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Surface acoustic modes of a periodic array of copper and SiO2 lines on a silicon substrate are studied using
a laser-induced transient grating technique. It is found that the band gap formed inside the Brillouin zone due
to “avoided crossing” of Rayleigh and Sezawa modes is much greater than the band gap in the Rayleigh wave
dispersion formed at the zone boundary. Another unexpected finding is that a very strong periodicity-induced
attenuation is observed above the longitudinal threshold rather than above the transverse threshold.
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I. INTRODUCTION

Recent progress in the investigation of phononic crystals1

stimulated renewed interest in surface acoustic waves
�SAWs� in periodic structures. Most studies published to
date, both theoretical and experimental, dealt with a homo-
geneous solid medium having a periodic surface profile.2–7

Periodic elastic composites have also been considered.8,9 Re-
cently, structures with the periodicity created by fabricating a
patterned thin film on a homogeneous substrate have been
attracting increased attention.10–12 Structures comprised of
metal wires embedded in a dielectric film are of particular
practical importance due to their ubiquitous role in micro-
electronics. In recent years, semiconductor industry has been
increasingly relying on measurement systems utilizing laser-
generated acoustic waves in order to control the fabrication
of metal interconnects on silicon chips.13 Aside from this
practical aspect, optoacoustic measurements on metal inter-
connect structures pose some interesting wave propagation
problems.

Antonelli et al.10 used a picosecond pump-probe method
to study vibrations of an array of submicron-wide copper
lines embedded in a SiO2 film and identified a number of
normal modes up to 10 GHz in frequency. Their technique,
however, was limited to nonpropagating vibrational modes
corresponding to the zero wave vector. Profunser et al.11

used a different variation of the picosecond pump-probe
technique allowing a full two-dimensional mapping of sur-
face acoustic waves propagating from a point source on an
array of 2-�m-wide lines. Bloch harmonics and a stopband
were observed, but the resolution of the measurement was
not sufficient to resolve the details of the band structure.

In this work, surface acoustic modes in a line array struc-
ture similar to that of Ref. 11 are studied with a laser-induced
transient grating technique also known as impulsive-
stimulated thermal scattering.6,14 This technique is well
suited to study surface acoustic modes in periodic
structures.6 On one hand, in contrast to more conventional
transmission experiments7 where transducer and receiver are
located outside the structure of interest, the technique per-
mits studying nonpropagating �zero group velocity� and
highly attenuated modes. On the other hand, it provides a
higher resolution of the acoustic frequency measurements
compared to other optical techniques such as Brillouin

scattering3,5 and two-dimensional pump-probe imaging,11

thus making it possible to study fine details of the band struc-
ture.

II. EXPERIMENT

A cross section of the sample is schematically shown in
Fig. 1�a�. Copper lines are embedded in the 0.8-�m-thick
SiO2 film on a �100� Si wafer. The substrate is 720 �m thick
and thus can be considered semi-infinite for the purposes of
this study. Copper line width is 1.5 �m and the structure
period d=3 �m. A very thin �25 nm� Ta diffusion barrier
layer separates Cu from Si and SiO2. The lines are aligned
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FIG. 1. �a� Cross section of the sample and �b� a typical signal
wave form for the SAW propagation direction parallel to Cu lines
measured at wave number 0.98 �m−1 �acoustic wavelength
6.4 �m�. Fast Fourier transform �FFT� spectrum of acoustic oscil-
lations is shown in the inset.
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along the �011� axis of Si. The dimensions of the line array
pattern are 3�3 mm.

The transient grating setup with optical heterodyne
detection15 has been described in details elsewhere.16 In
short, two excitation pulses derived from a single laser
source �pulse duration is 0.5 ns, wavelength is 532 nm, and
total energy at the sample is �1 �J� are crossed at the
sample surface to form a spatially periodic intensity pattern.
The period of this excitation grating can be varied within the
range 3.9–9.8 �m �wave-number range 0.64–1.6 �m−1�.
Absorption of the excitation light followed by rapid thermal
expansion generates counter-propagating acoustic modes at
the wave number defined by the periodicity of the excitation
grating. Since the excitation grating is produced by imaging
a phase mask on the sample surface,15,16 the acoustic wave
number is known with high precision. To account for a small
deviation in the magnification of the imaging optics from the
nominal value of 1:1, the system was additionally calibrated
by “burning” a permanent grating in a thin Ta film and mea-
suring its period with a microscope versus a NIST-traceable
line pattern standard. Thus the estimated error in the wave-
number values does not exceed 0.1%. In the discussion be-
low, wave-number values are rounded to two–three signifi-
cant digits unless a precise number is essential.

Detection of the acoustic waves is performed via diffrac-
tion of a quasi-cw probe beam �wavelength is 830 nm and
power at the sample is �100 mW� focused at the center of
the excitation pattern. Diffraction signal amplified via optical
heterodyning15 is detected with a fast photodiode and fed to
a digital oscilloscope, with the effective bandwidth of the
setup being �1 GHz. The excitation spot size is 300
�50 �m �the long dimension along the wave vector of the
grating�, i.e., much smaller than the dimensions of the line
array pattern, and the probe spot size is 50�25 �m.

Measurements were performed in two configurations,
with the excitation grating wave vector parallel and perpen-
dicular to the Cu lines. In both cases the acoustic wave vec-
tor is along the �011� symmetry direction, therefore only
saggitally polarized acoustic waves are excited.

III. RESULTS AND DISCUSSION

A. Propagation parallel to Cu lines

A typical signal wave form for the grating wave vector
parallel to the Cu lines is presented in Fig. 1�b�. The sharp
rise from the zero level indicates a moment when the exci-
tation pulse strikes the sample. Surface displacement ampli-
tude at the signal maximum is in the order of 0.1 nm. High-
frequency oscillations are due to surface acoustic modes
while the slowly decaying component is the contribution of
the “thermal grating” associated with the periodic tempera-
ture profile.14 The decay of the acoustic oscillations is caused
mainly by the finite length of the excitation spot, as the
counter-propagating SAW wave packets leave the probing
area. The Fourier spectrum of the acoustic oscillations re-
veals the presence of two surface acoustic modes as is not
uncommon for film/substrate structures:14,17 the fundamental
and the weak second-order modes, often referred to as Ray-
leigh and Sezawa waves, respectively.

Acoustic dispersion curves presented in Fig. 2 are, again,
quite typical for a structure comprising a “slow” film on a
“fast” substrate,17 with the Sezawa mode emerging from un-
der the “cutoff ” determined by the velocity of the vertically
polarized bulk transverse wave. Figure 2 also shows calcu-
lated dispersion curves for a homogeneous layer with effec-
tive elastic properties.18 As the structure period is compa-
rable to the acoustic wavelength, the effective-medium
approximation is not expected to be highly accurate. Never-
theless, it yields a surprisingly good agreement with the ex-
perimental data.

B. Propagation perpendicular to Cu lines

Measurements with the grating wave vector perpendicular
to the lines reveal a different picture. Signal wave forms
generally contain three acoustic modes. In the discussion be-
low the modes are referred to as the first, second, and third in
the order of increasing frequency.

Figure 3 presents examples of wave forms obtained at
wave numbers 0.91 and 1.16 �m−1. One can see that excel-
lent signal-to-noise ratio permits the detection of extremely
weak peaks in the spectrum. Despite of a large difference in
the wave number, both measurements yield almost the same
acoustic frequencies. The reason for this is that the wave
numbers are nearly symmetric with respect to the Brillouin-
zone boundary of the periodic structure kB=� /3 �m−1.

Acoustic dispersion curves are presented in Fig. 4�a�. The
measurements are indeed symmetric with respect to the
Brillouin-zone boundary. Therefore, it is instructive to plot
the dispersion curves versus the reduced wave number kr as
it is done in Fig. 4�b�. The symmetry, however, only applies
to the measured frequencies and not to the signal wave
forms. When the wave vector is smaller than kB the signal is
dominated by the first mode, as can be seen from Fig. 3.
Beyond the Brillouin-zone boundary the second and then the
third mode becomes dominant. The apparent explanation for
this behavior is that the mode closest to the original Rayleigh
wave at a given wave number is excited most efficiently.

As expected, the dispersion curves shown in Fig. 4 form a
band gap at the Brillouin-zone boundary. It should be noted,
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FIG. 2. Measured dispersion curves �solid circles� of surface
acoustic modes propagating parallel to Cu lines. Solid lines repre-
sent effective-medium calculations. Dotted line corresponds to the
vertically polarized bulk transverse wave in Si.
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however, that this is not a true band gap in the density of
states as the dispersion curve of the second mode bends
down and overlaps with the band gap in frequency. A much
larger band gap is formed inside the Brillouin zone. The
signal wave forms corresponding to the band gaps are pre-

sented in Fig. 5. The small separation between the modes at
the zone boundary results in the low-frequency beat pattern
in the wave form. Another noticeable feature of the wave
forms is a slow decay of the acoustic oscillations compared
to the propagation along the Cu lines. The reason for this is
that at the band gap the group velocity is zero and thus the
“walk out” of the wave packets does not contribute to the
oscillation decay. Note that the transient grating technique
benefits from this phenomenon in that the precision of the
acoustic frequency measurements is enhanced in the vicinity
of band gaps.

In order to elucidate the origin of the band gap inside the
Brillouin zone, dispersion curves for acoustic wave vector
parallel to the copper lines from Fig. 2 are replotted in Fig.
4�b� versus the reduced wave number. It is apparent that the
band gap arises as a result of the “avoided crossing” of the
Sezawa and the zone-folded Rayleigh modes.

Figure 6 presents dispersion curves for a similar structure
with 4 �m period. This structure was identical to that stud-
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FIG. 3. �a� Signal wave forms, �b� corresponding FFT spectra,
and �c� spectra magnified by a factor of 400 compared to �b� for
excitation grating wave vector perpendicular to Cu lines. The wave
number was set to 0.91 �top� and 1.16 �m−1 �bottom: the corre-
sponding reduced wave number is 0.93 �m−1�.
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FIG. 4. Measured dispersion curves �solid circles� for surface
acoustic modes with wave vector perpendicular to Cu lines plotted
�a� vs the excitation grating wave number and �b� vs the reduced
wave number. The values of the band gaps are �1=28 MHz and
�2=207 MHz. Vertical dashed line in �a� marks the Brillouin-zone
boundary. Solid lines in �b� correspond to measured dispersion
curves of the acoustic modes propagating parallel to Cu lines from
Fig. 2 replotted vs the reduced wave number. Dotted lines corre-
spond to bulk acoustic waves in Si propagating parallel to the sur-
face in the �011� direction: longitudinal �P� and vertically polarized
transverse �SV�.
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ied in Ref. 11, with the exception of the fact that no addi-
tional metal coating was used. Again, we see a very small
band gap at the Brillouin-zone boundary and a large band
gap inside the Brillouin zone. Here, the “avoided crossing”
nature of the large band gap is even more evident from the
shape of the dispersion curves. The data suggest that the
band gap is indirect, i.e., the maximum of the second mode
dispersion and the minimum of the third mode are shifted
with respect to each other on the wave-number axis.

A comparison of the dispersion curves in Fig. 6 with the
results reported in Ref. 11 indicates that the stopband re-
ported in that work most definitely was the large “Rayleigh-
Sezawa” band gap. The smaller band gap at the Brillouin-
zone boundary would not have been detected in that work
due to the limited measurement resolution.

It should be noted that the formation of band gaps inside
the Brillouin zone along with those at the zone boundary is a
known phenomenon that has been previously observed on

silicon samples with a periodic surface profile.3–5 In that
work, band gaps inside the Brillouin zone were ascribed to
hybridization and avoided crossing of the Rayleigh wave
with the “longitudinal resonance” �i.e., a pseudosurface wave
whose velocity is close to that of the longitudinal bulk wave
propagating along the surface2�. For a film-substrate struc-
ture one would naturally expect the formation of the
Rayleigh-Sezawa band gap inside the zone. What was not
expected was the relative width of the band gaps. Why is the
Rayleigh-Sezawa band gap so much larger than the Rayleigh
band gap at the zone boundary? While numerical calculation
of the surface modes would be needed for a comprehensive
analysis, the following qualitative explanation is offered as a
food for thought.

C. Structure of eigenmodes at band gaps

Let us consider the limit of a weak periodic perturbation
�as it would be the case if the embedded Cu lines were very
thin�. Vertical surface displacement in an acoustic eigenmode
characterized by the frequency � and reduced wave vector kr
can be represented by a superposition of Bloch harmonics,

uz = �
n=−�

�

An exp�i�kr +
2�n

d
	x − i�t
 , �1�

where d is the structure period. In the limit of weak period-
icity, eigenmodes closely resemble either Rayleigh or
Sezawa waves of the nonperturbed structure, and thus nor-
mally only one term in the sum will be significantly nonzero.
At the band gaps, however, there will be two significant
terms representing counter-propagating waves. At the
Brillouin-zone boundary eigenmodes consist of counter-
propagating Rayleigh waves with wave number kB=� /d. If
we place the coordinate origin x=0 at a symmetry plane of
the structure, for example, at the middle of a copper line, the
displacement pattern in the eigenmodes should be either
symmetric or antisymmetric. This requirement yields two
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FIG. 5. �a� Signal wave forms and �b� corresponding FFT spec-
tra at the band gaps formed at the Brillouin-zone boundary �top�
and inside the Brillouin zone �bottom�. The wave-number values
are 1.050 �top: 0.3% off the exact value of kB� and 1.28 �m−1

�bottom: the reduced wave number 0.82 �m−1�.
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standing waves: a symmetric mode with maxima on copper
lines and an antisymmetric one with maxima on oxide
spaces,

uz
sym � exp�− i�1t�cos��x

d
	

uz
asym � exp�− i�2t�sin��x

d
	 . �2�

One might think that this standing wave pattern leads to a
straightforward explanation of the nature of the band gap: the
biggest contrast between the properties of Cu and SiO2 is in
their density; the mode with the maximum of the surface
displacement on Cu has a larger “effective mass,” hence its
frequency should be lower.

However, this is not exactly what happens: In SAWs, par-
ticle trajectories are elliptical,17 and thus the oscillations of
the horizontal component of the displacement are shifted by
� /2 with respect to the vertical component. In the Rayleigh
wave propagating from left to right the motion is
counterclockwise17 while in the wave propagating in the op-
posite direction it is clockwise, and thus a “true” standing
wave with a complete cancellation of motion is not formed.
In a normal mode with the node of the vertical displacement
component on Cu, the node of the horizontal component will
be on SiO2. Thus neither of the eigemodes has its displace-
ment field mostly concentrated either on Cu or on SiO2. As a
result the frequency gap is not as large as it could be if the
normal modes possessed “true” nodes.

Now what is so different about the Rayleigh-Sezawa band
gap? In a Sezawa wave the direction of the surface motion is
opposite to that in a Rayleigh wave, i.e., it is clockwise for
the wave propagating left to right.17 Therefore, if Rayleigh
and Sezawa waves propagate in opposite directions, the di-
rection of the surface motion in both waves will be the same.
Thus a normal mode constructed of the counter-propagating
Rayleigh and Sezawa waves will have “true” nodes where
surface motion will be almost canceled �“almost” because
the exact shape of the polarization ellipses in the two modes
does not have to be the same�.

Let us consider the structure of the eigenmodes at the
Rayleigh-Sezawa band gap at the reduced wave number kr
=kRS in some more details. In the limit of small periodicity,
there will be, again, only two significantly nonzero terms in
Eq. �1�, corresponding to a Sezawa wave at k=kRS and a
Rayleigh wave at k=kRS−2� /d,

uz = A exp�− i�t + ikRSx� + B exp�− i�t + i�kRS −
2�

d
	x
 .

�3�

Note that in contrast to the situation at the Brillouin-zone
boundary, an eigenmode is not symmetric with respect to the
plane x=0; rather, symmetry transformation x�=−x trans-
forms it into an eigenmode with an opposite reduced wave
number kr=−kRS. It can be shown based on the fact that an
inversion of either x or t yields an eigenmode with the op-
posite kr that if A is real �which can always be assumed
without loss of generality�, then B is also real. Thus if two

terms in Eq. �3� have equal amplitudes then the displacement
in the two normal modes will be given by

uz
�1� � exp�− i�1t + i�kRS −

�

d
	x
cos��x

d
	 ,

uz
�2� � exp�− i�2t + i�kRS −

�

d
	x
sin��x

d
	 . �4�

These are not standing waves, yet they possess nodes with
zero displacement either at the center of the Cu lines or at
SiO2 spaces. In reality, the amplitudes do not have to be
equal and thus the field cancellation at the “nodes” will be
only partial. What is important, however, is that since the
surface motion in both Rayleigh and Sezawa waves is clock-
wise, the horizontal displacement component will have the
structure similar to that of the vertical component with the
nodes at the same locations. Thus one would expect that in
one of the eigenmodes the displacement field is mostly con-
centrated on the Cu lines and in the other mode on the SiO2
spaces, resulting in a large band gap.

D. Brekhovskikh attenuation

Figure 7 illustrates another interesting effect observed in
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FIG. 7. Brekhovskikh attenuation: �a� Signal wave forms and
�b� corresponding FFT spectra measured at wave numbers 1.42
�top� and 1.60 �m−1 �bottom�. Corresponding reduced wave num-
bers are 0.67 and 0.50 �m−1, respectively. Inset in �b� shows the
weak third mode peak magnified by a factor of 10.
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this experiment: a dramatic increase in the attenuation of the
third mode at the largest excitation wave number. As has
been mentioned earlier, when the wave number exceeds kB,
initially the second mode becomes dominant and beyond the
Rayleigh-Sezawa band gap the third mode becomes domi-
nant, as can be seen from the top spectrum in Fig. 7. This
behavior is consistent with the “avoided crossing” nature of
the band gap: Closer to the zone boundary the second mode
resembles Rayleigh wave and is excited more efficiently
while at larger wave numbers �that correspond to smaller
reduced wave numbers� the second mode becomes closer in
character to Sezawa wave and the third mode to Rayleigh
wave.

When the wave number is increased further, the third
mode undergoes a sudden dramatic increase in attenuation as
can be seen from the bottom traces in Fig. 7: The high-
frequency oscillations in the wave form and the correspond-
ing peak in the spectrum all but disappear. However, a closer
examination of the wave form reveals that the high-
frequency mode still exists and even has about the same
amplitude at the onset of the wave form, but decays within a
few oscillation periods. The width of the spectral peak is 60
MHz which yields a decay time of �5 ns.

It is known that periodicity creates a specific attenuation
mechanism for SAWs originally proposed by
Brekhovskikh.19 When SAW dispersion curve becomes zone
folded due to periodicity and its “phase velocity” � /kr ex-
ceeds the phase velocity of bulk waves, SAWs become at-
tenuated via radiation of bulk waves into the substrate.2,19

Thus modes located above the SV line in Fig. 4�b� should be
attenuated via the Brekhovskikh mechanism. They are re-
ferred to as “leaky” or “pseudosurface” modes to distinguish
them from true surface modes located below the SV line.2,4,5

However, the sharp increase in attenuation illustrated in
Fig. 7 is not caused by crossing the SV threshold. Indeed, the
top wave form corresponds to the reduced wave number
0.67 �m−1 and thus the third mode is located well above the
transverse threshold. Yet, this mode is rather long lived: The
oscillations do not undergo any visible attenuation within the
time window of the measurements and thus the decay time
exceeds 100 ns. The bottom wave form corresponds to the
reduced wave number 0.50 �m−1 and thus the third mode is
located above the longitudinal threshold labeled “P” in Fig.
4�b�. Thus the attenuation increase is most likely caused by
radiation of longitudinal waves into the substrate.

A similarly sharp increase in attenuation observed on the
sample with 4 �m period is shown in Fig. 8. It occurs at a
different wave number �and at a different reduced wave num-
ber� which, again, corresponds to the crossing of the longi-
tudinal threshold by the dispersion curve of the third mode.
The fact that such a strong effect takes place at the longitu-
dinal threshold and not at the transverse threshold presents
an interesting question for further studies.

IV. CONCLUSION

Transient grating measurements of surface acoustic modes
on a periodic array of copper/SiO2 lines on silicon uncov-

ered two interesting phenomena. First, it was found that the
avoided crossing of the Rayleigh and Sezawa modes of the
film/substrate structure yields a band gap inside the Brillouin
zone. This Rayleigh-Sezawa band gap turned out to be much
larger than the Rayleigh mode band gap formed at the
Brillouin-zone boundary. This finding could be useful in en-
gineering phononic band gap structures for SAWs. The quali-
tative analysis indicated that the observed behavior stems
from the basic properties of the surface modes and thus
should be a common occurrence in periodic film/substrate
structures. Second, very strong periodicity-induced attenua-
tion was observed above the longitudinal threshold rather
than above the transverse threshold. The author hopes that
reported findings will stimulate further studies of surface
acoustic modes in patterned thin films.
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FIG. 8. Brekhovskikh attenuation in the structure with 4 �m
period: �a� Signal wave forms and �b� corresponding FFT spectra
measured at wave numbers 1.15 �top� and 1.27 �m−1 �bottom�.
Corresponding reduced wave numbers are 0.52 and 0.42 �m−1,
respectively. Inset in �b� shows the weak third mode peak magnified
by a factor of 10.
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