
Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot

Jan Fischer,1 W. A. Coish,1,2 D. V. Bulaev,1,3 and Daniel Loss1

1Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
2Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo,

200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1
3Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow District, Russia

�Received 30 September 2008; published 31 October 2008�

We theoretically study the interaction of a heavy hole with nuclear spins in a quasi-two-dimensional III–V
semiconductor quantum dot and the resulting dephasing of heavy-hole spin states. It has frequently been stated
in the literature that heavy holes have a negligible interaction with nuclear spins. We show that this is not the
case. In contrast, the interaction can be rather strong and will be the dominant source of decoherence in some
cases. We also show that for unstrained quantum dots the form of the interaction is Ising, resulting in unique
and interesting decoherence properties, which might provide a crucial advantage to using dot-confined hole
spins for quantum information processing, as compared to electron spins.
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I. INTRODUCTION

The spin of a quantum-dot-confined electron is considered
a major candidate for the realization of solid-state-based
quantum bits,1 the basic building blocks for quantum infor-
mation processing devices and, eventually, for a quantum
computer.2 One of the main obstacles to building these de-
vices is the decay of spin coherence. The ultimate limit to the
coherence time for electron spins in most quantum dots at
low temperatures is set by the hyperfine interaction with nu-
clei in the host material.3–6 If no special effort is made to
control this environment, the associated coherence times are
quite short, typically of order nanoseconds.4–7

Very recently, several experiments have shown initializa-
tion and readout of single hole spins in self-assembled quan-
tum dots8–11 and control over the number of holes in single
gated quantum dots:12 prerequisites for single-hole-spin
dephasing-time measurements. Ensemble hole-spin dephas-
ing times have recently been measured in p-doped quantum
wells.13 Hole-spin coherence times in III–V semiconductor
quantum dots are anticipated to be much longer than
electron-spin coherence times due to a weak hyperfine cou-
pling relative to conduction-band electrons.14–21 In the
present work, we show that, in contrast, the coupling of a
heavy hole �HH� to the nuclear spins in a quantum dot can be
rather strong, potentially leading to coherence times that are
comparable to those for electrons. However, in the quasi-
two-dimensional �Q2D� limit, this interaction takes on a
simple Ising form

H = �
k

Ak
hszIk

z , �1�

where Ak
h is the coupling of the HH to the kth nucleus, sz is

the hole pseudospin-1
2 operator, and Ik

z is the z component of
the kth nuclear-spin operator Ik. The form of this effective
Hamiltonian has profound consequences for the spin dynam-
ics. Coherence times can be dramatically extended by pre-
paring the slowly varying nuclear field in a well-defined state
�“narrowing” the field distribution�.6,22–27 For an electron
spin interacting with nuclei via the contact hyperfine interac-

tion, narrowing is effective only up to the time scale where
slow internal nuclear-spin dynamics or transverse-coupling
�flip-flop� terms become relevant. Here we will show that
heavy holes confined to two dimensions have negligible flip-
flops, potentially leading to significantly longer spin coher-
ence times. The strong coupling of the HH to the nuclear
spins is not due to confinement but is also present in bulk
crystals, while the Ising-type interaction is a feature of Q2D
systems.

This paper is organized as follows: In Sec. II we write
down the nuclear-spin interactions and derive an effective
spin Hamiltonian for a quantum-dot-confined HH. In Sec. III
we calculate the dynamics of the transverse HH spin for
different external magnetic-field directions. In Sec. IV we
give estimates of the coupling strengths for the special case
of a GaAs quantum dot. Conclusions and comparison to re-
cent experiments can be found in Sec. V. Technical details
are deferred to Appendixes A–D.

II. NUCLEAR-SPIN INTERACTIONS

A. Hamiltonians

For a relativistic electron in the electromagnetic field of a
nucleus with nonzero spin at position Rk, there are three
terms that couple the electron spin and orbital angular mo-
mentum to the spin of the nucleus: the Fermi contact hyper-
fine interaction �h1

k�, a dipole-dipole-like interaction �the an-
isotropic hyperfine interaction h2

k�, and the coupling of
electron orbital angular momentum to the nuclear spin �h3

k�.
Setting �=1, these interactions are described by the follow-
ing Hamiltonians:28

h1
k =

�0

4�

8�

3
�S� jk

��rk�S · Ik, �2�

h2
k =

�0

4�
�S� jk

3�nk · S��nk · Ik� − S · Ik

rk
3�1 + d/rk�

, �3�
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h3
k =

�0

4�
�S� jk

Lk · Ik

rk
3�1 + d/rk�

. �4�

Here, �S=2�B, � jk
=gjk

�N, �B is the Bohr magneton, gjk
is

the nuclear g factor of isotopic species jk, �N is the nuclear
magneton, rk=r−Rk is the electron-spin position operator
relative to the nucleus, d�Z�1.5�10−15 m is a length of
nuclear dimensions, Z is the charge of the nucleus, and nk
=rk /rk. S and Lk=rk�p denote the spin and orbital angular-
momentum operators of the electron, respectively.

Nuclear-spin interactions are typically much weaker than
the spin-orbit interaction. It is therefore appropriate to form
effective Hamiltonians with respect to a basis of eigenstates
of the Coulomb and spin-orbit interactions. The 8�8 Kane
Hamiltonian, which describes the band structure of a III–V
semiconductor, provides such a basis.29,30 The Kane Hamil-
tonian is usually written in terms of conduction-band �CB�
and valence-band �consisting of HH, light-hole �LH�, and
split-off sub-band� states. We derive an approximate basis of
eigenstates in the HH sub-band by projecting the 8�8 Kane
Hamiltonian onto the two-dimensional HH subspace.

To form effective Hamiltonians, we must approximate the
crystal-Hamiltonian eigenfunctions given by Bloch’s theo-
rem for a single band n :�nk��r�= 1

�NA
eik·runk��r�, where NA

is the number of atomic sites in the crystal and the Bloch
amplitudes unk��r� have the periodicity of the lattice.

We will approximate the k=0 Bloch amplitudes un0��r�
within a primitive unit cell by a linear combination of atomic
orbitals �see Eq. �12� below�. Near an atomic site, the CB
Bloch amplitudes have approximate s symmetry �angular
momentum l=0�, whereas the HH and LH Bloch amplitudes
have approximate p symmetry �l=1�. Adding spin, the z
component of total angular momentum of a HH is mJ
= 	3 /2, whereas a LH has mJ= 	1 /2. In the Q2D limit, i.e.,
going from the bulk crystal to a quantum well �whose growth
direction we take to be �001��, a splitting 
LH develops be-
tween the HH and LH sub-bands at k=0. We estimate 
LH
�100 meV for a quantum well of height az�5 nm in
GaAs, much larger than the hyperfine coupling �see Appen-
dix A�. The splitting 
LH is essential since it produces a
well-defined two-level system in the HH sub-band, and we
can restrict our considerations to the manifold of mJ
= 	3 /2 states.

B. Interactions in an atom

Before addressing confinement in quantum dots, we illus-
trate that the interaction of an electron in a hydrogenic p
orbital with the spin of the nucleus �which we choose to be at
Rk=0� is generally nonzero. Moreover, when projected onto
the manifold of mJ= 	3 /2 states, this interaction takes on a
simple Ising form. Although our final analysis will apply to
any III–V semiconductor, we will take GaAs as a concrete
example.

The effective screened nuclear charges Zeff “felt” by the
valence electrons �in 4s and 4p orbitals� in Ga and As atoms
have been calculated in Ref. 31. The 4s orbitals and 4p or-
bitals �with orbital angular momentum mL= 	1� are given in
terms of hydrogenic eigenfunctions with the replacements

Z→Zeff by �400�r�=R40�r�Y0
0�� ,�� and �41	1�r�

=R41�r�Y1
	1�� ,��, respectively. Including spin and evaluat-

ing matrix elements of the Hamiltonians �2�–�4� with respect
to hydrogenic 4s states leads to effective spin Hamiltonians
of the form28,32 h1

4s=AsS ·Ik and, due to the spherical symme-
try of the wave function, h2

4s=h3
4s=0. The same procedure

with the 4p states leads to effective Hamiltonians h1
4p=0

�since p states vanish at the origin� and h2
4p+h3

4p=ApszIk
z,

where sz= 	
1
2 corresponds to mJ= 	3 /2. As and Ap denote

the coupling strengths of electrons in 4s and 4p orbitals,
respectively. Evaluating all integrals exactly gives

Ap

As
=

1

5
�Zeff�,4p�

Zeff�,4s� 	
3

,  = Ga,As. �5�

Quite significantly, after inserting values of Zeff from Ref.
31 into Eq. �5�, we find that the ratio of coupling strengths is
fairly large—of order 10%: Ap /As�0.14 for Ga and Ap /As
�0.11 for As. Since h2

k and h3
k do not contribute to the hy-

perfine interaction of an electron in an s orbital, research on
hyperfine interaction for electrons in an s-type conduction
band has focused on the contact term h1

k, neglecting the other
interactions. The fact that h1

k, in contrast, gives no contribu-
tion for an electron in a p orbital has led to the claim that
electrons in p orbitals �and holes� do not interact with
nuclear spins. Equation �5� shows that h2

k and h3
k can contrib-

ute significantly. Furthermore, while the interaction of a 4s
electron with the nuclear spin is of Heisenberg type, within
the manifold of mJ= 	3 /2 states, the interaction of a 4p
electron is Ising at leading order �virtual transitions via the
mJ= 	1 /2 states may lead to non-Ising corrections�. This
result is a direct consequence of the Wigner-Eckart theorem
and the fact that the Hamiltonians �2�–�4� can be written in
the form hi

k=vi
k ·Ik, where vi

k are vector operators in the elec-
tron �spin and orbital� Hilbert space.

C. Interactions in a quantum dot

We now return to the problem directly relevant to a HH in
a two-dimensional quantum well. We consider an additional
circular-symmetric parabolic confining potential in the plane
of the quantum well defining a quantum dot. Neglecting hy-
bridization with other bands, which we estimate to be typi-
cally of order 1% �see Appendix A�, the pseudospin states
for a HH within the envelope-function approximation read

���= 
� ;uHH0��
��, where 
� ;uHH0�� and 
�� ��=	� denote
the orbital and spin states, respectively. The orbital wave
functions are given explicitly by �r 
� ;uHH0��
=�v0��r�uHH0��r�. Here, v0 is the volume occupied by a
single atom �half the volume of a two-atom zinc-blende
primitive unit cell� and ��r�=�z�z������ is the envelope
function. The radial ground-state envelope function is a
Gaussian

����� =
1

��l
exp�−

�2

2l2	 , �6�

where �= �x ,y�, �= 
�
, l= l0�1+ �Bz /B0�2�−1/4, Bz is the com-
ponent of an externally applied magnetic field along the
growth direction, and B0=�0 /�l0

2, where �0=h / 
e
 is a flux

FISCHER et al. PHYSICAL REVIEW B 78, 155329 �2008�

155329-2



quantum. A typical dot Bohr radius of l0=30 nm gives B0
�1.5 T.

In a solid, the HH is delocalized over the lattice sites of
the crystal. The nuclei do not interact solely with the fraction
of the HH in the same primitive unit cell �“on-site” interac-
tion�, but also with density localized at more distant atomic
sites �long-ranged interactions�. We neglect the long-ranged
interactions, which lead to corrections of order 1% relative to
the on-site interaction �see Appendix C�. If the envelope
function varies slowly on the length scale of a primitive cell,
we find �combining h2

k and h3
k�: Ak

h=Ah
jkv0
��Rk�
2, where

Ah
jk = −

�0

4�
�S� jk 3 cos2 �k + 1

rk
3�1 + d/rk�

�
p.c.

. �7�

Here, �¯�p.c. denotes the expectation value with respect to
uHH0��r� over a primitive unit cell ��=	 give the same ma-
trix elements� and �k is the polar angle of rk. The magnetic
moment of a HH is inverted with respect to that for an elec-
tron. This results in a change of sign in Eqs. �2�–�4� and
leads to the minus sign in Eq. �7� and of the values in col-
umns �i� and �ii� of Table I.

D. Non-Ising corrections

There will be small corrections to the form of the effec-
tive Hamiltonian given in Eq. �1�. Evaluating off-diagonal
matrix elements of Eqs. �3� and �4� with the approximate
Bloch amplitudes �12� yields non-Ising terms, whose associ-
ated coupling strengths Ah

� we find to be small �Ah
�

�0.06Ah
j �. Higher-order virtual transitions between the mJ

= 	3 /2 states via the LH sub-band are suppressed by
�Ak

h /
LH�1. Hybridization with other bands can also lead
to non-Ising corrections. For unstrained quantum dots, we
find that these corrections are small, typically of order 1% of
the values given in Table I �see also Appendix A�. Strain can
lead to considerably stronger band mixing and, hence, to
significantly larger non-Ising corrections to Eq. �1�.

III. SPIN DECOHERENCE

Now that the effective Hamiltonian �Eq. �1�� has been
established, we can analyze the dephasing of a HH pseu-
dospin in the presence of a random nuclear environment. In
an applied magnetic field, pseudospin dynamics of the HH
are described by the Hamiltonian

H = �b� + hz�sz + b�sx, �8�

where hz=�kAk
hIk

z is the nuclear field operator, b�=g��BBz is
the Zeeman splitting due to a magnetic field Bz along the
growth direction, and b� =g��BBx is the Zeeman splitting due
to an applied magnetic field Bx in the plane of the quantum
dot. g� and g� are the components of the HH g tensor along
the growth direction and in the plane of the quantum dot,
respectively �we assume the in-plane g tensor to be isotro-
pic�.

If no special effort is made to control the nuclear field, the
field value will be Gaussian-distributed in the limit of a large
number of nuclear spins.6 The variance for a random nuclear-
spin distribution is �see Appendix D�

�hz
2� = �2 �

1

4N
�

j

� jI
j�Ij + 1��Ah

j �2, �9�

where N=�l2az /v0 is the number of nuclei within the quan-
tum dot. The nuclear-field fluctuation � therefore inherits a
magnetic-field dependence from l �see Eq. �6��. A finite
nuclear-field variance will result in a random distribution of
precession frequencies experienced by the hole pseudospin
inducing pure dephasing �decay of the components of hole
pseudospin transverse to B�.

First, we consider the case b� =0. For a hole pseudospin
initially oriented along the x direction, we find a Gaussian
decay �see Fig. 1�a�� of the transverse pseudospin in the ro-
tating frame �s̃+�t=exp�−ib�t���sx�t+ i�sy�t�:

�s̃+�t =
1

2
exp�−

t2

2��
2 	, �� =

1

�
. �10�

This is the same Gaussian decay that occurs for electrons.4–6

Here, since the magnetic field is taken to be out of plane, we
must take account of the diamagnetic “squeezing” of the
wave function. This squeezing affects the number N of
nuclear spins within the dot and hence, the finite-size fluc-
tuation �. The coherence time ���Bz�=1 /��Bz�=���0��1
+ �Bz /B0�2�−1/4 then decreases for large Bz �see Fig. 1�b��.
This undesirable effect can be avoided for confined electron
spins by generating a large Zeeman splitting through an in-
plane �rather than out-of-plane� magnetic field. This option
may not be available for a HH where, typically, g� �g�.

The situation changes drastically for an in-plane magnetic
field �b�=0�. In this case, since the hyperfine fluctuations are
purely transverse to the applied field direction, the decay is
given by a slow power law at long times �see Fig. 1�c�� and
the relevant dephasing time increases as a function of the
applied magnetic field �see Fig. 1�d��. In the limit b� �� and
for a HH pseudospin initially prepared along the ẑ direction,
we find

TABLE I. Estimates of the coupling strengths for a HH �Ah
j � and

a CB electron �Ae
j� for the three isotopes in GaAs. Columns �i� and

�iii� show values obtained from a linear combination of hydrogenic
eigenfunctions using free-atom values of Zeff calculated in Ref. 31.
Column �iv� gives the accepted values of Ae

j from Ref. 35. Column
�ii� shows the rescaled values from column �i� �see text�. In the last
row we give the average coupling constants weighted by the natural
isotopic abundances �69Ga=0.3, �71Ga=0.2, and �75As=0.5.

Ah
j

��eV�
Ae

j

��eV�

j �i� �ii� �iii� �iv�

69Ga −7.1 −13 40 74
71Ga −9.0 −17 51 94
75As −8.2 −12 59 89

A�=� j� jA�
j ��=e ,h� −8.0 −13 52 86
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�sz�t �
cos�b�t + 1

2arctan�t/����
2�1 + � t

��
�2�1/4 , �� =

b�

�2 . �11�

The derivation of Eq. �11� is directly analogous to that for
the decay of driven Rabi oscillations in Ref. 34.

IV. ESTIMATES OF THE COUPLING STRENGTHS

To estimate the size of Ah
j , we need an explicit expression

for the HH k=0 Bloch amplitudes. We approximate uHH0��r�
within a Wigner-Seitz cell centered halfway along the Ga-As
bond by a linear combination of atomic orbitals, following
Ref. 36:

uHH0��r�
r�WS = N�v
��v�41�

Ga �r + d/2�

+ �1 − �v
2�41�

As �r − d/2�� . �12�

Here, d= a
4 �1,1 ,1� is the Ga-As bond vector, a is the lattice

constant, �v describes the relative electron sharing at the Ga
and As sites in the HH sub-band, and N�v

is a normalization
constant, chosen to enforce �WSd3r
uHH0��r�
2=2, where the
integration is performed over the Wigner-Seitz cell defined
above. To simplify numerical integration, we replace the
Wigner-Seitz cell by a sphere centered halfway along the
Ga-As bond, with radius given by half the Ga-Ga nearest-
neighbor distance. We find the electron sharing in the CB
from the densities given in Ref. 35 to be �c

2�1 /2 �see Ap-
pendix B� and assume the same ��v

2 =1 /2� for Eq. �12�. Us-
ing Zeff for free atoms,31 we evaluate Eq. �7� with the ansatz,
Eq. �12�, by numerical integration, giving the values shown

in Table I, column �i�. We check the validity of this proce-
dure by writing the CB Bloch amplitudes as in Eq. �12�,
replacing the 4p eigenfunctions by 4s eigenfunctions. Evalu-
ating the coupling constants for the CB �Ae

j� from h1
k gives

the numbers in column �iii�. The accepted values of Ae
j from

Ref. 35 are shown in column �iv� for comparison. Our
method produces Ae

j to within a factor of two of the accepted
values. Our procedure, which relies on free-atom orbitals,
most likely underestimates the electron density near the
atomic sites, which should be enhanced in a solid due to
confinement. Assuming the relative change in density going
from a free atom to a solid is the same for the CB and HH
band, we rescale the results in column �i� by the ratio of the
values in columns �iv� and �iii�, giving column �ii�. Due to
the approximations involved, we expect the values in col-
umns �i� and �ii� only to be valid to within a factor of 2 or 3.

V. CONCLUSIONS

We have shown that the interaction of a quantum-dot-
confined heavy hole with nuclear spins is stronger than pre-
viously anticipated. We have estimated the associated cou-
pling strength to be of order 10 �eV in GaAs—only 1 order
of magnitude less than the hyperfine coupling for electrons.
However, the interaction turns out to be Ising which has
profound consequences for hole-spin decoherence. Since no
flip-flop terms occur in the effective Hamiltonian �Eq. �1��,
the main source of decoherence is given by the broad fre-
quency distribution of the nuclear spins. Recent theoretical
and experimental studies have shown that state-narrowing
techniques are capable of strongly suppressing this source of

(c)|B| = Bx = 10 mT
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0.5
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� t

0 100 200
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0
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τ �
(µ
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(µ
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0
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0.4

�s̃ +
� t
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� t
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0
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(n
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τ ⊥
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FIG. 1. �Color online� Dephasing of HH pseudospin states �solid lines in �a� and �c��. The decay is Gaussian for �a� an out-of-plane
magnetic field Bz �see Eq. �10�� and given by a slow power law at long times ��1 /�t� for �c� an in-plane magnetic field Bx �see Eq. �11��.
We have chosen 
B
=10 mT in �a� and �c�. Magnetic-field dependences of the relevant coherence times are shown for a field that is �b�
out-of-plane and �d� in-plane. We have assumed g� =0.04 �from Ref. 33� and a zero-field lateral dot size l0=30 nm and height az=5 nm,
leading to N=�l0

2az /v0=6.5�105 nuclei within the dot at Bz=0. We have taken v0=aL
3 /8, where aL=5.65 Å is the GaAs lattice constant.

The dashed lines in �a� and �c� show the dephasing of CB electron-spin states in the high-field limit 
B
��e /ge�B, where ge is the electron
g factor and �e is obtained from Eq. �9� by replacing Ah

j by the electron hyperfine coupling constants Ae
j .
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decoherence, which makes the heavy hole an attractive spin-
qubit candidate.

Very recently, experimental results on hole-spin relaxation
in self-assembled quantum dots have been released.9,11 Ger-
ardot et al. reported an extremely weak coupling of HH spin
states, which is explained by our theory to be a direct con-
sequence of the Ising-type nuclear-spin interaction �negli-
gible flip-flop terms�. Eble et al., in contrast, found very
short hole-spin relaxation times in order of 15 ns. This is due
to the strong strain present in the particular dots used in this
experiment, resulting in a considerable HH-LH mixing and a
highly non-Ising interaction �large flip-flop terms�.
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APPENDIX A: HEAVY-HOLE STATES

In this section we give details on our derivation of an
approximate basis of heavy-hole eigenstates in a quantum
dot. We will approximate the ground-state quantum-dot en-
velope function in the HH sub-band by

��r� = �z�z������ , �A1�

����� =
1

��l
exp�−

�2

2l2	 , �A2�

�z�z� =� 2

az
sin��z

az
	, z = �0 . . . az� , �A3�

where az is the width of the confinement potential along the
growth direction �for definition of the other symbols see Eq.
�6��. We will then estimate the size of the splitting 
LH be-
tween the HH and the light-hole band and the degree of
hybridization with the conduction band, LH, and split-off
�SO� sub-bands.

We start from the 8�8 Kane Hamiltonian given in
Ref. 37 for bulk zinc-blende-type crystals, which is written
in terms of the exact eigenstates �near k=0� of an electron
in the CB, HH, LH, and SO bands, usually denoted
by 
1 /2; 	1 /2�c, 
3 /2; 	3 /2�v, 
3 /2; 	1 /2�v, and

1 /2; 	1 /2�v, respectively. We neglect terms that are more
than 2 orders of magnitude smaller than the fundamental
band-gap energy Eg

40 and perform the quasi-two-
dimensional limit by assuming that a confinement potential
has been applied along the growth direction. If the confine-
ment potential is sufficiently strong �i.e., if the quantum well
is sufficiently narrow�, the energy-level spacing will be large
and the electron will be in the ground state at low tempera-
tures. Any operator acting on the z component of the electron
envelope function can then be replaced by its expectation
value with respect to the z component of the ground-state
envelope function. For the Kane Hamiltonian this means that
we can replace powers of the z component �kz of the crystal

momentum �k by expectation values. Assuming an infinite
square-well potential of width az confining the electron along
the growth direction, the ground state is given by Eq. �A3�.
Calculating the expectation value of kz and kz

2 with respect to
the ground state, we find �kz�=0 and �kz

2�=�2 /az
2. This al-

lows us to write the Kane Hamiltonian in the following form:

HK =�
HCB V1 V2 V3

V1
† HHH V4 V5

V2
† V4

† HLH V6

V3
† V5

† V6
† HSO

� , �A4�

where

HCB = �A 0

0 A
	, HHH = �B 0

0 B
	 ,

HLH = �C 0

0 C
	, HSO = �D 0

0 D
	 ,

V1 =
1
�2

�− E 0

0 E� 	, V2 =
1
�6

� 0 E�

− E 0
	 ,

V3 =
1
�3

� 0 − E�

− E 0
	, V4 = �3� 0 F

F� 0
	 ,

V5 = �6� 0 − F

F� 0
	, V6 = �2�− G 0

0 G
	 ,

and

A = Eg + �2�kx
2 + ky

2 + �kz
2��/2m�,

B = − ����1� + �2���kx
2 + ky

2� + ��1� − 2�2���kz
2�� ,

C = − ����1� − �2���kx
2 + ky

2� + ��1� + 2�2���kz
2�� ,

D = − ��1��kx
2 + ky

2 + �kz
2�� − 
SO,

E = Pk+,

F = ���2��kx
2 − ky

2� − 2i�3�kxky� ,

G = ��2��kx
2 + ky

2 − 2�kz
2�� .

Here, �=�2 /2m0 and m0 is the free-electron mass, whereas
m� is the effective mass of a CB electron. Furthermore, k	

=kx	 iky, � j� denote the Luttinger parameters, P is the inter-
band momentum, and 
SO is the spin-orbit gap between the
LH and the SO bands. Experimental values for these param-
eters can be found in Table II.

We assume a circular-symmetric parabolic confinement
potential with frequency �0 in the xy plane defining a quan-
tum dot. Including a magnetic field along the growth direc-
tion, the ground state is approximately described by the
Gaussian given in Eq. �A2�. The envelope function of the
quantum dot is then the product of the in-plane and out-of-
plane components as given in Eq. �A1�.
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In the quasi-two-dimensional limit, a gap


LH = �B − C� = −
�2�2�

m0
��kx

2� + �ky
2� − 2�kz

2�� �A5�

develops between the HH and LH sub-bands, lifting the
HH-LH degeneracy. Here, �¯� denotes the expectation value
with respect to the envelope function given in Eq. �A1�. The
in-plane level spacing scales like �1 / l2, where l is the dot
Bohr radius. The in-plane level spacing is much smaller than
the level spacing along the growth direction since, for typical
dots, az

2� l2. Neglecting �kx
2� and �ky

2� compared to �kz
2� in Eq.

�A5� and inserting �kz
2�=�2 /az

2 for a square-well potential,
we estimate


LH �
2�2�2��

2

az
2m0

� 100 meV �A6�

for az�5 nm, using �2��2.06 for GaAs �see Table II�. The
HH-LH splitting is thus much larger than the typical energy
scale associated with the hyperfine interaction �Ae
�90 �eV for CB electrons in GaAs�.

To derive the approximate electron eigenfunctions in the
HH sub-band of the quantum well, we start from the Kane
Hamiltonian �A4�. We use quasidegenerate perturbation
theory up to first order in 1 /E �where E stands for Eg, 
LH, or

LH+
SO�, taking HHH as the unperturbed Hamiltonian.37

This leads to a band-hybridized state of the form


�HH,hyb
� � = N��

n

�n
�
�n�;un0�� . �A7�

Here, �=	, �r 
�n� ;un0��=�v0�n��r�un0��r� is the product
of envelope function, and k=0 Bloch amplitude in band n
�CB, HH, LH, or SO�, the prefactors �n

� describe the degree
of band hybridization, and N� enforces proper normaliza-
tion.

In first-order quasidegenerate perturbation theory, the hy-
bridization with the CB and the LH and SO sub-bands is
described by the interaction terms V1, V4, and V5 in Eq. �A4�,
respectively. We estimate the degree of hybridization by ap-
plying these operators to a two-spinor containing the in-
plane ground-state envelope function �A2� of the HH sub-
band. For the hybridization with the conduction band, we
find �for B=0�

−
1

Eg
V1������

����� 	 = ��CB
+ �CB�+���

�CB
− �CB�−���

	 , �A8�

where

�CB�	��� =
i

�2
��10��� 	 i�01���� . �A9�

Here, �nm���=�n�x��m�y� and �n�x� is the nth harmonic-
oscillator eigenstate. The envelope function of the admixed
CB state is a superposition of excited harmonic-oscillator
eigenfunctions. The prefactor

�CB
	 = 	

P
�2Egl0

�A10�

determines the degree of sp hybridization. Using values from
Table II and assuming a quantum dot with dot Bohr radius
l0�30 nm �B=0�, we estimate �CB

	 �10−2. Similarly, we es-
timate �LH

	 ��SO
	 �10−3, assuming a dot height az�5 nm.

The admixture of CB, LH, and SO states to the HH state is
thus in order of 1% and has therefore been neglected in our
considerations.

We emphasize that sp hybridization will lead to a cou-
pling of the HH to the nuclear spins via the Fermi contact
interaction �2�. Since the Fermi contact interaction is of
Heisenberg type, sp hybridization will directly lead to non-
Ising corrections to the effective Hamiltonian given in Eq.
�1�. The size of these corrections is determined by the degree
of sp hybridization which is of order 1% �see above�.

APPENDIX B: ESTIMATE OF THE FERMI CONTACT
INTERACTION

In Eq. �12�, we have approximated the HH k=0 Bloch
amplitudes within a Wigner-Seitz cell by a linear combina-
tion of atomic orbitals. Similarly, we approximate the k=0
Bloch amplitude in the CB by

uCB0��r�
r�WS = N�c
��c�400

Ga �r + d/2�

− �1 − �c
2�400

As �r − d/2�� , �B1�

independent of �. Here, �400�r�=R40�r�Y0
0�� ,��, �c de-

scribes the relative electron sharing between the Ga and As
atom in the Wigner-Seitz cell chosen to be centered halfway
along the Ga-As bond, and N�c

normalizes the Bloch ampli-
tude to two atoms in a primitive unit cell. The radial wave
function depends implicitly on the effective nuclear charges
Zeff� ,4s�, where =Ga,As.

We will estimate the relative electron sharing in the CB
by calculating the electron densities at the sites of the nuclei
from Eq. �B1� and comparing to accepted values taken from
Ref. 35. We will then estimate the Fermi contact interaction
of a CB electron using free-atom effective nuclear charges
taken from Ref. 31 �Zeff�Ga,4s��7.1, Zeff�Ga,4p��6.2,
Zeff�As,4s��8.9, and Zeff�As,4p��7.4� and normalizing the
Bloch amplitude over a Wigner-Seitz cell.

We approximate the electron densities at the Ga and As
sites within a primitive unit cell from Eq. �B1�

dGa = 
uCB0��− d/2�
2 � N�c

2 �c
2
�400

Ga �0�
2, �B2�

dAs = 
uCB0��+ d/2�
2 � N�c

2 �1 − �c
2�
�400

As �0�
2. �B3�

We estimate the corrections to the right-hand sides to be of
order 1% due to overlap terms. We take the ratio dGa /dAs and

TABLE II. Values of band parameters used in Appendix A.

P �eV Å� 10.5a �1� 6.98b

Eg �eV� 1.52a �2� 2.06b


SO �eV� 0.34a �3� 2.93b

aTaken from Ref. 37.
bTaken from Ref. 38.
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equate this with the ratio of the values from Ref. 35, dGa�
=5.8�10−31 m−3 and dAs� =9.8�10−31 m−3. This allows us
to write �c as a function of the two effective nuclear charges

�c = �1 +
dAs

dGa
�Zeff�Ga,4s�

Zeff�As,4s� 	
3�−1/2

. �B4�

Recalling that N�c
normalizes the Bloch amplitude to two

atoms over a Wigner-Seitz cell, we write

N�c
= �1

2
�

WS
d3r
�c�400

Ga �r + d/2�

− �1 − �c
2�400

As �r − d/2�
2�−1/2

. �B5�

For all numerical integrations, we approximate the Wigner-
Seitz cell by a sphere centered halfway along the Ga-As
bond with radius equal to half the Ga-Ga nearest-neighbor
distance. Inserting �B4� and �B5� into �B2� and �B3�, we
solve the two coupled equations

dGa�Zeff�Ga�,Zeff�As�� − dGa� = 0, �B6�

dAs�Zeff�Ga�,Zeff�As�� − dAs� = 0, �B7�

for the two effective nuclear charges. This yields Zeff�Ga�
�9.8 and Zeff�As��11.0. Inserting these values back into
Eq. �B4�, we estimate the electron sharing within the primi-
tive unit cell to be

�c
2 � 0.46. �B8�

For comparison, inserting free-atom effective nuclear
charges into Eq. �B4� yields a similar value ��c�

2�0.54�.
Now we estimate the Fermi contact interaction of a CB

electron starting from the free-atom effective nuclear charges
Zeff� ,4s� obtained from Ref. 31. We use �c�1 /�2 and nor-
malize the k=0 Bloch amplitude to two atoms over a
Wigner-Seitz cell, following Eq. �B5�. From the normalized
Bloch amplitudes we estimate the Fermi contact hyperfine
interaction by evaluating

Ae
j =

2�0

3
�S� j
uCB0��R j�
2. �B9�

Here, R j = �d /2 for Ga and As, respectively �j indexes the
nuclear isotope�. Evaluating for the isotopes in GaAs, this
gives the values shown in column �iii� of Table I.

Replacing the Wigner-Seitz cell by a sphere with radius
Rs equal to half the Ga-Ga nearest-neighbor distance in our
numerical integrations overestimates the expectation value of
�rk

3�1+d /rk��−1 in Eq. �7�. To estimate the error, we perform
an integration over a sphere with radius Rs�= �Rs+Rmax� /2,
where Rmax denotes the radius of the smallest sphere that
fully contains the Wigner-Seitz cell. From this, we estimate
the relative error to be less than 30%.

APPENDIX C: ESTIMATE OF THE LONG-RANGED
INTERACTIONS

In this section, we estimate the corrections to the HH
coupling strength in Eq. �7� due to long-ranged dipole-dipole

interactions and long-ranged L ·I interactions. To this end,
we consider a single nucleus interacting with a HH that is
delocalized over the lattice sites in the quantum dot. We start
from the Hamiltonians given in Eqs. �3� and �4�. We define
effective radii aeff� ,4p�=a0 /Zeff� ,4p�, where a0�5.3
�10−11 m is the Bohr radius. The effective radii define an
approximate length scale for the spread of the site-localized
functions �41�

 �r� and are much smaller than the GaAs lat-
tice constant aL�5.7�10−10 m. The nucleus thus effec-
tively “sees” sharp-peaked electron densities centered around
the more distant lattice sites. We choose the nucleus to be at
site Rk and estimate the interaction with the electron density
at more distant atomic sites by approximating the electron
densities by � functions. Adding up contributions from h2

k

and h3
k, we arrive at an effective Hamiltonian describing

the long-ranged interactions: Hlr
k =Alr

k szIk
z, where Alr

k

=�l;l�kAlr
kl is the associated coupling strength and Alr

kl

=v0
��Rl�
2�d3rk���rk−Rkl��h2
k +h3

k�� describes the coupling
of the electron density at site Rl to the nucleus at site Rk
�Rkl=Rl−Rk�. In order to estimate the size of the long-
ranged interactions relative to the on-site interactions, we
take into account nearest-neighbor couplings for the long-
ranged part, i.e., we replace �l;l�k →�l=n.n. . The interaction
with electron density located around more distant nuclei is
suppressed by �1 /Rkl

3 . Assuming that the quantum-dot enve-
lope function varies slowly over the nearest-neighbor dis-
tance ���Rl����Rk� for l nearest neighbor of k�, we esti-
mate the ratio of long-ranged and on-site interactions �Table
I column �i�� to be

Alr

Ah
� 7 � 10−3, �C1�

of order 1%, where Alr
k =Alrv0
��Rk�
2.

We remark that, in principle, the electron g factor can
deviate from the free-electron g factor due to spin-orbit in-
teraction. According to Ref. 39, this renormalization is neg-
ligible for the on-site interaction, but could become relevant
for the long-ranged interaction. However, for the estimate in
Eq. �C1�, we have taken the free-electron g factor.

APPENDIX D: VARIANCE OF THE NUCLEAR FIELD

Here we calculate the nuclear-field variance for a HH in-
teracting with nuclei in a quantum dot. In particular, we
evaluate

�2 = �hz
2� , �D1�

where �¯�=TrI��̄I¯� indicates the expectation value with
respect to the infinite-temperature thermal equilibrium den-
sity matrix �̄I and we recall hz=�kAk

hIk
z. For an uncorrelated

and unpolarized nuclear state, we have �Ik
zIk�

z �= �Ik
z��Ik�

z �=0,
k�k�, which gives

�2 = �
k

�Ak
h�2��Ik

z�2� . �D2�

Using ��Ik
z�2�= Ijk�Ijk +1� /3 for an infinite-temperature state,

Ak
h=Ah

jkv0
��Rk�
2, and assuming that the nuclear isotopic
species with abundances � j are distributed uniformly
throughout the dot gives
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�2 =
1

3
I0�

j

� jI
j�Ij + 1��Ah

j �2, �D3�

where

I0 = v0
2�

k


��Rk�
4. �D4�

Assuming that the envelope function ��r� varies slowly on
the scale of the lattice, we replace the sum in Eq. �D4� by an
integral:

v0�
k


��Rk�
4 →� d3r
��r�
4. �D5�

Inserting the envelope functions �A2� and �A3� for a
quantum dot with height az and radius l and evaluating the
integral in Eq. �D5�, we find

I0 =
3

4

1

N
. �D6�

Here, N is the number of nuclear spins within the quantum
dot, given explicitly by

N =
�l2az

v0
. �D7�

Inserting Eq. �D6� into Eq. �D3� directly gives Eq. �9�.
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