ter moves, which are important especially when the system is
near the percolation threshold, where Metropolis single-spin
moves become inefficient.

II. METHOD AND RESULTS

The Hamiltonian of the dilute planar rotator spin model is
considered as>%

H=—JE 0-10-_15:1‘5]:_‘]2 O'I(TJCOS(HI—GJ) (1)
(i.j) (i.j)

Here J>0 is the ferromagnetic coupling constant, 6; are the

angular coordinates of two spin components S;=(S7,S})
=(cos 6;,sin 6,), and (i, /) indicate the nearest-neighbor sites.
o is taken to be 1 or O depending on whether the site is
occupied or not. A hybrid MC approach, including Metropo-
lis algorithm'! and over-relaxation algorithm!>!3 combined
with Wolff single-cluster algorithm,'* proved to be very ef-
ficient for the model defined by Eq. (1) on a square lattice.®
We apply this approach to this model on a triangular lattice.

The processes used in the hybrid MC scheme work as
follows. In a Metropolis single-spin update, one spin is se-
lected randomly from total spins. The new candidate spin,
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FIG. 1. Application of Binder’s fourth order cumulant to esti-
mate the phase-transition temperature for several lattice sizes at p
=0.05. The inset shows the view near the estimated critical
temperature.

obtained by a small increment to this spin in a random di-
rection, is renormalized to unit length. Then the energy dif-
ference is obtained according to Eq. (1). The new spin is
accepted or not according to a standard Metropolis judgment.
An over-relaxation update reflects a spin selected randomly
across the effective potential of its nearest neighbors defined

as B j=Jchrj§ ; with the reflection effected by

§ i 2%& P § i
B>/

This algorithm is nonergodic and it must be mixed with other
updates to achieve ergodicity. The Wolff cluster algorithm,
known to be very efficient for spin systems with continuous
symmetry, is similar to the application to a pure system ex-
cept that spins at vacant sites are set to zero length. In the
actual simulation, a random bond can be constructed by
choosing a random direction, projecting spins on that direc-
tion, and then assigning unit to spins of parallel or antiparal-
lel projections to it. The over-relaxation and Wolff cluster
algorithms generally reduce autocorrelations better than Me-
tropolis single-spin updates especially at low temperatures
where the spin components tend to freeze.

From an initial spin configuration by randomly occupying
sites with probability 1 - p, the simulation is performed with
periodic boundary conditions for system size N=L?, where
the size of lattice is considered as L=20, 30, 40, 60, and 80.
Then the number of magnetically occupied sites is Ny,
=N(1-p). A hybrid MC step consists of one Wolff update of
planar components of the spins followed by one Metropolis
update and four over-relaxation updates, which change the
configuration but keep the energy unchanged. For each algo-
rithm of our scheme, one update is defined as attempting
Ny SPin moves. During the simulation, 1X 10* MC steps
are used for equilibration and about 4 X 10° MC steps are
used to get thermal averages at each temperature. To avoid
correlations, measurements are taken every 2-6 MC steps.
We used three different methods described in Ref. 6 to get
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FIG. 2. Application of the finite-size scaling of in-plane suscep-
tibility to estimate the phase-transition temperature for p=0.05.

the phase-transition temperature 7.. As the MC proceeds,
some thermodynamics are observed. For adequately sized
systems and small enough impurity density, averaging over
different placements of the impurities makes little difference
in the averages.6 Therefore, we did not average over different
placements of impurities for large sizes when p=0.3. While
the presence of impurities tends to amplify finite-size effects,
for large enough systems the fluctuations due to impurity
disorder will become averaged out,® and averages over im-
purity disorder become less necessary with increasing L.
Therefore, the focus is on the temperature dependence of
thermal averages especially for the larger systems. Also, in
the scaling with system size (such as for the susceptibility),
the fluctuations (error bars) caused by impurity disorder
should diminish rapidly with increasing L.

According to the magnetization M=(M,M,)=2,0,S;, the
susceptibility and susceptibility components are given by

X = [{(M)?) = (M)*V Npmagk T, 2)

X% =[(M2%) = (M )*VNyoeksT, 3)

where kj is the Boltzmann constant. With the average of x*
and x”, the in-plane susceptibility is obtained as

X' =0+ x02. (4)

The Binder’s fourth order cumulant is also defined via the
usual relation'?

MY

L—I—W. (5)

In the figures, the error bars that are not visible indicate
that the statistical errors are smaller than the symbols. For
convenience, temperatures are measured in units of the ex-
change constant J.

Binder’s fourth order cumulant U, is used to estimate the
location of T in the thermodynamic limit. At the phase-
transition temperature, U; is expected to be approximately
independent of the system size. Therefore, T~ can be ob-
tained from the crossing point of U; for different lattice
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FIG. 3. Helicity modulus as a function of temperature for sev-
eral lattice sizes at p=0.05. The inset shows the view near the
estimated critical temperature.

sizes. As an example, Fig. 1 shows U, for different lattice
sizes at p=0.05. The phase-transition temperature is esti-
mated at 7-=1.328 = 0.002. Generally speaking, this method
overestimates 7. With increasing L, the estimation of T
will be more accurate. Due to the statistical uncertainties,
however, more computing time is required to calculate near
T especially in this model with nonmagnetic impurities.

Another method to estimate 7 proved to be very useful
in many references.>®!%17 This method starts from the finite-
size scaling analysis of the in-plane susceptibility y’. Near
and below T, the susceptibility scales with a power of the
lattice size, x’ 12" even in the presence of nonmagnetic
impurities. The critical exponent is 7=1/4 at the BKT
phase-transition temperature for the planar rotator and XY
models. Therefore, by using »=1/4 from the common point
of intersection of the curves y'/L”* vs T, the phase-
transition temperature can be obtained. Figure 2 shows the
application of this method at p=0.05. The estimation of T is
1.316 £0.003, which is a little lower than the result from U;.

In our practical application for this model, the statistical
errors become even greater with the increase in p. More MC
steps and averages are needed to reduce the errors when p
increases especially near the site percolation threshold
p.=0.5. Therefore, using the largest lattice, we get T at high
nonmagnetic impurity density based on the calculation of the
helicity modulus.

The helicity modulus, Y, obtained by a measure of the
resistance to an infinitesimal spin twist A across the system
along one coordinate, is an efficient method to calculate the
BKT phase-transition temperature.'®-2> An expression appli-
cable to any general model Hamiltonian is®

_(PHIINY)  ((9HIIA)?) - (3HIIA)
- N N

Y . (6
where B=(kgT)™" is the inverse temperature. For the dilute
planar rotator model defined by Eq. (1), based on the deriva-
tion process of Ref. 21, we can get the expression of helicity
modulus on the triangular lattice,
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FIG. 4. Helicity modulus as a function of temperature for lattice
size L=80 at different nonmagnetic impurity densities p. The over-
all trend and the results near the percolation threshold are shown in
(a) and (b) separately.
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X < [E (é;- Do sin(6; - 0j)]2>. )

(i.j)

Y(T)=-

Here é;; is the unit vector pointing from site j to site i. £ is a
selected basis vector in one coordinate. According to the
renormalization-group theory,” there is a universal relation
between the helicity modulus and the phase-transition tem-
perature. T can be estimated from the intersection of the
helicity modulus Y(7) and the straight line Y =2kzT/ .
Meanwhile, the MC data of Y(7) will have a deeper drop in
the critical region with increased lattice size. For larger lat-
tice size, the intersection will be nearer to the critical tem-
perature. Therefore, an overestimate of 7 generally will be
obtained by this method. As an example, Fig. 3 shows the
results for different lattice sizes at p=0.05. It is clear that a
BKT phase transition exists at finite temperature in this
model. From the largest lattice size L=80, we estimate the
critical temperature to be T-=1.349 £0.002, which is a little
higher than that from the in-plane susceptibility y'. But that
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FIG. 5. Application of the finite-size scaling of in-plane suscep-
tibility to estimate the phase-transition temperature for p=0.45.

is to be expected, and only by going to much higher lattice
size will the helicity-based approach give results that agree
with those based on the susceptibility. It is noted that there
are greater statistical fluctuations at smaller L, while the sta-
tistical errors are almost smoothed out at large size. The he-
licity modulus for different p at L=80 is shown in Figs. 4(a)
and 4(b).

Due to the critical slowing down at low temperature, it is
clearly seen that the statistical errors are greatest when the
magnetic occupation density py,, is near p., where there is
no spanning cluster to appear. The helicity modulus almost
disappears at p=0.50 as shown in Fig. 4. As a comparison,
for example, Fig. 5 shows the results of finite-size scaling of
in-plane susceptibility at p=0.45. The statistical errors at
small L are clearly more obvious than those at large L. The
estimated phase temperature is T-=0.126 =0.01, which is
comparable with the result of helicity modulus as shown in
Fig. 4. The last results for phase-transition temperature from
the different methods mentioned above are summarized for
different p in Fig. 6. We find that T is nearly linear with p
and decreases with the increase in p. According to the linear
fit of T¢ from Y, we find that the BKT phase-transition tem-
perature falls to zero near p=0.498 = 0.003, which is almost
the same as expected from the site percolation threshold p.
=0.5. This shows that the BKT phase transition vanishes
when the magnetic site occupancy 1—p reaches the triangu-
lar lattice percolation limit—the same result as obtained for
this model on a square lattice.

III. CONCLUSIONS

In summary, with the application of a hybrid MC simula-
tion, the BKT phase-transition temperatures of a dilute pla-
nar rotator model on a triangular lattice are obtained by three
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FIG. 6. Phase-transition temperature estimated by the three
methods for different nonmagnetic impurity densities p. The
straight line is a linear fit to 7- obtained from the helicity modulus.

methods. For the pure planar rotator model (p=0) on a tri-
angular lattice as a test case, the phase-transition tempera-
tures we obtained from y’, Y, and U, are 1.486=*0.002,
1.498 =0.003, and 1.503 +0.002, respectively. These data
are comparable with the result of high-temperature series
studies.?>?3 Consistent with MC simulations on the square
lattice,’ it is found that the phase-transition temperature de-
creases as nonmagnetic impurity density p increases and falls
to zero only when the magnetic occupancy falls to the site
percolation limit. This is completely reasonable considering
that the correlation length could not diverge, and hence, there
would be no BKT phase transition if there were no percolat-
ing cluster spanning the system. On the other hand, as long
as any percolating cluster is present, the BKT phase transi-
tion should appear but at a reduced temperature due to the
diluted effective exchange couplings between distant spins.
Meanwhile, we find that there is close to a linear relation
between T and p. Stated simply, the BKT phase transition is
present only when p;,,,>p,., and the phase-transition tem-
perature is approximately linearly proportional to (pp,,
-p.)/(1=p,). The calculations become more difficult when
the magnetic density is close to the percolation limit due to
the combined BKT and percolation fluctuations there. Thus,
we could not rule out a weak deviation from this linear rela-
tionship when p,,, is very close to p..
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