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We consider the energy barrier to magnetization reversal in a one-dimensional �1D� magnetic wire with
defects. By solving the variable coefficient double Sine-Gordon equation, we obtain the dependence of the
energy barrier on the strength and the range of a defect potential. We find that there is a minimum-energy
barrier for two defects placed at an optimal distance which is correlated with the width of a 360° untwisted
domain wall. The possible experimental realization of our results is discussed.
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I. INTRODUCTION

Thermal stability of a magnetic bit, which is determined
by the ratio of the energy barrier Eb to the thermal fluctuation
kBT,1 is an important issue in magnetic storage devices. Due
to complexity of the magnetization reversal process, there
are very few examples where the energy barrier can be ana-
lytically derived. For a single-domain particle, the calcula-
tion of the energy barrier is trivial because the magnetic en-
ergy only depends on the orientation of the magnetization
vector and all equilibrium states can be readily obtained.2

For nonsingle domain magnetic reversal, the task of finding
the energy barrier is much more challenging since there are
infinite numbers of reversal configurations.

The simplest example for the nonsingle domain energy
barrier is a long magnetic wire where the direction of the
magnetization depends only on one spatial coordination x,
i.e., M�x�. The thermal stability of a magnetic bit based on
the magnetic wire has been considered robust due to the
shape anisotropy in addition to the crystalline anisotropy.3

For an ideal wire, the energy barrier would be proportional to
KeV for a uniform coherent rotation, where Ke are the
anisotropies and V is the volume of the entire wire. Braun4,5

showed that the energy barrier through the nucleation of an
untwist 360° domain wall, which can be mathematically de-
scribed by the solitons of the double Sine-Gordon model,
could be much lower because the energy barrier is now pro-
portional to the size of the wall instead of the total volume of
the wire. Another similar example is the ideal ring-shaped
magnet where the magnetization reversal and the energy bar-
rier in the presence of the circular magnetic field were
investigated.6 For these ideal wires or rings, due to transla-
tional or rotational invariance of the structure, the double
solitons �360° domain walls� can be located at any point. In
experimental wires, however, the presence of wire/ring
roughness and defects breaks the symmetry. Recently,
Loxley7 considered the effect of a localized defect in an oth-
erwise ideal wire and found that the nucleation can take sev-
eral different modes depending on the strength of the defect.
In general, defects reduce the energy needed for the nucle-
ation of the domain wall and thus suppressing the thermal
stability.

Recent experimental advances8–13 in fabrication and char-
acterization of engineered magnetic wires with controlled de-

fects make it possible to quantitatively compare experimental
results with theoretical calculations. Since there are always
defects for experimental wires, we will investigate the de-
pendence of the energy barrier on the strength and the range
of defect potentials. For a given defect potential, we solve
the generalized Sine-Gordon equation by a finite-difference
method based on the trial function established by Braun.4,5

This paper is organized as follows. In Sec. II, we briefly
outline our model and discuss the results for the ideal wire.
Then we present the dependence of the energy barrier on the
strength and the range of the defect potential by numerically
solving the model equation. In Sec. IV, we consider the effect
of two defects. We show that there is an energy barrier mini-
mum when two defects are placed at an optimal distance. We
summarize and conclude our paper in Sec. V.

II. MODEL

We consider an infinitely long one-dimensional �1D� wire
with the following total magnetic energy:
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where A is the exchange stiffness, Ms is the saturation mag-
netization, Kh is the in-plane anisotropy constant, Ke is the
easy-axis uniaxial anisotropy, Kd=Kd�x� is a defect potential
which reduces easy-axis anisotropy but enhances the easy-
plane anisotropy, and Hext is the external field. If we use the
spherical coordination for the magnetization vector M
=Ms�sin � cos � , sin � sin � , cos �� and define the reduced
units for the length �x�=�A /Ke, the energy ���=2�AKe, the
defect potential ad=Kd /Ke, the in-plane anisotropy ratio Q
=Ke /Kh, and the applied field h=HextMs / �2Ke�, Eq. �1� can
be written in the unitless form
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The most interesting case is the large in-plane anisotropy
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limit, i.e., Q−1→�, so that we can immediately place the
magnetization in the plane �=� /2. We shall only discuss this
limit case throughout the paper; the finite Q−1 would consid-
erably increase the complexity of the calculation which will
be the subject for later study.

The equilibrium states can be found by �� /��=0. From
Eq. �2�, we have

−
d2�

dx2 + �1 − ad�sin � cos � + h sin � = 0. �3�

The above equation determines all equilibrium states includ-
ing the ground state, metastable states, as well as the saddle
points for the magnetization reversal. Once we determine the
saddle-point solution �=�s�x� from the above equation, we
can evaluate the energy barrier for h�0,

Eb = ���s� − ��� = ��

= �
−�

�

dx	1

2

d�s

dx
�2

+
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2
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�4�

where we assume that the magnetization vector is initially at
�=� metastable state. In the absence of the defect, ad=0,
Braun4 found two nonuniform solutions. One solution is

�s
t�x� = 2 tan−1	 cosh Rb

sinh�x/�b�� , �5�

where Rb and �b are determined by the magnetic field h
=csch2 Rb and �b=tanh Rb and describe two twisted � walls
separated by �bRb; this solution is stable against small per-
turbations and thus it is not a saddle point. The other solution
is

�s
u�x� = 2 tan−1	 cosh�x/�s�

sinh Rs
� , �6�

where Rs and �s are similarly determined by the magnetic
field h=sech2 Rs and �s=coth Rs and describe two untwisted
� walls also separated by �sRs; this is a saddle point whose
energy barrier relative to the metastable state ��s=�� is

Eb = 4 tanh Rs − 4Rs sech2 Rs. �7�

In the presence of a highly localized state at x=0, ad
=B��x�, Loxley7 extended Braun’s solution by constructing a
superposition of Braun’s functions �Eq. �6�� for x�0 and x
�0 and by using the boundary condition at x=0 to determine
the coefficients. We will first consider below one defect with
a finite range L and strength V0 such that

ad�x� = V0 exp�− x2/L2� . �8�

While the above defect potential is introduced rather arbi-
trarily, it should roughly model an experimental case where
one makes a notch at the edge of an ideal wire.14 Due to
strong magnetostatic interaction, the notch generates a pin-
ning potential. One may approximately correlate the size and
the strength of the pinning potential by the width �parallel to
the wire� and the depth �perpendicular to the wire� of the
notch.

Since the double Sine-Gordon model �Eq. �3�� has many
solutions in general, a direct numerical integration of Eq. �3�
is usually unable to find our interested saddle-point solution.
Instead, we should first choose a trial function which is near
the vicinity of the saddle point. Since the saddle point of the
ideal wire is already known �Eq. �6��, we conveniently con-
sider the solution in the form

�s�x� = �s
u�x� + f�x� , �9�

where �s
u�x� is given by Eq. �6�. By placing Eq. �9� into Eq.

�3�, we obtain the second-order nonlinear differential equa-
tion for the function f�x�. By using nonlinear finite-
difference method15 for solving differential equations, we
find that the function f�x� behaves normally and the devia-
tion of �s�x� from �s

u�x� is always small for all the defect
potentials we are interested in. Similar to the argument of
�s

u�x� being the saddle point for the ideal wire, our solution
�s�x� described below is also a saddle point for the magnetic
wire with defects.

III. ENERGY BARRIERS

When the defect potential or the applied magnetic field is
large �V0	1 or h�1�, the initial metastable state �=� be-
comes unstable. In this case, the magnetization either spon-
taneously forms domain structures to minimize the energy or
completely reverses its direction to �=0. Since we are only
interested in the energy between the saddle point and the
metastable state of �=�, we should limit the magnetic field
to 0�h�1 and the defect potential to V0�1. In Fig. 1, we
show the solution of the magnetization for three different
values of the defect potential size L for a fixed field h=0.5
and the potential strength V0=0.3. We have seen that the
correction f�x� to the defect-free domain wall �s

u�x� is small
in all cases. f�x� becomes sizable for the large-size defect

FIG. 1. �Color online� The solution of f�x� for three different
defect sizes �a� L=0.2, �b� 1, and �c� 5, where the field h=0.5 and
the defect potential V0=0.3 are fixed. �d� The magnetization direc-
tion �s�x�=�s

u�x�+ f�x� for the above three cases.
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L=5. The energy barrier decreases as the defect size in-
creases; this is largely expected. As shown in Fig. 2, the
energy barrier decreases when the defect size continuously
increases to the several times of the domain-wall width. Fur-
ther increase in the size of the defect does not change the
energy barrier anymore. This is consistent with Fig. 1 illus-
trating that the function �s�x� is a localized function whose
range is a few times of the domain-wall width; thus, the
defect potential outside this range does not affect the energy
barrier.

Figure 3 shows the variation in the energy barrier with
respect to the strength of the defect potential. When the de-
fect size is small, the energy barrier is nearly independent of
the potential strength up to V0=1. When the defect size is
comparable to the domain-wall width L=1, the energy bar-
rier remains unaffected for a small field but decreases con-
siderably at the large field; this could be understood in terms
of the field dependence of the domain-wall width: the larger
the field is, the narrower the wall is. Thus, the large field
makes the defect size larger than the domain-wall width and
produces a stronger effect on the energy barrier. In the case
of a large defect size, L=5, the energy barrier depends on the
strength of the defects for all applied fields. Interestingly,

when the defect strength or the magnetic field is large
enough, the energy barrier is reduced to zero; i.e., magneti-
zation reversal occurs.

To quantitatively address the disappearance of the energy
barrier, we show in Fig. 4 the critical magnetic field hcrit
where the energy barrier reaches zero. The critical field hcrit
decreases exponentially as one increases the strength and the
size of the defect potential, and it reaches a saturation for
large L.

IV. ENERGY BARRIERS WITH TWO DEFECTS

Having quantitatively calculated the dependence of the
energy barrier on the defect potential, the size, and the ap-
plied magnetic field for a single defect, we consider the ef-
fect of two defects. The multiple defects either exist naturally
in a realistic film or can be grown purposely by making
geometric notches at the edges of the film.14 If we continue
to assume the defect potential in the form of Eq. �8�, we can
write the total potential of the two defects as

ad�x� = V0	exp
−
�x − x0�2

L2 � + exp
−
�x + x0�2

L2 �� ,

�10�

where 2x0 is the separation of the centers of the two defect
potentials. We have used the same numerical method15 to
solve Eq. �3� by using the above defect potential.

In Fig. 5, we show the dependence of the energy barrier
on the separation of the two defects for a fixed magnetic field
h=0.1 but different defect sizes and potentials. The energy
barrier shows a minimum value, indicating the existence of
an optimal distance between two defects to achieve
minimum-energy barrier. Surprisingly, the optimal distance
is almost independent of the defect potential size and
strength. To explain this result, we draw the magnetization
vector of the saddle-point untwisted wall in the absence of
the defects �Fig. 6�a��. Clearly, the untwisted wall has two
locations where the magnetization vectors are perpendicular
to the easy axis. If we place the two defects at these two
locations, the energy reduction would be maximum; i.e., the
energy barrier would be minimum if the separation of the
defects matches 
 that is labeled in Fig. 6�a�. Since 
 is very
weakly dependent on the defect potential strength and size,

FIG. 2. �Color online� The energy barrier as a function of defect
size for a fixed defect potential V0=0.3 for three different magnetic
fields.

FIG. 3. �Color online� The energy barrier as a function of the
defect potential strength for various magnetic fields and the defect
sizes of �a� L=0.2, �b� 1, and �c� 5.

FIG. 4. �Color online� The critical magnetic field hcrit as a func-
tion of the defect potential size for various defect potential
strengths.
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this picture explains why the optimal separations are ap-
proximately the same.

To confirm the above explanation, we vary the magnetic
field. As the magnetic field increases, 
 decreases and thus
the optimal separation decreases. In Fig. 6�b� we show the
dependence of the optimal separation of the defects 2x0 and

 on the magnetic field. Although they are not exactly iden-
tical, the rate of the decreasing is comparable. The slight
difference in 2x0 and 
 is due to the fact that the defect has
a finite range which tends to affect a finite area of the mag-
netization vector.

V. SUMMARY AND CONCLUSIONS

We have quantitatively investigated the dependence of the
energy barrier on the defect potential size and strength in a
simplified 1D magnetic wire. Based on Braun’s analytical
solution of the saddle-point untwisted wall function for an
ideal film, we find that the saddle-point solution can be cal-
culated numerically in the presence of defects. Since the en-
ergy barrier plays a critical role in thermal stability of mag-
netic devices, the present numerical calculation provides a
step forward in treating realistic films with various pinning
or defects.

Most of the quantitative results obtained in this work
could be readily understood in terms of perturbation of the

defect potentials on the ideal magnetic wire. The effect of
two defects is most interesting. The minimum-energy barrier
with respect to the separation of the two defects could be
relevant to experiments in two cases. In a film with uninten-
tional defects, the thermal reversal should first take place in
the locations where the separation of the defects is approxi-
mately the size of the untwisted wall or 
. Another case is
deliberately making two notches at the edge of the film. The
energy barrier would depend on the distance between the two
notches, and it is possible to study the predicted energy bar-
rier experimentally.
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