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Dimensional crossover of the exchange-correlation energy at the semilocal level
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Commonly used semilocal density-functional approximations for the exchange-correlation energy fail badly
when the true two-dimensional limit is approached. We show, using a quasi-two-dimensional uniform electron

gas in the infinite-barrier model, that the semilocal level can correctly recover the exchange-correlation energy
of the two-dimensional uniform electron gas. We derive different, exact constraints at the semilocal level for
the dimensional crossover of the exchange-correlation energy and we propose a method to incorporate them in
any exchange-correlation density-functional approximation.
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I. INTRODUCTION

In the Kohn-Sham (KS) time-independent density-
functional theory the noninteracting kinetic energy is treated
as an exact functional of the occupied orbitals' and only the
exchange-correlation (xc) energy E, has to be approximated.
The “Jacob’s ladder” classification’ of the ground-state
density-functional approximations for E,. has three complete
nonempirical rungs: the local-spin-density approximation
(LSDA),' the generalized gradient approximation (GGA),>*
and the meta GGA (MGGA).> Higher rungs of the ladder
require new ingredients in order to satisfy more exact
constraints.> Thus, the meta GGA has (as ingredients) the
spin densities n; and n |, their gradients VnT and Vn |, and the
KS noninteracting kinetic-energy densities 7, and 7. The
local and semilocal density functionals (LSDA, GGA, and
meta GGA) give accurate predictions of ground state for at-
oms, molecules, solids,®’ and surfaces.® They also work for
atomic monolayers™>'® and other quasi-two-dimensional
(quasi-2D) systems,!'! but they fail badly as the true 2D limit
is approached.'?!3 The failure of the semilocal density func-
tionals to describe the dimensional crossover of the exact xc
functional can be avoided by using nonlocal models'*!3 such
as the weighted density approximation,'¢ or higher rungs of
the Jacob’s ladder.!” Thus, the fourth-rung hyper GGA, a
nonlocal correlation functional compatible with exact
exchange,'® improves considerably the behavior of semilocal
functionals over the whole thickness range of the quasi-2D
electron gas.!” The numerically expensive fifth-rung approxi-
mations such as the inhomogeneous Singwi-Tosi-Land-
Sjolander (ISTLS) method," and the GW? approximation
are remarkably accurate for the description of quasi-2D
systems.'>!7

The quasi-2D electron gas is experimentally realizable in
silicon metal-oxide-semiconductor field-effect transistor and
in the widely used semiconductor heterojunctions.!3?! Other
physical systems with strong 2D character are the copper-
oxide planes of high-temperature superconductors and the
electrons bound to the surface of liquid helium.?!

This paper is organized as follows. In Sec. II, we present
the exact constraints at the semilocal level for the dimen-
sional crossover of the exchange-correlation energy. In Sec.
III, we construct a simple semilocal functional that incorpo-
rates these exact conditions, and we test it for the quasi-2D
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uniform electron gas, jellium slabs, and nonuniformly scaled
hydrogen atom. In Sec. IV, we summarize our conclusions.

II. EXACT CONDITIONS FOR SEMILOCAL DENSITY
FUNCTIONALS

A 2D uniform electron gas is described by the 2D
. 2D _ / 2D _ J’_ 2D

electron-density parameter r; =1/vmn*"=+2/ky". (Unless
otherwise stated, atomic units are used throughout, i.e., &2
=h=m,=1.) Here n?P is the density of electrons per unit area
and kiD represents the magnitude of the corresponding 2D
Fermi wave vector. The exchange energy per particle of the
2D uniform electron gas is??

P =~ [4\2/(3m 1 = - 0.6002/r2P. (1)

The correlation energy per particle of a 2D uniform electron
gas in the high-density limit (+2° —0) is?

€ =-0.19-0.086r;" In r;” + O(r3"), )
and in the low-density limit (rfD—WO), it is22
B
8 442 _ ~ ~
= (3—77 -2+ 37>(’3D) (D) +0l7) 7).

A3)

A realistic interpolation (which uses quantum Monte Carlo
data) between the high- and low-density limits of the 2D
correlation energy per electron has the following form:!22?

13311, ————— 1
eﬁDzo.soss[W(w +1.5026r2° - 1) - =5 | (4)

Similarly to Ref. 17, let us consider a quantum well of
thickness L in the z direction. In the infinite-barrier model
(IBM) (Ref. 23) for a quantum well, the KS effective one-
electron potential is zero inside the well and infinity outside
it, such that the KS orbital is

2 [ .
W= \/Esin<%>e"kl for 0=sz=<L, (=1, (5

where A is the area of the xy plane, / is the subband index,
and r; and k; are the position and the wave vector parallel to
the surface. In this model the electrons cannot leak out of the
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well, so the true 2D electron-gas limit is recovered by shrink-
ing the well. The energy levels of this model are'?

2
El,k:%[<%) +k2:|. (6)

When only the lowest level is occupied [E 1,k§D<E2,0’ which
implies L< \r’%wrf]):Lmax (Ref. 12)], the density of states
of this system begins to resemble the density of states of a
2D electron gas, the motion in the z direction is frozen out,
and the system can be considered quasi-two-dimensional.

By shrinking the z coordinate without changing the total
number of electrons per unit area, the system reaches the 2D
electron-gas limit. This process is equivalent to a nonuniform
scaling in one dimension,?* and the three-dimensional (3D)
scaled density is'?

2 ) 2( mz
sin
(L/N)m(r?P)? (L/N)
where 15 (x,y,z)=An(x,y,\z) and \ is the scaling parameter.
When N -, L/N<<L,,,, and the 2D limit is achieved. The

corresponding exchange and correlation energies per particle
should satisfy the following scaling relations:'?

ni(Z)= ); 0=z=L/\, (7)

lim SB[ -5 lm B[] (8)
where N=/ (L)n(z)dz. These equations, which started from
those of Ref. 24, are not satisfied by LSDA, GGA, or meta
GGA.

The GGA exchange-correlation energy per particle of our
quantum well of thickness L is

[EGGA L
% = f n(z) €994 n(z),Vn(z)1dz /N, 9)
0
and the meta-GGA exchange-correlation energy per particle
is
EMGGA L
B f 1)1 (2), V(2. (o) e [N,
0

(10)

where €294 and €X9“* are the GGA and meta-GGA xc en-
ergies per particle of the 3D system.

The positive kinetic-energy density of the IBM quasi-2D
electron gas is

2Py
r=7"+ 7, sinz( ks )ZTW, (11)
4\
where TW=w(k%D)z/[Z(L/)\P]Cosz[ﬁ] is the von

Weizsicker kinetic-energy density.”> When \ —o, 7— 7V

~\3 and 7— 7V~ \. Equation (11) can be well described by
the Laplacian-level meta-GGA kinetic-energy density of Ref.
26.

The reduced gradients for exchange {p=|Vn|*/
[4(37%)*3n%3]~\*3} measure the variation in the density
over a Fermi wavelength, and that for correlation {¢r=|Vn|/
[4(3/)"6n"6]~ N>} measures the variation in the density
over the screening length. Both tend to infinity when the 2D
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limit is reached (A — ) such that in the quasi-2D electron-
gas regime, the density is rapidly varying almost every-
where. Thus this system is not only a challenge for a semilo-
cal density functional but it can also give exact constraints
(at the semilocal level) in the regime where the 3D density
and its gradient diverge.

The exact exchange energy per particle of the 2D uniform
electron gas [see Eq. (1)] can be correctly recovered by any
3D semilocal density-functional approximation for exchange
energy if in the large-gradient limit (p —), the 3D ex-
change energy per particle behaves as axp‘”“sf;SD A (see Ref.
27), where

1
a,= (0.6002\,’577)/|:33/2j dy sin”2(my)cos™2(ay)
0

(12)

was derived in the IBM model using Egs. (1) and (9). Equa-
tion (12) gives a,=0.5217. The parameter a, (as well as the
other results of this section), even if calculated using the
IBM quasi-2D electron gas, is independent of the quantum-
well potential model along the confinement z direction be-
cause the 2D limit (A — ) is not relaying on the effective
potential model.

At a meta-GGA level, we can also use the dimensionless
inhomogeneity parameter>?3

=7

7_unif

a= ~ N3, (13)

where 7"=(3/10)(37%)¥3n*? is the Thomas-Fermi kinetic-
energy density of the 3D uniform electron gas.? Thus Eq. (1)
can also be exactly satisfied by any meta GGA if in the
large-gradient limit (p— ), the 3D exchange energy per
particle behaves as bxal/ze)';SD A, where b,=1.947 was found
similarly as a, from Egs. (1) and (10).

Because rfD enters in a nonlinear manner in Eq. (4), the
GGA level cannot describe the correlation energy per particle
of a 2D uniform electron gas, but it can explain the 2D high-
and low-density limits. The high-density limit of Eq. (2) can
be exactly recovered by any 3D GGA that behaves in the
large-gradient limit (z— ) as
€90A — —0.19-0.0497n 2\t In(n™>"2\1),  (14)

c

where r~\%% is the reduced gradient for correlation. The

low-density limit of Eq. (3) can also be exactly recovered by
any 3D GGA that behaves in the large-gradient limit (¢
— ) as

€SOA 5 —0.403 4507212 £ 0459073734, (15)

c

At the meta-GGA level, Eq. (4) can be correctly satisfied
by any 3D meta GGA that behaves in the large-gradient limit
(t— ) as

EJCVIGGA _ €2D, (16)

c

where € is given by Eq. (4) and
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1 =0.4173n" a2 = 0.6727r P12, (17)

Equation (17) connects r2° with r?° showing the importance
of the « ingredient to the dimensional crossover of the
exchange-correlation energy and to the nonuniform scaling
in one dimension.

III. CONSTRUCTION AND TESTS OF A SIMPLE
SEMILOCAL FUNCTIONAL

The results of Sec. II can be included in any density-
functional approximation for the exchange-correlation en-
ergy. For simplicity, we incorporate them in the LSDA. Let
us consider first the exchange part and define GGA+2D and
MGGA+2D as

€GOA+ID _ LSDALY 4 #(p)[-1+0.5217p7 ]} (18)

and

MOOATID _ LSDAL) | r(p)[— 1+ 1.94722]),  (19)

where f(p)=1 for p=. The simplest approximation for f(p)
is a step function

f(p) =1limb(p - x), (20)
x—00
where 6(x) is 0 for x<0 and 1 for x=0. This model pre-
serves all the exact constraints that the local or semilocal
functional satisfies and recovers the exchange energy of the
2D uniform electron gas in the limit L=0 (when p=). How-
ever, this approximation does not improve the behavior of
the semilocal functional in the quasi-2D region, and more-
over, it gives a discontinuity when p — .
We propose the following simple analytic model for the
function f(p) (Ref. 30):

pH1+p?)
flp) = 07+ p° (21)
where ¢>0 is an empirical parameter. Equation (21) recov-
ers the right limit when p—o [f(p—)=1], and for a
slowly varying density, when p is small (p <1), it behaves as
f(p) ~[p*1 X 10 +higher-order terms]. This is a good fea-
ture because it can accurately preserve the behavior of the
semilocal functional in the slowly varying limit.>' When c is
large, Eq. (21) starts to model Eq. (20).

In Fig. 1, we show the exchange energy per particle of the
quasi-2D electron gas with 2D bulk parameter rfD=4 for
several density functionals: exact exchange, LSDA, PBE?
GGA, GGA+2D of Eq. (18), and MGGA+2D of Eq. (19),
using in Eq. (21) three values for the parameter ¢ (c¢=2, 8,
and 16). LSDA and PBE diverge when L—0 (A — ). The
meta-GGA TPSS,’ not plotted in Fig. 1, has the same behav-
ior as PBE. Both GGA+2D and MGGA +2D perform better
than LSDA at small thicknesses of the quantum well, and
both of them recover the exact exchange energy of the 2D
uniform electron gas when L=0. However, we observe that
GGA+2D with ¢=2 [the curve denoted by (GGA+2D)(a)]
is the most accurate and remarkably describes the quasi-2D
region. When the value of parameter ¢ increases, the GGA
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FIG. 1. Exchange energy per particle of an IBM quasi-2D elec-
tron gas of fixed 2D electron density (rfD=4) as a function of the
inverse quantum well thickness 1/L (L<L,,,=15.39). The curves
denoted by (GGA+2D)(a), (GGA+2D)(b), and (GGA+2D)(c) are
those given by Eq. (18) using for f(p) the analytic model of Eq.
(21) with ¢=2, 8, and 16, respectively. The curves denoted by
(MGGA +2D)(a), (MGGA+2D)(b), and (MGGA+2D)(c) are
those given by Eq. (19) using for f(p) the analytic model of Eq.
(21) with ¢=2, 8, and 16, respectively. While the LSDA and PBE
diverge, all GGA+2D and MGGA+2D curves recover in the limit
N—oo [the corresponding exchange energy (—0.150 05) of a 2D
electron gas].

+2D and MGGA +2D have the LSDA behavior over a larger
region, and consequently, they are not accurate in the
quasi-2D region. We also remark that GGA+2D and
MGGA+2D calculated with ¢=8 [the curves (GGA
+2D)(b) and (MGGA+2D)(b)] give a significant improve-
ment over the LSDA in the whole quasi-2D region.

In Fig. 2, we show the exchange energy per particle of a
thick jellium slab of bulk parameter 7°=2.07. [The bulk
parameter defined by the equation n=3/ 47T(V§D)3 represents
the radius of a sphere that encloses on average one electron. ]
The local and semilocal density approximations (LSDA,
TPSS, GGA+2D, and MGGA +2D) show an exponential de-
cay of the exchange energy per particle whereas the exact
exchange behaves as =~-1/(4z).2 All the MGGA+2D
curves have a bump in the region where f(p) switches from 0
to 1, and after that they are close to the TPSS meta-GGA
exchange energy per particle. (We recall that TPSS meta
GGA has the same large-p behavior as the PBE GGA.) We
observe that for jellium slabs (as well as for many 3D sys-
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FIG. 2. Exchange energy per particle at position z versus z in
atomic units at a jellium-slab surface. The bulk parameter is r?D
=2.07, the slab width is d=3.2\f, and the jellium surface is at z
=35.24 a.u. ()\F=27'r/k%D is the Fermi wavelength). The calcula-
tions of the exact exchange, LSDA, TPSS, GGA+2D, and
MGGA+2D use the LSDA Kohn-Sham orbitals. The curves
(GGA+2D)(a), (GGA+2D)(b), (GGA+2D)(c), (MGGA+2D)(a),
(MGGA+2D)(b), and (MGGA +2D)(c) have the same signification

as in Fig. 1.

ESGA+2D> EJI;SDA E)l:/lGGA+2D < E];SDA

tems) , whereas , thus
one can try also a convex combination between Egs. (18) and
(19). However, the construction of an accurate 3D and
quasi-2D semilocal functionals is a difficult task’*3* and is
beyond the purpose of this paper.

Since p values bigger than 9 are found in the tail of an
atom or molecule, where the electron density is negligible,
we can choose ¢=8 (such that at p=9, f=0.0053 and for p
>50, f—1). This choice ensures that the GGA+2D of Eq.
(18) and MGGA+2D of Eq. (19) perform similarly with
LSDA for 3D systems, make a considerable improvement in
quasi-2D region, and recover the exchange energy of the 2D
uniform electron gas. Thus, from now, all the presented cal-
culations use ¢=8 in Eq. (21).

Similar with the exchange case, the correlation results of
Sec. II can be included in any density-functional approxima-
tion; however, for simplicity we again show them for the
LSDA case. Thus, we define
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FIG. 3. Exchange-correlation energy per particle of an IBM
quasi-2D electron gas of fixed 2D electron density (rfD =4) as a
function of the quantum well thickness L (L <L, =15.39). While
LSDA and PBE diverge in the 2D limit, MGGA+2D and
ESGA+2D + eCGGA+2D [see Egs. (18) and (22)] approach the exact 2D
limit.

MOGAD _ LSDA | )y [LSDA 4 2D (22)

where 7 is the reduced gradient for correlation, f(z) has the
same form as Eq. (21) (with ¢=8), and € is given by Eqs.
(4) and (17).

Figures 3 and 4 show several approximations of the xc
energy per particle versus the quantum-well thickness L for
quasi-2D electron gases of fixed 2D electron-density param-
eters: r2°=4 and 2/\3 (as in Figs. 1 and 2 of Ref. 17). The
ISTLS method,' a self-consistent approach that depends on
all occupied and unoccupied KS orbitals, is remarkably ac-
curate for any thickness L=L,,,,/\ (see Ref. 17). LSDA and
PBE are accurate in the limit L— L,,,,, but they fail badly in
the zero-thickness limit. MGGA +2D and the xc energy per
particle of Eqs. (18) and (22) (€994+2P 4 MOGA+ID) qre accu-
rate in the limit L— L, and improve considerably the be-
havior of LSDA when L<~0.5L,,,, approaching the exact
2D limit when L—0.

Let us present our results for the nonuniformly scaled
hydrogen  atom,’®%  whose  density is  my(r)
=(N/mexp[-2Vx*+y*+(\z)?]. The exact xc energy is>
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0 0.5 1 1.5 2 25 3
L = Lhax/A (bohr)

FIG. 4. As in Fig. 3 but now for r2°=2/\3 (L, =4.44).
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FIG. 5. Exchange-correlation energy versus scaling parameter \
for the nonuniformly scaled hydrogen atom. Also shown is the ex-
act xc energy [see Eq. (23)].
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When \ — e, this system can model an electron firmly bound
to a surface. Figure 5 shows that LSDA and PBE fail badly
in the extreme oblate case (A>1). The meta-GGA TPSS,?
not plotted in Fig. 5, has the same behavior as PBE. Because
in any one-electron system 7=7" and =0, the MGGA
+2D xc energy will slowly approach zero in the limit A
—», The xc energy of Eqgs. (I18) and (22) (ESGA+2D
+E?/IGGA+2D) is very accurate at large values of \.

In this section we have proposed a method that incorpo-
rates the 2D limit of the electron gas in semilocal functionals
and keeps as much as possible the 3D accuracy of the
semilocal functionals. However, in order to obtain a good
description of the quasi-2D region, the empirical parameter ¢
has to be smaller (¢ =2) than the optimized value (c¢=8), but
such a choice will significantly modify the 3D accuracy of
the semilocal functional. In the investigation of physical sys-
tems with strong 2D character, Eq. (17) can be seen as an
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indicator of the quasi-2D electron-gas regime. Various indi-
cators of the electron localization have been constructed for
3D systems (see for example Ref. 36), but Eq. (17) is a better
and natural choice in the case of quasi-2D uniform gas. Thus,
in the quasi-2D regions, where rfD(z) aV2(z) is constant, we
can choose ¢=2 and in the other regions we can choose ¢
=8 (or even c=). Such a parametrization of ¢ can be more
useful in applications than the use of our optimized value for
c (c=8).

IV. CONCLUSIONS

In summary, we have shown that the dimensional cross-
over (from 3D to 2D) of the exact xc energy can be signifi-
cantly improved at a meta-GGA level, and we derive differ-
ent exact constraints (see Sec. II) using an IBM quasi-2D
electron gas. Same results can be obtained using the para-
bolic quantum well of Ref. 13 because the 2D limit is inde-
pendent on the quasi-2D electron-gas model. Thus, a 3D
meta GGA that requires input from the 3D uniform electron
gas®’ can describe a 2D system using only the highly nonlo-
cal region where |Vn|— . Moreover, Eq. (17) shows a close
connection between 72 and 7> and the positive noninteract-
ing kinetic-energy density 7 in the case of the quasi-2D elec-
tron gas.

We propose a simple approach to incorporate the dimen-
sional crossover constraints in any local or semilocal
density-functional approximation for the xc energy, and we
present it in the case of LSDA. However, future work is
needed to construct an accurate meta GGA that satisfies the
dimensional crossover constraints.

The nonuniform scaling in one dimension is closely re-
lated to the quasi-2D electron gas. The nonuniformly scaled
hydrogen atom in the oblate case (A=1), an important and
hard test for the density functionals as well as a model for an
electron bound to a surface, can be well described by our
simple modified LSDAs. Thus we hope that this work can be
useful not only for investigation of physical systems with
strong 2D character, but also in developing more accurate
density functionals.
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