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We study the one-dimensional spin-1/2 Heisenberg chain with competing ferromagnetic nearest-neighbor J1

and antiferromagnetic next-nearest-neighbor J2 exchange couplings in the presence of magnetic field. We use
both numerical approaches �the density-matrix renormalization-group method and exact diagonalization� and
effective-field-theory approach and obtain the ground-state phase diagram for wide parameter range of the
coupling ratio J1 /J2. The phase diagram is rich and has a variety of phases, including the vector chiral phase,
the nematic phase, and other multipolar phases. In the vector chiral phase, which appears in relatively weak
magnetic field, the ground state exhibits long-range order �LRO� of vector chirality which spontaneously
breaks a parity symmetry. The nematic phase shows a quasi-LRO of antiferronematic spin correlation and
arises as a result of formation of two-magnon bound states in high magnetic fields. Similarly, the higher
multipolar phases, such as triatic �p=3� and quartic �p=4� phases, are formed through binding of p magnons
near the saturation fields, showing quasi-LRO of antiferromultipolar spin correlations. The multipolar phases
cross over to spin-density-wave phases as the magnetic field is decreased before encountering a phase transi-
tion to the vector chiral phase at a lower field. The implications of our results to quasi-one-dimensional
frustrated magnets �e.g., LiCuVO4� are discussed.
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I. INTRODUCTION

There is resurgence of theoretical interest in the one-
dimensional frustrated ferromagnetic Heisenberg model in
magnetic field,1–9

H = J1�
l

sl · sl+1 + J2�
l

sl · sl+2 − h�
l

sl
z, �1�

where the nearest-neighbor exchange is ferromagnetic J1
�0, the competing next-nearest-neighbor exchange is anti-
ferromagnetic J2�0, and sl is a spin-1/2 operator on the site
l. The model has recently attracted much attention as it is
considered to describe magnetic properties of quasi-one-
dimensional edge-sharing chain cuprates, such as
Rb2Cu2Mo3O12 �Ref. 10� and LiCuVO4.11 In particular, there
have been intensive experimental studies of LiCuVO4, ex-
ploring an unusual phase transition in magnetic field from a
spiral-ordered phase to a modulated-collinear-ordered
phase12,13 and a multiferroic behavior.14–16

From a theoretical point of view, the J1-J2 spin chain �1�
is of special interest as it is the simplest of the frustrated
quantum spin models and provides a good testing ground to
look for exotic quantum phases induced by frustration. The
theoretical studies over the past several decades have mostly
considered the case where both couplings are antiferromag-
netic, J1�0 and J2�0. It has been established that in zero
magnetic field the ground state of the antiferromagnetic J1-J2
spin chain undergoes a phase transition from a critical phase
with gapless excitations for J2�J2c=0.2411J1 to a gapped
phase with spontaneous dimerization for J2�J2c as J2
increases.17–23 It has also been revealed that the model ex-
hibits cusp singularities and a 1/3 plateau in the magnetiza-
tion curve,24,25 as well as a vector chiral order in the case of

anisotropic exchange couplings26–28 or under magnetic
field.29–32

In this paper we concentrate on the ferromagnetic case
�J1�0� of the J1-J2 spin chain �1� in magnetic field which
partially polarizes spins to the +z direction. We show that the
ground-state phase diagram in the case is a zoo of exotic
quantum phases using the numerical density-matrix
renormalization-group �DMRG� method,33–36 exact-
diagonalization method, and effective-field theories. We find
a phase with long-range vector chiral order and phases with
various kinds of multipolar spin correlations, most of which
have not been known to appear in this model.

Let us briefly review established results from previous
studies on the ferromagnetic J1-J2 spin chain and introduce
our new findings. In zero field the ground state is ferromag-
netic for J1 /J2�−4 and spin singlet for −4�J1 /J2�0; the
nature of the spin singlet ground state is not well understood.
The ground-state manifold has extensive degeneracy at the
phase boundary J1 /J2=−4.37,38 In magnetic field the spins
order with a helical magnetic structure

sl/s = �sin �c cos �l
c,sin �c sin �l

c,cos �c� �2�

in the classical limit �s= �s��1�, with a pitch angle

�c = �l+1
c − �l

c = � arccos�− J1/4J2� �3�

and a canting angle

�c = arccos�4hJ2/s�J1 + 4J2�2� �4�

when −4�J1 /J2�0. One might expect that this helical mag-
netic order should be completely destroyed by quantum fluc-
tuations in the quantum limit s=1 /2. It is important to note,
however, that a part of the broken symmetries in the classical
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helical spin configuration may remain to be spontaneously
broken even in the quantum limit. Indeed, the chirality �the
sign of �c� of the helical spin configuration is Z2 valued and
can be broken in �1+1� dimensions. The chirality can be
measured with the vector chiral order parameter,

�l
�n� = �sl � sl+n�z = sl

xsl+n
y − sl

ysl+n
x �5�

with n=1 and 2; its classical value is �l
�n�

=s2 sin2 �c sin�n�c�. In this paper we show that the vector
chirality �l

�n� is long-range ordered in the weak-field regime
of the phase diagram of the ferromagnetic J1-J2 model.39 We
also show that the vector chiral order parameters satisfy the
relation

J1��l
�1�� + 2J2��l

�2�� = 0, �6�

where �¯� denotes average in the ground state. This implies
that the spin current, Jij�si�s j�z, flowing on the link connect-
ing the sites i and j �Jij =J1 or J2� is confined and circulating
in each triangle made of the three neighboring sites. Inciden-
tally, we note that the classical helical configuration �2� sat-
isfies Eq. �6�.

Vector chirality �5� is an antisymmetric product of two
spin-1/2 operators. This is an example of the p-type nematic
operator introduced by Andreev and Grishchuk.40 In this pa-
per, we shall reserve the term “nematic” for symmetric prod-
ucts �termed n type in Ref. 40� and call the antisymmetric
product �5� the vector chirality. Examples of what we call
nematic operators are

Qx2−y2 = si
xsj

x − si
ysj

y, Qxy = si
xsj

y + si
ysj

x, �7�

which can be thought of as members of quadrupolar spin
operators.

Interestingly enough, the phase diagram of the ferromag-
netic J1-J2 spin chain has a Tomonaga-Luttinger �TL� liquid
phase with quasi-long-range antiferronematic order Q−−
=Qx2−y2 − iQxy =si

−sj
−, where sj

−=sj
x− isj

y. As first pointed out
by Chubukov,1 this nematic order is realized due to pairing
of two-magnon excitations. The paired magnons are the low-
energy excitations of the TL liquid with the nematic quasi-
long-range order. This was confirmed recently by numerical
calculation of nematic correlation function at J1 /J2=−1.7 In
this paper we explore wider region of the parameter space
and show that the nematic TL-liquid phase occupies a large
part of the phase diagram.

One can generalize the quadrupolar spin orders to higher
multipolar orders. For example, one can define octupolar tri-
atic order41 O−−−=Ox3−3xy2 + iOy3−3x2y =si

−sj
−sk

− with

Ox3−3xy2 = si
xsj

xsk
x − si

xsj
ysk

y − si
ysj

xsk
y − si

ysj
ysk

x, �8a�

Oy3−3x2y = si
ysj

ysk
y − si

ysj
xsk

x − si
xsj

ysk
x − si

xsj
xsk

y , �8b�

and, similarly, the hexadecapolar order H−−−−=Hx4−6x2y2+y4

− iHx3y−xy3 =si
−sj

−sk
−sl

−, which we dub the “quartic” order, and
so on. In fact, signatures of binding of three or four magnons
are found in recent numerical studies of magnetization
curves2,3 and of multimagnon instabilities at a saturation
field.6 In this paper we establish the existence of TL-liquid
phases with the triatic and quartic orders through the DMRG

calculation of correlation functions. It is interesting to note
that quasi-long-range molecular superfluid phases �called tri-
onic and quartetting phases�, similar to the above-mentioned
triatic and quartic phases, have recently been found in a
model of one-dimensional multicomponent fermionic cold
atoms.42–44

This paper is organized as follows. In Sec. II we present
the ground-state phase diagram and briefly describe proper-
ties of the phases identified in the present work. These are
vector chiral, nematic, incommensurate nematic, triatic,
quartic phases, and spin-density-wave phases �SDW2 and
SDW3�. This section gives a summary of the main results of
the paper. In Sec. III we consider formation of multimagnon
bound states which destabilizes the fully polarized state. The
results of this consideration allow us to determine phases
emerging just below the saturation field. In Sec. IV we study
magnetization process of model �1� for several values of the
ratio J1 /J2 and find a transition from a single-spin-flip pro-
cess to a multi-spin-flip process. The transition point is iden-
tified as the boundary of the vector chiral phase in the phase
diagram. The remaining sections present detailed analysis of
correlation functions in each phase, which we calculate using
the DMRG method. In Sec. V, we consider the vector chiral
phase. After a brief review of bosonization approach due to
Kolezhuk and Vekua29 which is valid for �J1�	J2, numerical
results of the DMRG calculation are presented. In Sec. VI we
discuss the nematic phase. We introduce a hard-core Bose
gas of two-magnon bound states as an effective theory for
the nematic phase. We find good agreement between the
theory and numerics of various correlation functions in the
nematic phase. In Sec. VII we show our numerical results for
the incommensurate nematic phase, which exhibits quasi-
long-range order of the nematic correlation with an incom-
mensurate wave number. In Sec. VIII we apply the hard-core
boson theory to the triatic and quartic phases. We show that
these phases can be understood as TL liquids of hard-core
bosons which correspond to three- and four-magnon bound
states, respectively, just as the nematic phase is a TL liquid
of two-magnon bound states. We conclude with some re-
marks in Sec. IX. Relation �6� is derived in Appendix.

II. PHASE DIAGRAM

The ground-state phase diagram obtained in the present
work is summarized in Fig. 1 in the planes of �a� J1 /J2 ver-
sus h /J2 and �b� J1 /J2 versus the magnetization per site M.
The phase diagram contains �at least� eight phases: vector
chiral �VC� phase, nematic �N� phase, incommensurate nem-
atic �IN� phase, triatic �T� phase, quartic �Q� phase, two
kinds of spin-density-wave phases �SDW2 and SDW3�, and
ferromagnetic �F� phase. Brief explanation of these phases is
given below. More detailed discussions on each phase will be
given in Secs. V–VIII. Figure 2 shows typical spatial depen-
dence of various correlation functions in these phases.

Ferromagnetic phase. In the ferromagnetic phase, spins
are fully polarized, M =1 /2. This phase is stable when
J1 /J2�−4 or when large enough magnetic field is applied.
We will discuss in Sec. III magnetic instabilities along the
phase boundary of the ferromagnetic phase.
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Vector chiral phase. The vector chiral phase appears in
small magnetic field. This phase is characterized by long-
range order of the vector chiral correlation �5�. The ground
state breaks a Z2 symmetry as Eq. �5� indicates that the parity
about a bond center is broken spontaneously. We can also
regard this Z2-symmetry breaking as choosing one of the two
possible directions of circulation of spontaneous sz-spin cur-
rent flow. A schematic picture of the vector chiral order and
circulating spin current in the Z2-symmetry broken state is
shown in Fig. 3, where the spin chain is drawn as a zigzag
ladder. Numerical evidence for the long-range order will be
presented in Sec. V. Another important feature of the vector
chiral phase is that the transverse-spin correlation �s0

xsl
x� is

incommensurate with the lattice and stronger than the longi-
tudinal correlation �s0

zsl
z�− �s0

z��sl
z�.

Nematic/SDW2 phases. At higher magnetic field up to the
saturation field, the nematic/SDW2 phases1,6,7,40 appear at
J1 /J2
−2.7. These phases are a TL liquid of hard-core

bosons which are actually two-magnon bound states with
total momentum k=�. The boson creation operator bl

† corre-
sponds to sl

−sl+1
− and the boson density nl=bl

†bl�
1
2 −sl

z. Since
breaking a two-magnon bound-state costs a finite binding
energy, the transverse-spin correlation �s0

+sl
−� is short ranged,

where s0
+=s0

x + is0
y. Being a TL liquid, the ground state exhib-

its power-law decaying correlations of the single-boson
propagator, �b0bl

†�� �s0
+s1

+sl
−sl+1

− �, and the density fluctuations,
�n0nl�− �n0��nl�� �s0

zsl
z�− �s0

z��sl
z�. When the boson propagator

decays slower than the density-density correlation, it is ap-
propriate to call this phase the �spin� nematic phase. In the
opposite case when the latter incommensurate density corre-
lation is dominant, we call this phase the spin-density-wave
�SDW2� phase. The SDW2 phase is extended to the antifer-
romagnetic side J1�0 across the decoupled-chain limit J1
=0; it is called even-odd phase in Ref. 25. The boundary
between the SDW2 phase and the nematic phase is shown by
a dotted line in Fig. 1.

In the semiclassical picture we can write sl
−=e−i�l, where

�l is the angle of the two-dimensional vector �sl
x ,sl

y� mea-
sured from the positive x direction, 0
�l�2�. The product
sl

−sl+1
− =e−i��l+�l+1� can be represented by the vector Nl+1/2

= �cos �l,2 , sin �l,2� with �l,2=−��l+�l+1� /2. We now real-
ize that we need to identify Nl+1/2 with −Nl+1/2 because of the
physical identification ��l ,�l+1�	��l+2� ,�l+1�	��l ,�l+1
+2��. We can thus consider Nl+1/2 as a director representing
the nematic order. We will show in Sec. VI that the nematic
phase has antiferronematic quasi-long-range order of the di-
rector, as shown schematically in Fig. 4. The ground state is
not dimerized in this phase as opposed to the initial proposal
of Chubukov.1

Incommensurate nematic phase. The incommensurate
nematic phase occupies a very small region in the phase
diagram. This phase has quasi-long-range order of the nem-
atic correlation with an incommensurate wave number. The
correlation is due to two-magnon bound states with momen-
tum k=�+� and �−� instead of k=� in the nematic phase.
Schematic pictures of the incommensurate nematic order are
depicted in Fig. 5, where the upper and lower pictures rep-
resent the nematic correlation with wave number k=�+�
and �−�, respectively. If the densities of paired magnons
with k=�+� and �−� are different, one of the two correla-
tion patterns in Fig. 5 becomes dominant, and the Z2 chiral
symmetry is broken spontaneously, as suggested by
Chubukov.1 However, we have found no signature of long-
range order of the chiral correlation in our numerical calcu-
lation, which we will discuss in Sec. VII.

Triatic and SDW3 phases. The triatic phase exists below
the saturation field and next to the incommensurate nematic
phase. The triatic/SDW3 phases are a TL liquid of bosons
which represent three-magnon bound states with total mo-
mentum k=�. In analogy with the nematic phase, the triatic
order has a simple semiclassical picture. Writing the bound
three magnons as sl

−sl+1
− sl+2

− =e−i��l+�l+1+�l+2�=e3i�l,3, we
may consider the triatic order as ordering of the angle �l,3
=−��l+�l+1+�l+2� /3, which has the property �l,3	�l,3
+2� /3. A schematic picture of the triatic ordered state is
shown in Fig. 6. In the triatic phase, correlation functions
probing three-magnon bound states, such as
�s0

+s1
+s2

+sl
−sl+1

− sl+2
− �, exhibit quasi-long-range order �power-law

−4 −3 −2 −1
0

0.2

0.4

0.6

0.8

SDW2

VC

F

SDW3

N

T

Q

IN

h / J2

J1 / J2(a)

−4 −3 −2 −1
0

0.2

0.4
M

J1 / J2(b)

: N
: SDW2

: IN
: T
: SDW3

: Q
: VC

FIG. 1. �Color online� Magnetic phase diagram of the spin-1/2
zigzag chain with ferromagnetic J1 and antiferromagnetic J2 �a� in
the J1 /J2 versus h /J2 plane and �b� in the J1 /J2 versus M plane.
Crosses show the transition and crossover points obtained from the
magnetization curves and correlation functions. In �a�, symbols VC,
N, IN, T, Q, and F indicate the vector chiral ��Stot

z =1�, nematic
��Stot

z =2�, incommensurate nematic ��Stot
z =2�, triatic ��Stot

z =3�,
quartic ��Stot

z =4�, and ferromagnetic �fully polarized� phases, re-
spectively. Here �Stot

z is the unit of changes in the total Stot
z =�lsl

z

when the magnetic field h is swept. There are also two kinds of
spin-density-wave phases: SDW2 ��Stot

z =2� and SDW3 ��Stot
z =3�,

which are related to the nematic and triatic phases, respectively. The
solid curve shows the saturation field hs and dotted lines are the
guide for the eyes. In �b�, symbols indicate parameter points for
which their ground-state phase is identified by analysis of correla-
tion functions. Shaded regions in �b� correspond to the magnetiza-
tion jump at the first-order transition �see Sec. IV�.
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decay�. In contrast, both the transverse-spin correlation
�s0

+sl
−� and the nematic correlation �s0

+s1
+sl

−sl+1
− � are short

ranged because of a finite-energy cost for breaking a three-
magnon bound state. The longitudinal-spin correlation
�s0

zsl
z�− �s0

z��sl
z� shows algebraic decay, as sl

z is related to the
boson density. When the most slowly decaying correlation is
the longitudinal-spin correlation, we call the phase the SDW3
phase. The boundary between the triatic phase and the SDW3
phase is shown by a dotted curve in Fig. 1. The detailed
discussion of the correlation functions will be given in Sec.
VIII.

Quartic phase. The quartic phase is a TL-liquid phase of
four-magnon bound states with momentum k=�. Its proper-
ties can be easily deduced by straightforward generalization
from the triatic phase.

III. MULTIMAGNON INSTABILITY

We begin our study of the phase diagram by examining
instabilities of the fully polarized state. To that end, we nu-
merically calculate energy dispersion of low-energy excita-
tions with a small number of magnons �down spins�. The

analysis presented here extends the result reported in our
previous study.6

Inside the ferromagnetic phase in magnetic field, there is a
finite-energy gap between the ground state and excited states.
With decreasing the magnetic field, the gap becomes smaller
and eventually vanishes at the boundary of the ferromagnetic
phase. We define the saturation field hs as the magnetic field
h at which a branch of excitations first becomes gapless as
the field h is reduced. In the ferromagnetic J1-J2 spin chain,
the excitation mode that becomes gapless �soft� at h=hs is a
multimagnon bound state. Below the saturation field the soft
multimagnon bound states proliferate. As a result the ground
state can change into a TL liquid with the correlation that is
represented by the soft bound multimagnon mode. It is there-
fore important to find out which branch of multimagnon
bound states is the soft mode.

We calculate energy of p-magnon excitations using the
method we introduced in Ref. 6. The number of magnons p
and the total momentum k are good quantum numbers of
Hamiltonian �1�. We thus expand eigenstates in the sector of
p magnons with the basis

�p,k;
r1, . . . ,rp−1�� =
1

��
�
l=1

�



n=1

p

eikln/psln
− �FM� , �9�

where

101 102

10−4

10−2

r
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r
(b) J1/J2 = −2.0, M = 0.4 (N)
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: <κ(1)κ(1)>av0 r

: [<sz sz > − <sz ><sz >]av0 r 0 r

: <sx sx >av0 r

: <s+ s+ s− s− >av0 1 r r+1

: <s+ s+ s+ s− s− s− >av0 1 2 r r+1 r+2

FIG. 2. �Color online� Typical behaviors of various correlation functions in �a� the vector chiral �VC� phase, �b� the nematic �N� phase,
�c� the SDW2 phase, �d� the incommensurate nematic �IN� phase, �e� the triatic �T� phase, and �f� the SDW3 phase. Absolute values of
spatially averaged correlation functions are plotted. �For the averaging procedure, see Sec. V B.� In �b� and �d�, the triatic correlation
function �s0

+s1
+s2

+sr
−sr+1

− sr+2
− �av is smaller than 10−5.

κ(2)
κ(1)

κ(2)

FIG. 3. Schematic picture of the vector chiral order. The arrows
on bonds indicate breaking of the parity symmetry by the vector
chiral order �l

�n�= �sl�sl+n�z, which obeys the relation J1���1��
+2J2���2��=0. The circulation of the sz spin current, shown by the
dashed arrows, is alternating, and there is no net spin current flow.

FIG. 4. Schematic picture of antiferronematic quasi-long-range
order in the nematic phase. Ellipses represent directors of the nem-
atic order on each bond.

HIKIHARA et al. PHYSICAL REVIEW B 78, 144404 �2008�

144404-4



ln = l + �
i=1

n−1

ri. �10�

Here �FM� is the fully polarized state �si
+�FM�=0�, � is the

system size taken to be �→�, and ri �1
 i
 p−1� is the
distance between the ith and �i+1�th magnons. The periodic
boundary condition is imposed in this calculation. We take ri
to be in the range of 1
ri
rmax, where rmax is chosen so
that wave-function vectors can be stored in the computer
memory. �The finite value of rmax limits the accuracy of en-
ergy calculations. For tightly bound magnons, errors caused
by this approximation can be made negligibly small on the
order of exponentially decaying tails of their wave function.�

We numerically diagonalize the Hamiltonian matrix ex-
pressed in the restricted Hilbert space �ri
rmax� and obtain
the lowest energy as a function of the total momentum k for
each p magnon sector. In this way we obtain energy disper-
sion of p-magnon bound states. In our previous study6 we
calculated energy dispersion of multimagnon excitations for
up to p=4. Here we extend the calculation to include more
magnons �pmax=8�, taking the maximum distance rmax to be
at least 42 / �p−1�. We thereby identify soft multimagnon
modes and determine the saturation field hs at each value of
the ratio J1 /J2 �−4�J1 /J2�0�.

Table I summarizes the number of magnons p and the
momentum k of the multimagnon modes �p
8� which be-
come gapless at the saturation field. We note that the gapless
modes with p
4 in Table I are soft modes giving rise to
multipolar TL liquids, since non-negative excitation energy
of 2p-magnon modes indicates a repulsive interaction be-
tween bound p magnons �see the discussion at the end of this
section�. We thus find that, as Chubukov1 first pointed out,
the two-magnon bound state with k=� is the soft mode when
−2.669�J1 /J2�0. Its exact wave function can be easily ob-

tained; it turns out that the bound-state wave function at k
=� has amplitudes only for odd integer values of r1, which
means that the magnons forming a bound pair are on differ-
ent legs of the zigzag ladder. The soft mode signals emer-
gence of a nematic phase below the saturation field.

In the narrow range −2.720�J1 /J2�−2.669, the soft
two-magnon bound state has an incommensurate momentum
k��. Our numerical estimate of the commensurate-
incommensurate transition point is consistent with the exact
result, �J1 /J2�c=−2.669 08¯.5 Beyond the commensurate-
incommensurate transition point, the total momentum k
changes continuously as k /�=1−0.67��J1 /J2�c−J1 /J2 �see
Fig. 7�. This suggests continuous nature of the transition be-
tween the commensurate and incommensurate nematic
phases at h=hs.

As the ratio J1 /J2 is changed toward the end point at
J1 /J2=−4, the magnon number p of the lowest bound-
magnon branch increases �see Table I�. The total momentum
of the bound-magnon mode is always at k=�, except in the
narrow region of the incommensurate two-magnon bound
states mentioned above. We expect that many-magnon bound
states, formed by more than seven magnons, should appear
as J1 /J2→−4. In our numerical calculation, eight-magnon
bound states did not come down as the lowest state, which
we suspect was due to finite-size effects coming from small
rmax.

TABLE I. Number of magnons p and total momentum k of the
multimagnon bound states which become gapless at the saturation
field.

Parameter range p k

−2.669�J1 /J2�0 2 �

−2.720�J1 /J2�−2.669 2 ��� ���0�
−3.514�J1 /J2�−2.720 3 �

−3.764�J1 /J2�−3.514 4 �

−3.888�J1 /J2�−3.764 5 �

−3.917�J1 /J2�−3.888 6 �

−4�J1 /J2�−3.917 7 �

FIG. 5. Schematic pictures of incommensurate nematic quasi-
long-range order in the incommensurate chiral nematic phase. El-
lipses represent directors of the nematic order on each bond. The
numerical results in Sec. VII indicate that this chiral symmetry is
not broken in the incommensurate nematic phase; the ground state
is given by equal superposition of the upper and lower
configurations.

FIG. 6. Schematic picture of antiferrotriatic quasi-long-range
order in the triatic phase. Solid triangles represent spin structure of
the triatic order formed by three s=1 /2 spins on each plaquette.
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FIG. 7. Dependence on J1 /J2 of the center-of-mass momentum
k for the two-magnon bound state. The momentum deviates con-
tinuously from � at J1 /J2�−2.669. The incommensurate momen-
tum k is fitted well to k /�=1−0.67�−2.669−J1 /J2 as shown
by the solid curve. The dashed line is the classical estimate
k=2 arccos�−J1 /4J2� for two scattering magnons.
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To demonstrate stability of the multimagnon bound states,
we show in Fig. 8 dispersion curves of bound-magnon exci-
tations, as well as lower edges of continuous spectra of mag-
non scattering states, at the saturation field h=hs for J1 /J2
=−3.0 and −3.6. The p-magnon scattering states are con-
structed from a set of one-, two-, …, �p−1�-magnon �bound�
states in total of p magnons. At J1 /J2=−3.0 �Fig. 8�a��, the
three-magnon bound state is gapless at k=�. The branches of
one, two, four, and five magnons have finite excitation gaps.
This feature is consistent with a finite binding energy of the
three-magnon bound state. Furthermore, the state with the
lowest energy �at k=0� in the six-magnon sector belongs to
the continuum of scattering states formed by a pair of three-
magnon bound states. This indicates that three-magnon
bound states are interacting repulsively with each other. The
repulsive interaction rules out the possibility of a metamag-
netic transition �magnetization jump� at the saturation field
and instead induces a continuous transition to the triatic
phase which we discuss in more detail in Sec. VIII. The
multimagnon dispersions for J1 /J2=−3.6, shown in Fig.
8�b�, can also be understood in the same fashion. Here it is
the four-magnon bound states that become gapless at the
saturation field. The instability of the fully polarized state is
driven by the four-magnon bound states with mutual repul-
sive interactions, which condense to form a TL liquid with
quartic order, as we will show in Sec. VIII.

IV. MAGNETIZATION CURVE

Having identified the soft modes at the saturation field h
=hs, we now study magnetization process of spin chains of

finite length, which we obtain numerically for various values
of the coupling ratio J1 /J2. The numerical results help us to
deduce overall structure of the magnetic phase diagram. Pre-
vious studies2,3 have found that, near the saturation field, the
total magnetization Stot

z =�lsl
z changes in units of �Stot

z =2, 3,
and 4 for J1 /J2
−2.6, −3
J1 /J2
−2.8, and J1 /J2=−3.75,
respectively. The multi-spin-flip is a natural consequence of
the formation of stable multimagnon bound states. At lower
fields Stot

z changes by �Stot
z =1.

We obtain magnetization curves from the following pro-
cedure. With the DMRG method we calculate the lowest
energy E0�M� of model �1� at h=0 in each Hilbert subspace
of magnetization per site M =Stot

z /L, where L is the number
of total sites. The magnetization curve M�h� is then obtained
by finding the magnetization M which minimizes E0�M�
−hStot

z for given h. We have performed the calculation for
open chains of up to L=168 sites. We kept up to 350 states in
our DMRG calculation.

Figure 9 shows representative magnetization curves cal-
culated at various values of J1 /J2. We clearly see that the
total magnetization Stot

z changes by �Stot
z =1 at low magnetic

fields, while it shows multi-spin-flip process �Stot
z �2 at

higher fields. The magnetization change in the high-field re-
gime is �Stot

z =2 for J1 /J2�−2.7, �Stot
z =3 for −3.4
J1 /J2


−2.75, and �Stot
z =4 at J1 /J2=−3.6. These features of the

magnetization process are consistent with our finding of
stable multimagnon bound states discussed in Sec. III. The
critical field hc and the critical magnetization Mc, at which
the magnetization step changes from �Sz=1 to �Sz�1, are
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FIG. 8. �Color online� Dispersion curves of multimagnon bands
at the saturation field for �a� J1 /J2=−3.0 and �b� J1 /J2=−3.6. The
solid curves are the dispersions of bound states and the dashed
curves show the lower edges of the continuum of scattering states.
For clarity, only the states of up to six magnons are shown in �a�
and up to eight magnons in �b�. The numbers printed beside the
curves denote the number of magnons. Bound states inside the scat-
tering continuum are not shown.
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FIG. 9. Magnetization curves for �a� J1 /J2

=−2.0, �b� J1 /J2=−2.4, �c� J1 /J2=−2.5, �d� J1 /J2=−3.0, �e� J1 /J2

=−3.4, and �f� J1 /J2=−3.6. The dotted lines represent the bound-
aries of the regions of �Stot
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plotted in the phase diagram shown in Fig. 1.
The magnetic phase diagram �Fig. 1� has four distinct

regions characterized by �Stot
z =1, 2, 3, and 4. These regions

correspond to the vector chiral, nematic or SDW2, triatic or
SDW3, and quartic phases, respectively. We will discuss each
region in detail in Secs. V–VIII. The phase boundary be-
tween the region of �Stot

z =1 and that of �Stot
z =2 begins from

the critical coupling J1 /J2=−2.72 at h=hs, which is the
phase boundary between the incommensurate nematic and
triatic phases,6 and appears to go toward small �J1� /J2 region
as h is decreased.

When −2.72�J1 /J2
−2.5, the magnetization curve ex-
hibits a large jump �of order L0� on the phase boundary be-
tween the region of �Stot

z =1 and that of �Stot
z =2, whereas for

J1 /J2�−2.4 the magnetization curve appears to become con-
tinuous �i.e., steps are of order L−1�. Similarly, we observed a
large jump in the magnetization between the �Stot

z =1 and
�Stot

z =3 regions at J1 /J2=−3.4 but not at other values. How-
ever, we find that the magnetization curve at J1 /J2=−2.4 also
develops a sharper change at M =Mc with increasing the sys-
tem size L, which turns into almost a discontinuous jump at
L=168 �see Fig. 9�b��. This may suggest that the transition
becomes first order at L→�. Since we do not have a good
scheme of extrapolation to L→� for incommensurate values
of M, it is difficult to determine the order of the transition
from the numerical calculation alone. More elaborated treat-
ments, especially analytical ones, would be required for re-
solving this issue.

For the parameters calculated, J1 /J2�−3.6, we find that
at the saturation field h=hs the magnetization curve ap-
proaches M =1 /2 continuously in accordance with the previ-
ous studies2,3,6 �see also note added�. We note that the
square-root singularity 1 /2−M � �hs−h�1/2 is commonly ex-
pected for a continuous transition at the saturation field,
where soft excitations are described as free hard-core bosons
or free fermions.

V. VECTOR CHIRAL PHASE

In this section we take a detailed look at correlation func-
tions in the vector chiral phase. We will show that this phase
corresponds to the low-field regime where the magnetization
curve has �Stot

z =1 steps, and the ground state exhibits a long-
range order of the longitudinal vector chirality, ��l

�n��
= ��sl�sl+n�z��0 �n=1,2�. We first give a brief review of a
low-energy field theory for the vector chiral phase. We then
present numerical DMRG results and compare them with the
theory.

A. Bosonization approach for �J1�™J2

A field theoretical approach to the vector chiral phase in
the J1-J2 model was developed by Nersesyan et al. in Ref.
26, in which the antiferromagnetic J1-J2 chain with easy-
plane anisotropy was considered. Kolezhuk and Vekua ex-
tended this theory to include effects of the external magnetic
field in Ref. 29. Here we follow their approach and apply it
to the ferromagnetic J1-J2 chain. The theory is based on
bosonization of the antiferromagnetic Heisenberg spin chain

and perturbative renormalization-group �RG� analysis valid
for �J1�	J2.

In the limit �J1�	J2, model �1� can be regarded as two
antiferromagnetic Heisenberg spin chains which are weakly
coupled by the ferromagnetic interchain interaction J1.
Therefore, we apply the standard bosonization technique to
the two chains separately, treating the interchain coupling J1
as a weak perturbation. The low-energy physics of the
Heisenberg chains �n=1,2� is described by free bosonic
fields ��n ,�n� satisfying the equal-time commutation relation
��n�x� ,�y�n��y��= i��x−y��n,n�. The spin operators sl on the
site l=2j+n �j�Z� in Hamiltonian �1� are expressed in
terms of the bosonic fields as

s2j+n
z = M +

1
��

d�n�xn�
dx

− �− 1� ja sin�2�Mj + �4��n�xn��

+ ¯ , �11�

s2j+n
+ = �− 1� jbei���n�xn� + b�ei���n�xn� sin�2�Mj + �4��n�xn��

+ ¯ , �12�

where a, b, and b� are nonuniversal constants.45,46 We have
introduced the continuous space coordinate x, on which the
bosonic fields depend. On the lattice site l=2j+n the coor-
dinate x takes the value x1= j−1 /4 and x2= j+1 /4. Equations
�11� and �12� allow us to write the interchain interaction in
terms of the bosonic fields. The resulting effective Hamil-
tonian is given by29

H̃ = �
�=�

v�

2
� dx�K��d��

dx
�2

+
1

K�
�d��

dx
�2�

+ g1� dx sin��8��− + �M� + g2� dx
d�+

dx
sin��2��−�

�13�

with

g1 = J1a2 sin��M�, g2 =
J1

2
�2�b2. �14�

Here we have introduced bosonic fields for symmetric �+�
and antisymmetric �−� sectors, ��= ��1��2� /�2, ��

= ��1��2� /�2. In lowest order in J1 the TL-liquid param-
eters K� and the renormalized spin velocities v� are given
by29

K� = K�1 � J1
K

�v
� , �15�

v� = v�1 � J1
K

�v
� , �16�

where K and v are, respectively, the TL-liquid parameter and
the spin velocity of the decoupled antiferromagnetic Heisen-
berg spin chains. The TL-liquid parameter K is a function
of M increasing monotonically from K�M =0�=1 /2 to
K�M =1 /2�=1.47–49 In the weak-coupling limit the velocity v
is of order J2, except near the saturation limit M→ 1

2 , where
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v→0 and the bosonization approach breaks down.
As we can see from Eqs. �11� and �12�, the g1 �g2� term in

Eq. �13� originates from the longitudinal �transverse� part of
the interchain exchange coupling. These coupling constants
are renormalized as energy scale is decreased in RG trans-
formation. The low-energy physics of the effective Hamil-
tonian �13� is then determined by the strongest of the renor-
malized coupling constants. In case the g1 term is most
relevant, the �− field is pinned at a value which minimizes
g1 sin��8��−+�M�. The resulting ground state is in the
nematic phase, as we will discuss in Sec. VI. The vector
chiral phase arises when the g2 coupling is most relevant and
renormalized to strong coupling first.

The scaling dimensions of the g1 and g2 terms are equal to
2K− and 1+ �2K−�−1, respectively, at J1=0. It is then natural
to expect that the g2 term can dominate over the g1 term only
in high fields �i.e., for K−� �1+�5� /4� when �J1�	J2.29

However, as we discussed in Sec. III the two-magnon pairing
is the strongest instability at h=hs, which favors the nematic
order near the saturation field �Fig. 1 and Table I�. In fact, the
vector chiral phase is found to be realized in the weak-field
regime where the bare value of the coupling g1 is very small
�M 	1� and where the classical value of the vector chirality
is larger ��c�� /2�.

In the following discussion let us assume that the renor-
malized g2 is the largest coupling. In this case we may em-
ploy the mean-field decoupling scheme introduced by Ners-
esyan et al.,26 whose conclusions have been confirmed by
numerical studies.27,28,30–32 In this scheme we assume that
both d�+ /dx and sin��2��−� acquire finite expectation val-
ues so that the g2 term is minimized. We have essentially two
choices,

��−� = +��

8
, � d�+

dx
� = +� 2

�
�� − 2Q� , �17a�

and

��−� = −��

8
, � d�+

dx
� = −� 2

�
�� − 2Q� , �17b�

where Q is an incommensurate wave number in the
transverse-spin correlation �0�Q�� /2� �see Eq. �21��.
Note that ��−� and �d�+ /dx� have the same sign in the frus-
trated ferromagnetic chain J1�0. The Z2 symmetry is spon-
taneously broken when the ground state selects one of the
two choices in Eqs. �17a� and �17b�.

Once the mean-field decoupling is made, the excitations
in the antisymmetric sector ��− ,�−� acquire a finite-energy
gap, and the field �−, which is dual to the pinned field �−,
fluctuates strongly. Therefore the g1 term can be safely ig-
nored. The symmetric sector ��+ ,�+� is governed by the
Gaussian model,

H+ =
v+

2
� dx�K+�d�+

dx
�2

+
1

K+
�d�+

dx
�2� , �18�

once we redefine the �+ field, �+→�+− �d�+ /dx�x, to absorb
the nonvanishing average �d�+ /dx�. Hence the ground state
is a one-component TL liquid.

We are now ready to calculate correlation functions. Most
important of these is the ground-state average of the vector
chirality �5�,

��l
�1�� = − b2�sin��2��−�� = � b2c1, �19a�

��l
�2�� = −��

2
c2� d�+

dx
� = � c2�� − 2Q� , �19b�

where c1 and c2 are positive constants. These nonvanishing
averages indicate that the ground state breaks a Z2 symmetry
and has a vector chiral long-range order. Since ��l

�1�� and
��l

�2�� have the same sign and satisfy Eq. �6�, the spin current
Jn��l

�n�� flows as depicted in Fig. 3. The spin current circu-
lates in each triangle in alternating fashion, and there is no
net spin current flow through the whole system.

Two-point correlation functions are also calculated using
Eqs. �11�, �12�, �17a�, �17b�, and �18�. Here we remind the
reader our convention that the site index l in the original
lattice Hamiltonian �1� is equal to 2j+n, where the integer j
is the site index in each antiferromagnetic Heisenberg chain
�n=1,2� in the two-chain �zigzag ladder� picture. Hence �l
=2�j=2�x. The correlation function for the vector chirality
is given by

��0
�2��l

�2�� = ���2��2�1 −
1

K+��� − 2Q�l�2�
+

�− 1�lA�

�l�4K+
cos�2�Ml� + ¯ , �20�

where A� is a constant ��b�4g1
2�. In the two-point function of

the chiral operator �l
�1� the uniform 1 / l2 term in Eq. �20� is

replaced by a 1 / l4 term.30 The transverse- and longitudinal-
spin-correlation functions are obtained as

�s0
xsl

x� =
A

�l�1/4K+
cos�Ql� + ¯ , �21�

�s0
zsl

z� = M2 −
K+

�2l2 + ¯ . �22�

Lastly the nematic correlation function shows a faster decay,

�s0
+s1

+sl
−sl+1

− � =
A�

�l�1/K+
cos�2Ql� + ¯ . �23�

In the above equations A and A� are nonuniversal constants,
and we have omitted subleading algebraically decaying
terms and exponentially decaying terms, such as a short-
ranged incommensurate correlation ��cos��Ml�� in Eq. �22�.

We note that the wave number of the transverse-spin-
correlation function—the pitch angle—is shifted from the
commensurate value � /2 to Q. The vector chiral long-range
order and the incommensurate transverse-spin correlation are
the hallmark of the vector chiral phase.

B. Numerical results

Here we present our numerical results, which support the
theory of Sec. V A. The calculation was done for finite open
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chains with L=96 and 120 sites, unless otherwise mentioned.
In the following, we show mainly the results for L=120,
while we note that the results for L=96 exhibit essentially
the same behaviors as those for L=120. The number of kept
DMRG states is up to 350. We have performed typically
10–30 DMRG sweeps in the calculation and checked the
convergence of the results. Since Eqs. �19a�, �19b�, and �20�–
�23� are obtained for infinite-length chains, we need to take
care of open-boundary effects in the DMRG data to make
meaningful comparison between the theory and the numer-
ics. To reduce the boundary effects, we calculate two-point
correlation functions for several pairs of two sites �l , l�� with
fixed distance r= �l− l�� selecting the two sites being as close
to the center of the chain as possible. We then take their
average for the estimate of the correlation. We use the nota-
tion �¯�av for the averaged correlation functions below.

Figure 10�a� shows a typical r dependence of the aver-
aged vector chiral correlation functions in the vector chiral
phase �J1 /J2=−2.7 and M =0.1�. We clearly see that the vec-

tor chirality is long-range ordered.50 We also find that not
only ��0

�1��r
�1��av and ��0

�2��r
�2��av but also ��0

�1��r
�2��av are posi-

tive, in agreement with Eqs. �19a� and �19b�. This indicates
the ferrochiral order as drawn in Fig. 3.

In Fig. 11 we plot averaged vector chiral correlations at a
distance r=L /2 normalized by the coupling ratio, ��0

�1��L/2
�1� �,

�2J2 / �J1����0
�1��L/2

�2� �, and �2J2 / �J1��2��0
�2��L/2

�2� �, as functions of
M and J1 /J2. The three quantities agree, as expected from
Eq. �6�. This figure clearly shows where the vector chiral
correlation is strong; the vector chiral order exists in the
low-field regime but disappears in the high-field regime. The
shaded regions in Fig. 11 correspond to the magnetization
jump discussed in Sec. IV, where the transition is clearly first
order. We note that near the boundary of the vector chiral
phase the vector chiral correlations suffer boundary effects in
open chains and may underestimate the vector chiral order
�see the discussion at the end of this section�.

We fitted the DMRG data of the transverse-spin and nem-
atic correlation functions to Eqs. �21� and �23�, taking K+, Q,
and the amplitudes A or A� as fitting parameters. In the fitting
procedure, we used the data of the averaged correlation func-
tion �s0

xsr
x�av ��s0

+s1
+sr

−sr+1
− �av� for L /12
r
L /2 �L /6
r


L /2�. Figures 10�b� and 10�c� demonstrate good agree-
ment between numerical data and the fits to Eqs. �21� and
�23�. Note that both correlation functions are incommensu-
rate.

The exponent K+ and the incommensurate wave number
Q obtained from the fitting are shown in Fig. 12. The TL-
liquid parameter K+ is found to be in the range 0.4�K+
�0.8 for the cases we examined numerically, and the
transverse-spin-correlation function �s0

xsr
x�av is the most

slowly decaying correlation function except for the long-
range ordered vector chirality. This suggests that a magnetic
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FIG. 10. �Color online� Averaged correlation functions for L
=120 spins with J1 /J2=−2.7 and M =0.1 in the vector chiral phase:
�a� vector chiral correlation functions ��0

�1��r
�1��av, ��0

�2��r
�2��av, and

��0
�1��r

�2��av, where �r
�n�= �sr�sr+n�z �Eq. �5��, �b� transverse-spin-

correlation function �s0
xsr

x�av, and �c� nematic correlation function
�s0

+s1
+sr

−sr+1
− �av. Open symbols represent the DMRG data. Truncation

errors are smaller than the size of the symbols. The solid lines and
solid circles in �b� and �c� are fits to Eqs. �21� and �23�, respectively.
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FIG. 11. �Color online� Averaged, normalized vector chiral cor-
relations at the distance r=L /2 for L=120 spin zigzag chain.
Circles, squares, and triangles represent ��0
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�1� �,

�2J2 / �J1��2��0
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Solid lines are the guide for the eyes. Vertical dashed lines represent
the boundaries of the chiral ordered phase in low magnetization
regime and the chiral disordered phase in the high magnetization
regime. The shaded region corresponds to the magnetization jump
at the first-order transition.
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spiral long-range order in the plane perpendicular to the
magnetic field should be realized in real three-dimensional
materials with additional weak interchain couplings. The
wave number Q, which represents the incommensurability of
the transverse-spin correlations, shows little dependence on
M and decreases as J1 /J2 decreases. The classical analog of
the wave number Q is the pitch angle �c=arccos�−J1 /4J2�,
which shows qualitatively the same feature, but takes a much
smaller value. We have thus found that the incommensurate
wave number is highly renormalized by quantum fluctuations
toward the commensurate value � /2.

Strictly speaking, the bosonization theory of Sec. V A is
not directly applicable when the interchain ferromagnetic
coupling is strong, �J1� /J2
1. The consistency between the
theory and numerics, as demonstrated by the successful fit-
ting, can be understood once we postulate that the vector
chiral phase extends to the limit J1 /J2→0, where the
bosonization approach is valid, and that the low-energy
physics in this phase is governed by the same effective
theory.

In passing we note that for J1 /J2�−2.9 we have not
found clear evidence for long-range order of vector chirality;
although the vector chiral correlation is strong, it seems to
decay slowly at long distances in finite-size systems L

120. A possible explanation for this behavior would be that
the energy gap in the antisymmetric sector ��− ,�−� is so

small that the correlation length becomes very large. As a
result, the bending-down behavior of the vector chiral corre-
lation functions,50 observed near the open boundaries �r
�L� in Fig. 10�a�, penetrates into the bulk region and spoils
long-range order. For clarifying the fate of the vector chiral
order for J1 /J2�−2.9, calculations for much larger systems
are needed. That is left for future studies.

VI. NEMATIC PHASE AND SPIN-DENSITY-WAVE PHASE

In this section we discuss in detail the nematic phase and
the SDW2 phase, where two magnons form a bound state
with total momentum k=�. As we saw in Sec. IV the total
magnetization changes in units of �Stot

z =2 as a result of si-
multaneous flip of two spins forming a bound state. We first
review the application of the bosonization theory described
in Sec. V A to these phases for the sake of completeness of
our discussion which partly complements earlier works.3,7,29

We then present an alternative phenomenological theory6 in
which a bound magnon pair is regarded as a hard-core boson.
The theoretical picture developed in these discussions is sub-
sequently confirmed by numerics.

A. Bosonization theory revisited

The nematic phase can be described within the bosoniza-
tion approach for �J1�	J2. When the g1 coupling in the ef-
fective Hamiltonian �13� is the most relevant, the field �− is
pinned at a value which minimizes the g1 term,

��−�x�� =��

8
�1

2
− M� . �24�

In this case the uniform part of the difference of two neigh-
boring spins vanishes, sl

z−sl+1
z ��2 /��x�−=0, indicating

that two spins are bound.2,3,7,29 The dual field �− is strongly
fluctuating and the g2 is irrelevant. The fields �+ and �+ of
the symmetric sector remain gapless and constitute a one-
component TL liquid �18�.

The long-distance asymptotic form of correlation func-
tions can be readily obtained from Eqs. �11�, �12�, �18�, and
�24�. We briefly summarize the results below.

The longitudinal-spin correlation has an incommensurate
oscillatory component,

�s0
zsl

z� = M2 −
K+

�2l2 +
B

�l�K+
cos��l�1

2
− M�� + ¯ , �25�

where B is a positive constant ��a2� and subleading terms
are omitted here and in the equations below. The third term
in Eq. �25� represents incommensurate spin-density-wave
correlation.

The transverse-spin correlation �s0
+sl

−� is short ranged,
whose correlation length is the inverse of the gap in the
��− ,�−� sector. Physically, this gap corresponds to the bind-
ing energy of the two-magnon bound state.

The composite operator sl
−sl+1

− creating a two-magnon
bound state represents the nematic order. The nematic corre-
lation is alternating and quasi-long-ranged,
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Q
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FIG. 12. �Color online� J1 /J2 dependence of �a� the exponent K+

and �b� the incommensurate wave number Q for L=120 spin zigzag
chain in the vector chiral phase. Solid and open symbols in �a�
represent the estimates obtained from the fitting of �s0

xsr
x�av and

�s0
+s1

+sr
−sr+1

− �av, respectively. The error bars represent the difference
of the estimates obtained from the fitting of the data of different
ranges. In �b�, only the results from �s0

xsr
x�av are shown since the

estimates from �s0
xsr

x�av and �s0
+s1

+sr
−sr+1

− �av are identical to each other
within their error bars. Dashed line in �b� represents the classical
pitch angle, �c=arccos�−J1 /4J2�.
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�s0
+s1

+sl
−sl+1

− � =
B��− 1�l

�l�1/K+
−

B��− 1�l

�l�K++1/K+
cos��l�1

2
− M�� + ¯

�26�

with B� and B� as positive constants. Here we note that two
down spins are created and annihilated at neighboring sites
in Eq. �26�. In fact, the algebraic decay with the same expo-
nent can be obtained as long as both distances between the
created down spins and between the annihilated ones are odd
integers. However, when these separations are even, the
nematic correlation functions, �s0

+s2n
+ sl

−sl+2n�
− � �n ,n�	 l�, are

expected to be weaker, as they involve the gapped �− field in
lowest order. This is in accordance with the observation we
made in Sec. III that the wave function of the two-magnon
bound state with k=� at a saturation field is a linear combi-
nation of the states in which the distance between two down
spins is restricted to odd integers.

Comparing Eqs. �25� and �26�, we find that the nematic
correlation �26� is the most dominant correlation if K+�1.
This phase is called nematic phase. On the other hand, if
K+�1, the most dominant correlation is the longitudinal-
spin correlation �25�. In this case we have the SDW2 phase.

The vector chiral correlation ��2� shows a power-law de-
cay,

��0
�2��l

�2�� = −
c2

2

K+l2 + ¯ . �27�

The same 1 / l2 decay �with a different prefactor� is expected
for ��0

�1��l
�1��, as the operator product of sin��2��−� and the

irrelevant g2 term in the Hamiltonian H̃ generates the d�+ /dx
operator.

In his pioneering paper, Chubukov1 suggested that the
nematic phase should have spontaneous dimerization,
�sl

z�sl+1
z −sl−1

z ��� �−1�l. However, in the bosonization theory
the dimerization operator is proportional to cos��8��−
+�M�, whose average vanishes because of Eq. �24�. We thus
conclude that the nematic phase does not have a spontaneous
dimerization.

B. Hard-core Bose gas of bound magnons

As we discussed in Sec. III, when −2.7�J1 /J2�0, the
fully polarized state becomes unstable as a result of forma-
tion of two-magnon bound states at the saturation field
hs.

1–3,6,7 Below hs, bound magnon pairs collectively form a
TL liquid with nematic correlation as well as incommensu-
rate longitudinal-spin correlation. Here we develop a phe-
nomenological theory for the phases which emerge as a re-
sult of proliferation of p-magnon bound states with
momentum k=� by assuming that tightly bound p magnons
can be treated as a hard-core boson51 and ignoring internal
structure of the bound states. This is expected to be a good
approximation as long as the density of hard-core bosons is
very low, i.e., near the saturation field. As we will see below,
for the p=2 case, this theory is equivalent to the ��+ ,�+�
sector of the bosonization theory.

We denote creation and annihilation operators of a hard-
core boson by bl

† and bl. Under the assumption that p mag-

nons are tightly bound, we may relate the creation operator
and density operator of bosons to spin operators,

b
l̄

†
= �− 1�lsl

−
¯ sl+p−1

− , �28�

bl
†bl =

1

p
�1

2
− sl

z� , �29�

where the �−1�l factor in Eq. �28� is introduced because the
total momentum of bound p magnons is k=� �see Sec. III�.
In Eq. �28� we identify the site index l̄ of the boson creation
operator b

l̄

†
with the center-of-mass coordinate of bound

magnons, l̄= l+ �p−1� /2. From Eq. �29� we find the density
of bosons,

� =
1

p
�1

2
− M� . �30�

At small but finite density 0��	1 the hard-core bosons are
a TL liquid at low energy.52 Its low-energy effective theory is
again a free field theory,

H0 =
v
2
�

−�

�

dx̄�K�d�

dx̄
�2

+
1

K
�d�

dx̄
�2� , �31�

where the bosonic fields �� ,�� play the same role as the
��+ ,�+� fields in the p=2 case. Here, we take the lattice
spacing between lth and �l+1�th sites to be unity and identify

l �or l̄� with x̄. The TL-liquid parameter K depends on inter-
actions that work between bosons in addition to the short-
range hard-core repulsion. When hard-core bosons are free,
K=1. This should be the case in the low-density limit M
→ 1

2
−. In the continuum limit the operators bl

† and bl
†bl are

written as52

bl
† = ��ei��� �

n=−�

�

e2in���x̄+����, �32�

bl
†bl = � +

1
��

d�

dx̄
+ � cos�2��x̄ + �4��� + ¯ . �33�

Using these bosonization formulas, it is straightforward to
calculate correlation functions of hard-core bosons. Equa-
tions �28� and �29� allow us to express these correlation func-
tions with the original spins sl; we thus obtain the
longitudinal-spin and p-magnon �multipolar� correlation
functions, �sl

zsl�
z � and �sl

+
¯sl+p−1

+ sl�
−
¯sl�+p−1

− �, from the
density-density correlation function and the propagator of the
bosons, respectively. In the thermodynamic limit L→� we
find

�s0
zsl

z� = ��1

2
− pb0

†b0��1

2
− pbl

†bl��
= M2 −

p2�

4�2l2 +
Az cos�2��l�

�l��
+ ¯ , �34�
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�s0
+
¯ sp−1

+ sl
−
¯ sl+p−1

− �

= �− 1�l�b0̄b
l̄

†� =
Am�− 1�l

�l�1/� −
Ãm�− 1�l

�l��+1/� cos�2��l� + ¯ ,

�35�

where Az, Am, and Ãm are positive constants and the param-
eter � in the exponents is related to the TL-liquid parameter
K by �=2K. Since creating less than p magnons costs a finite
energy, we expect that the transverse-spin-correlation func-
tions �sl

xsl�
x � and, more generally, �sl

+
¯sl+p�−1

+ sl�
−
¯sl�+p�−1

− �
with p�� p should be short ranged.

When p=2, Eqs. �34� and �35� coincide with Eqs. �25�
and �26� by using relation �30� and setting the exponent �
=K+. That is, the two theoretical approaches, the weak-
coupling bosonization theory7 for �J1�	J2 and the phenom-
enological hard-core boson theory6 for 1

2 −M 	1, give a con-
sistent description of the nematic and SDW2 phases. This is
in fact expected, as the nematic TL liquid extends from the
saturation limit �M→ 1

2 � to the weak interchain coupling re-
gime �J1�	J2 �see Fig. 1�.

To compare the above theoretical results with numerical
data from DMRG calculation, we need to modify Eqs. �34�
and �35� to include finite-size and boundary effects. This can
be done by calculating the correlation functions with Dirich-
let boundary conditions on ��x̄�. Here we can borrow results
of such calculations from Refs. 45 and 46, in which correla-
tion functions of the spin-1/2 XXZ model in magnetic field
are obtained for open spin chains of length L, once we notice
the mapping of the hard-core boson system onto the spin-1/2
XXZ chain �Sl

−= �−1�lbl and Sl
z=bl

†bl−
1
2 �. In this way we ob-

tain local spin polarization �sl
z� in the J1-J2 spin chain of

length L,

�sl
z� =

1

2
�1 − p� − pz�l;q� , �36�

where

z�l;q� =
q

2�
− a

�− 1�l sin�ql�
f�/2�2l�

, �37�

q =
2�L

L + 1
�� −

1

2
� , �38�

f��x� = �2�L + 1�
�

sin� ��x�
2�L + 1�

���

. �39�

The site dependence of the polarization �sl
z� comes from Frie-

del oscillations at open boundaries. Such oscillations are ab-
sent under periodic boundary conditions. The characteristic
wave vector 2kF in the Friedel oscillations is found from
Eqs. �36�–�38� for L�1 to be

2kF = 2�� , �40�

which is determined by the density of the hard-core bosons,
and is inversely proportional to the number p of magnons
forming a bound state �see relation �30��. This result can be
easily checked by DMRG calculation.

The longitudinal-spin-correlation function in the finite
J1-J2 spin chain is given by

�sl
zsl�

z � =
�p − 1�2

4
+

p�p − 1�
2

�z�l;q� + z�l�;q�� + p2Z�l,l�;q� ,

�41�

where

Z�l,l�;q� = � q

2�
�2

−
�

4�2� 1

f2�l − l��
+

1

f2�l + l��
�

−
aq

2�
� �− 1�l sin�ql�

f�/2�2l�
+

�− 1�l� sin�ql��
f�/2�2l��

�
+

�− 1�l−l�a2

2f�/2�2l�f�/2�2l��
�cos�q�l − l���

f��l + l��
f��l − l��

− cos�q�l + l���
f��l − l��
f��l + l��

�
−

a�

2�
� �− 1�l cos�ql�

f�/2�2l�
�g�l + l�� + g�l − l���

+
�− 1�l� cos�ql��

f�/2�2l��
�g�l + l�� − g�l − l���� �42�

with

g�x� =
�

2�L + 1�
cot� �x

2�L + 1�� . �43�

From Eqs. �36� and �41�, the correlation of longitudinal-spin
fluctuations is obtained as

�sl
zsl�

z � − �sl
z��sl�

z � = p2�Z�l,l�;q� − z�l;q�z�l�;q�� . �44�

We have two unknown parameters, a and �, in these formu-
las, which can be obtained by fitting numerical data to these
analytical forms.

Similarly, the multipolar correlation is obtained as

�sl
+
¯ sl+p−1

+ sl�
−
¯ sl�+p−1

− �

= Am�− 1�l−l� f1/2��2l + p − 1�f1/2��2l� + p − 1�
f1/��l − l��f1/��l + l� + p − 1�

,

�45�

which corresponds to the first term in the right-hand side of
Eq. �35�. Here fitting parameters are Am and �.

Before closing this section, we note once again that the
phenomenological hard-core boson theory is applicable to
any phase which appears as a result of the formation of
p-magnon bound states with p=2,3 ,4 ,¯ and k=�. We will
show in Secs. VI C and VIII that the phenomenological
theory gives a good description of correlation functions not
only in the nematic and SDW2 �p=2� phases but also in the
triatic and SDW3 �p=3� phases and quartic �p=4� phase,
which appear for larger �J1� /J2. Another advantage of the
theory is that it gives a clear intuitive picture of low-energy
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excitations. It is however unable to describe correlations that
are related to internal structures of bound states �such as the
feature we discussed below Eq. �26��.

C. Numerical results

We apply the phenomenological hard-core boson theory
to analyze numerical results in this section. We use the
DMRG method to compute the longitudinal- and transverse-
spin correlations, the nematic correlation function, and the
local spin polarization in finite open chains. We fit the cor-
relation functions to Eqs. �36�–�45� with p=2, taking the
exponent � and the coefficients a and Am as fitting param-
eters. Since the formulas already include effects of open
boundaries, here we do not have to take spatial average of
the correlation functions in the fitting procedure. Finite-size
effects are also properly taken into account in these formulas.
Indeed, we have observed that fitting of numerical results for
L=96 and L=120 yields the same good quality of agreement
between the numerical data and the fits and gives essentially
the same estimated values of the fitting parameters. The re-
sults for L=120 are shown below.

Figures 13�a� and 13�b� show DMRG results of �sl
z� and

�sl
zsl�

z �− �sl
z��sl�

z � calculated for J1 /J2=−2.0 at M =0.2 and 0.4.
Shown in the same figures are the fits to Eqs. �36� and �44�,
respectively, with p=2. We have used numerical data for 6

 l
L−5 to fit �sl

z� and data for 11
 �l− l��
L−10 to fit
�sl

zsl�
z �− �sl

z��sl�
z � and obtained excellent agreement for both.

�Note that there are only two free parameters � and a in the
fitting.� The data of �sl

z� show Friedel oscillations whose
wavelength is in good agreement with the theoretical predic-
tion with p=2 �without any fitting parameter�. This is an-
other evidence of the formation of bound magnon pairs. We
observed this consistency in the whole region of the nematic
and SDW2 phases. The results clearly indicate that the low-
energy physics in this parameter range is indeed described by
the effective theory of hard-core bosons of bound magnon
pairs.

For the nematic correlation �sl
+sl+1

+ sl�
− sl�+1

− �, we fit the
DMRG result to Eq. �45� with p=2, ignoring the additional
oscillating component seen in the DMRG data which would
correspond to the subleading term in Eq. �45�. We see in Fig.
13�c� that the leading power-law decaying behavior of
�−1�l−l��sl

+sl+1
+ sl�

− sl�+1
− � is fitted rather well by Eq. �45�. Figure

13�d� shows that the transverse-spin-correlation function de-
cays exponentially, as expected from a finite-energy cost for
breaking a two-magnon bound state. These results also sup-
port the validity of the effective theory of hard-core Bose gas
of bound magnon pairs.

Figure 14 shows the estimate of � obtained from the fit-
ting of �sl

zsl�
z �. As M increases, the exponent � increases

across the dashed line �=1. Therefore, the ground state un-
dergoes a crossover from the low-field SDW2 phase, where
the longitudinal-spin-correlation function is dominant, to the
high-field nematic phase, where the nematic correlation
dominates.7 We have found that � estimated from the other
correlators, �sl

z�, �sl
zsl�

z �− �sl
z��sl�

z �, and �sl
+sl+1

+ sl�
− sl�+1

− �, are con-
sistent with Fig. 14. As M→ 1

2
−, � increases toward �=2, in
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FIG. 13. �Color online� Correlation functions for L=120 spin
zigzag chain with J1 /J2=−2.0, M =0.2 and 0.4, and their fits to the
theory for the nematic and SDW2 phases: �a� Friedel oscillations in
the local spin polarization �sl

z�, �b� longitudinal-spin fluctuation
�sl

zsl�
z �− �sl

z��sl�
z �, and �c� nematic correlation function �sl

+sl+1
+ sl�

− sl�+1
− �.

The open symbols represent the DMRG data. Truncation errors are
smaller than the size of the symbols. In �b� and �c�, the data for l
=L /2− �r /2� and l�=L /2+ ��r+1� /2� are plotted as a function of
r= �l− l��. The results of the fitting are shown by solid symbols in �a�
and �b� and by dashed curves in �c�. The data for M =0.4 are mul-
tiplied by a factor 2 in �a� and shifted by 0.01 in �b�. �d� Absolute
values of the averaged transverse-spin-correlation function �s0

xsr
x�av.
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agreement with the theoretical prediction that the hard-core
bosons become free in the dilute limit.

VII. INCOMMENSURATE NEMATIC PHASE

As we discussed in Sec. III, for −2.720�J1 /J2�−2.669
the fully polarized state becomes unstable at the saturation
field as a result of formation of two-magnon bound states
with an incommensurate momentum.6 Below the saturation
field these bound states are expected to form a TL liquid with
incommensurate nematic correlation. Such an incommensu-
rate nematic phase was predicted by Chubukov,1 who dubbed
this phase the chiral biaxial spin nematic, as he considered it
to have long-range vector chiral order. However, our numeri-
cal results indicate that the vector chirality is not long ranged
in the incommensurate nematic phase.

Figure 15 shows our DMRG results of spatially averaged
correlation functions for J1 /J2=−2.7 and M =0.4. We see in
Figs. 15�a� and 15�b� that the correlation of the longitudinal-
spin fluctuations ��s0

zsr
z�− �s0

z��sr
z��av and the nematic correla-

tion function �s0
+s1

+sr
−sr+1

− �av decay slowly �presumably alge-
braically� with an incommensurate modulation. On the other
hand, we find in Fig. 15�c� that the transverse-spin correla-
tion �s0

xsr
x�av decays exponentially, indicating the existence of

a finite binding energy of the two-magnon bound pairs. Fi-
nally, Fig. 15�d� shows that the correlation functions of vec-
tor chirality �l

�n� have at most quasi-long-range order with
incommensurate oscillations.

In Fig. 16, we show the local spin polarization �sl
z� and its

Fourier transform for L=80, 120, and 160. The Fourier trans-
form exhibits three peaks. This is in contrast to the cases of
the nematic phase in Sec. VI and the triatic and quartic
phases �see Sec. VIII�, where the polarization �sl

z� is de-
scribed by Eq. �36� with a single wave number q. The posi-
tions of peaks in the Fourier transform are almost indepen-
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FIG. 14. �Color online� M dependence of the exponent � in the
nematic phase ���1� and SDW2 phase ���1�. The estimates are
obtained from the fitting of �sl

zsl�
z �. The error bars represent the

difference of the estimates obtained from the fitting using the data
of different ranges.
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FIG. 15. �Color online� Averaged correlation functions for L
=120 spin zigzag chain with J1 /J2=−2.7 and M =0.4 in the incom-
mensurate nematic phase: �a� longitudinal-spin fluctuation ��s0

zsr
z�

− �s0
z��sr

z��av, �b� nematic correlation function �s0
+s1
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−sr+1

− �av, �c� ab-
solute values of the transverse-spin-correlation function �s0

xsr
x�av,

and �d� vector chiral correlation functions ��0
�1��r

�1��av, ��0
�2��r

�2��av,
and ��0

�1��r
�2��av. Truncation errors are smaller than the size of the

symbols. Insets in �a�, �b�, and �d� show the absolute values of the
data in a log-log scale.
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dent of L, suggesting that the incommensurability should not
be due to finite-size nor open-boundary effects.

We have observed qualitatively the same behaviors of the
correlation functions and spin polarization for J1 /J2=−2.7
and M �Mc�0.35. From these results, we conclude that the
incommensurate nematic phase �without chiral long-range
order� exists in the narrow region of the phase diagram �see
Fig. 1�.

Unfortunately, we are not aware of an effective theory
which can give consistent description of these numerical re-
sults. However, in the spirit of the hard-core boson theory in
Sec. VI, we may try to treat the two-magnon bound states as
hard-core bosons,

sl
−sl+1

− = ei��+��lb1,l
† + ei��−��lb2,l

† , �46�

1

2
�1

2
− sl

z� = b1,l
† b1,l + b2,l

† b2,l, �47�

where b1,l
† and b2,l

† are creation operators of hard-core bosons
with momentum k=�+� and �−�, respectively. The long-
range order of vector chirality would follow if the average of
the boson number difference, b1

†b1−b2
†b2, became nonvanish-

ing spontaneously. Figure 15�d� indicates that this is not the
case and implies that the low-energy properties in this phase
are determined by two bosonic modes �b1

†b1+b2
†b2 and b1

†b1
−b2

†b2�, forming a two-flavor TL liquid.

VIII. TRIATIC AND QUARTIC PHASES

In this section we consider the triatic, SDW3, and quartic
phases, in which the total magnetization changes by �Stot

z

=3 and 4. We again apply the hard-core boson theory of Sec.
VI B with p=3 and 4.

Figure 17 shows our DMRG results for the triatic and
SDW3 phases. As a typical example, we chose the coupling
ratio J1 /J2=−3.0 and magnetization per spin M =0.2 and 0.4.
We fit the local spin polarization �sl

z� and the longitudinal-
spin-fluctuation correlation �sl

zsl�
z �− �sl

z��sl�
z � to Eqs. �36� and

�44� with p=3, respectively, taking � and a as fitting param-
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FIG. 16. �Color online� Squared modulus of the Fourier trans-
form, �sz�k��2, which is an even function of k and where sz�k�
= �1 /�L��le

ikl��sl
z�−M�, for J1 /J2=−2.7 and M =0.4 in the incom-

mensurate nematic phase. The solid, dashed, and dotted lines rep-
resents the data for L=160, 120, and 80, respectively. Inset: the
local spin polarization �sl

z� for J1 /J2=−2.7, M =0.4, and L=160.
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FIG. 17. �Color online� Correlation functions for L=120 spin
zigzag chain with J1 /J2=−3.0, M =0.2 and 0.4 and their fits to the
theory for the triatic phase: �a� Friedel oscillations in the local spin
polarization �sl

z�, �b� longitudinal-spin fluctuation �sl
zsl�

z �− �sl
z��sl�

z �,
and �c� triatic correlation function �sl

+sl+1
+ sl+2

+ sl�
− sl�+1

− sl�+2
− �. The open

symbols represent the DMRG data. Truncation errors are smaller
than the size of the symbols. In �b� and �c�, the data for l=L /2
− �r /2� and l�=L /2+ ��r+1� /2� are plotted as a function of r= �l
− l��. The results of the fitting are shown by solid symbols in �a� and
�b� and by dashed curves in �c�. The data for M =0.4 are multiplied
by a factor 2 in �a� and shifted by 0.01 in �b�. �d� Absolute values of
the averaged transverse-spin and nematic correlation functions,
�s0
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x�av and �s0

+s1
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−sr+1
− �av.
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eters. We find that these correlators are fitted quite well by
the formulas. The fitting of the triatic correlation function
�sl

+sl+1
+ sl+2

+ sl�
− sl�+1

− sl�+2
− � to Eq. �45� with p=3 also works well

within the approximation that the subleading oscillating
terms are ignored. The transverse-spin and two-magnon
�nematic� correlation functions, �sl

xsl�
x � and �sl

+sl+1
+ sl�

− sl�+1
− �, de-

cay exponentially in accordance with the theoretical predic-
tion. All these observations demonstrate the validity of the
bosonic effective theory for the triatic/SDW3 phases.

Figure 18 shows the exponent � obtained from the fitting
of �sl

zsl�
z � for J1 /J2�−3.0 and �sl

z� for J1 /J2
−3.2. Although
the estimates have rather large error bars, there is a clear
tendency that � increases from ��1 to ��1 as M in-
creases. The estimates of � obtained from the other correla-
tors, including the triatic correlation �sl

+sl+1
+ sl+2

+ sl�
− sl�+1

− sl�+2
− �

for J1 /J2�−3.0, exhibit essentially the same feature. The
result indicates that the ground state undergoes a crossover
from the low-field SDW3 phase with the dominant
longitudinal-spin correlation to the high-field triatic phase
where the three-magnon �triatic� correlation is dominant. The
behavior of � at large M is also consistent with the theoret-
ical prediction that �→2 as M→ 1

2
−.

For the quartic phase, we show the local spin polarization
�sl

z� calculated at J1 /J2=−3.6 and M =0.2 and 0.4. �The nu-
merical data of other correlation functions are not available
for J1 /J2�−3 because of slow convergence of DMRG
calculation.53� We clearly see in Fig. 19 that the numerical
data of �sl

z� are fitted well by Eq. �36� with p=4. This gives
strong support for the presence of the quartic phase for these
parameters from the following reason. As we emphasize be-
low Eq. �40�, the period of the Friedel oscillations in �sl

z� is
directly related to the density � of hard-core bosons and, in
particular, the number p of magnons forming a bound state.
Indeed, if we compare Figs. 13�a�, 17�a�, and 19 for the same
magnetization M, we find that the number of nodes in �sl

z�
changes as �1 / p for the nematic/SDW2, triatic/SDW3, and

quartic phases. Therefore, the successful fitting of �sl
z� to Eq.

�36� with a certain p can be considered as a strong evidence
for the formation of p-magnon bound states.

One may naturally expect that for the quartic phase a
spin-density-wave �SDW4� regime with dominant
longitudinal-spin correlation should also appear at low mag-
netic field. Indeed, the exponent � obtained from the fitting
of �sl

z� for J1 /J2=−3.6 �not shown here� exhibits a tendency
that � changes from ��1 to ��1 with increasing M. Mean-
while, the estimates of � have large error bars, which prevent
us from determining accurately the crossover point between
the quartic and SDW4 regions unfortunately. We therefore
tentatively call the region of �Stot

z =4 the quartic phase, keep-
ing it in mind that the low-field part of the phase probably
includes the SDW4 regime.

IX. CONCLUDING REMARKS

We have determined the magnetic phase diagram of the
spin-1/2 J1-J2 zigzag spin chain with ferromagnetic J1 and
competing antiferromagnetic J2 interactions under magnetic
field. Asymptotic behaviors of correlation functions have
been derived for various phases using bosonization approach
for weak J1 and the effective theory for hard-core bosons of
bound multimagnons. By fitting numerical data of the corre-
lation functions obtained by the DMRG method to the ana-
lytic forms, we have successfully identified the vector chiral
phase, nematic/SDW2 phases, triatic/SDW3 phases, and
quartic phase.

At low magnetic field, we have found the vector chiral
phase, marked by long-range vector chiral order and algebra-
ically decaying incommensurate transverse-spin correlations.
The vector chiral state is the quantum counterpart of the
classical helical state. In the classical J1-J2 model the helical
state appears as the ground state in the whole magnetization
region, whereas in the spin-1/2 model the vector chiral phase
appears only in the low-magnetization regime �but not at
M =0�. For larger magnetization, the chiral state is destroyed
by the formation of quantum magnon bound states and turns
into the spin-density-wave states.
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η

M

FIG. 18. �Color online� M dependence of the exponent � in the
triatic phase ���1� and SDW3 phase ���1�. The estimates are
obtained from the fitting of �sl

zsl�
z � for J1 /J2�−3.0 and �sl

z� for
J1 /J2=−3.2 and −3.4. The error bars represent the difference of the
estimates obtained from the fitting using the data of different
ranges.
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FIG. 19. �Color online� Friedel oscillations in the local spin
polarization �sl

z� for L=120 spin zigzag chain with J1 /J2=−3.6 and
M =0.2 and 0.4, and their fits to the theory for the quartic phase.
The open symbols represent the DMRG data and solid symbols
show the results of the fitting. Truncation errors of the DMRG data
are smaller than the size of the symbols. The data for M =0.4 are
multiplied by a factor 2.

HIKIHARA et al. PHYSICAL REVIEW B 78, 144404 �2008�

144404-16



At higher magnetic field, magnons form stable bound
states caused by ferromagnetic attractive interactions. The
stabilization of magnon bound states is a general feature of
frustrated ferromagnets. Spin multipolar orders induced by
the bound-state formation were discovered recently in spin-
1/2 models on the square lattice,54 the triangular lattice,41 and
the two-leg ladder lattice.55 In all of these models, magnon
bound states become stable when the ferromagnetic state is
destroyed by competing antiferromagnetic and/or ring-
exchange interactions. The unique feature of the present zig-
zag chain model is that the number of magnons forming a
bound state increases consecutively with approaching the
ferromagnetic phase boundary J1 /J2=−4. This unique fea-
ture might relate to the fact that the zigzag spin chain with
J1 /J2=−4 has highly degenerate ground states.37,38

We have found various phases that can be well described
by the effective theory for hard-core Bose gas of bound mul-
timagnons. Near the saturation field, there appear various
multipolar TL-liquid phases, such as the nematic �quadrupo-
lar�, triatic �octupolar�, and quartic �hexadecapolar� phases,
which are characterized by the condensation of bound mul-
timagnons. With lowering the magnetic field from the satu-
ration field, the increase in bound-magnon density enhances
the effect of repulsion between bound magnons. This leads to
a crossover from a high-field region of the multipolar TL
liquids to a low-field region of spin-density-wave states,
where density waves of bound multimagnons dominate.

Lastly we note that our phase diagram appears to be quali-
tatively consistent with the magnetic properties observed in
the spin-1/2 chain cuprate LiCuVO4, whose exchange cou-
plings are estimated as J1 /J2�−0.4 with ferromagnetic J1.11

Recent experiments revealed that, when a magnetic field is
applied, the low-temperature phase undergoes two succes-
sive transitions with changing field.12,13 Besides an usual
spin-flop transition at hc1�2.5 T, which is presumably due
to spin anisotropy effect, another magnetic phase transition
occurs at hc2�7.5 T. Below hc2 �or more precisely in hc1
�h�hc2�, the low-temperature phase has spiral spin struc-
ture, having incommensurate spin order in the plane perpen-
dicular to the applied field, as well as ferroelectlicity.14–16 In
the field above hc2, the system has a modulated magnetic
order parallel to the field while the perpendicular spin com-
ponents are disordered.13 In comparison with the magnetic
phase diagram of the J1-J2 model, it is natural to identify the
magnetic transition at h=hc2 with the transition between the
vector chiral phase and the SDW2 phase in our model �1�.
This means that the experimentally observed spin modulated
state in high field can be characterized by a density-wave
order of bound magnon pairs. Furthermore, in the light of
our phase diagram, we predict that the nematic phase, which
has not yet been observed experimentally, should appear in
higher magnetic field. Further experimental studies on high
magnetization phases would be interesting. On the theoreti-
cal side, it is important to include effects of interchain cou-
plings, further interactions, and spin anisotropy to make
more quantitative comparison between our theoretical results
and experiments. In LiCuVO4, the interchain coupling in-
deed induces three-dimensional order at very low tempera-
ture T�TN�2.3 K. We also note that the critical field hc2 is
about 0.2 of the saturation field hs�41 T and considerably

larger than the value estimated from the one-dimensional
J1-J2 model.

Note added. Since the submission of this paper, a preprint
by Sudan et al.56 has appeared, in which a phase diagram
very similar to ours is obtained independently. They have
found a direct metamagnetic transition from the vector chiral
phase to the ferromagnetic phase for large �J1� /J2 where
bound states of p�5 magnons are formed. In Sec. IV we
discussed magnetization curves for J1 /J2�−3.6 where only
bound magnons of p
4 participate in the magnetization pro-
cess.
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APPENDIX: BLOCH THEOREM FOR SPIN CURRENT

In this appendix we prove that there is no net spin current
flow in the ground state �even in the vector chiral phase�.
This is a variant of Bloch’s theorem that there is no net
current flow in the ground state without external field.57–59

We begin with defining the spin current. Since Hamil-
tonian �1� conserves the z component of the total spin �lsl,
the sz current is a well-defined quantity. The equation of
motion for sl

z reads

�

�t
sl

z = − i�sl
z,H� = − J1��l

�1� − �l−1
�1� � − J2��l

�2� − �l−2
�2� � ,

�A1�

from which we deduce the sz current flowing from the site l
to the site l+n, which is given by Jl

�n�=Jn�l
�n� �n=1,2�. It also

follows from Eq. �A1� that

�

�t
�
m
l

sm
z = − J1�l

�1� − J2��l
�2� + �l−1

�2� � , �A2�

implying that the total sz current flowing through the system
is Jtot=J1��1�+2J2��2�, where we have suppressed the site
index l.

To prove our statement that the net current Jtot always
vanishes in the ground state, we consider the J1-J2 spin chain
of finite length L with the periodic boundary condition and
add to its Hamiltonian H a weak symmetry-breaking term,

Hy = − y�
l

J1�l
�1� �A3�

with the coupling y�0. This term allows us to select a
unique ground state with a broken Z2 symmetry. Let us as-
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sume that the unique ground state �g�L,y has a nonvanishing
expectation value of a linear combination of the vector
chiralities,

�J1�l
�1� + 2J2�l

�2��L,y �
3y�J1�

4
, �A4�

where �¯�L,y is the average in the ground state �g�L,y.
We now introduce the twist operator

U� = exp�− i�
l=1

L

l�sl
z� �A5�

with the twist angle �=2� /L. We then take U��g�L,y as a trial
state, which has a smaller net spin current than �g�L,y, and
compare its energy with the energy of the assumed ground
state �g�L,y. We find the energy difference

�E = �U�
†�H + Hy�U��L,y − �H + Hy�L,y

= J1�cos � − 1��
l

�sl
xsl+1

x + sl
ysl+1

y − y�l
�1��L,y

+ J2�cos 2� − 1��
l

�sl
xsl+2

x + sl
ysl+2

y �L,y

− J1 sin ��
l

��l
�1� + y�sl

xsl+1
x + sl

ysl+1
y ��L,y

− J2 sin 2��
l

��l
�2��L,y . �A6�

Assuming the translation invariance of the ground state, we
reduce Eq. �A6� to

�E = − 2��J1�l
�1� + 2J2�l

�2��L,y − 2�yJ1�sl
xsl+1

x + sl
ysl+1

y �L,y

+ O�L−1� �A7�

for L�1. Using the inequality −J1�sl
xsl+1

x +sl
ysl+1

y �L,y �
3
4 �J1�,

we conclude from Eqs. �A4� and �A7� that �E�0. This is in
contradiction with the assumption of �g�L,y being the ground
state. This means that our assumption �A4� is not valid and
instead we have

�J1�l
�1� + 2J2�l

�2��L,y 
 �y , �A8�

where � is a positive constant ��=3�J1� /4�.
In the same way, starting from the assumption that the

ground state �g�L,y has a negative net current, �J1�l
�1�

+2J2�l
�2��L,y �− 3

4 y�J1�, and using the twisted trial state
U��g�L,y with the angle �=−2� /L, we can again show that
the trial state has a lower energy than the assumed ground
state, and thereby we have �J1�l

�1�+2J2�l
�2��L,y �−�y. We

thus obtain

��J1�l
�1� + 2J2�l

�2��L,y� 
 �y . �A9�

We now take the limit L→� and then y→0, yielding

J1��l
�1�� + 2J2��l

�2�� = 0. �A10�

It is straightforward to generalize this identity to the case
when the ground state breaks translation symmetry as well as
to other spin Hamiltonians.
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