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It is known that elementary bosons condense in a unique state, not so much because this state has the lowest
free-particle energy but because it costs a macroscopic amount of energy to put the particles into different
states which can then interact through quantum particle exchanges. Since individual exchanges between the
two fermions of a composite boson are ignored when composite particles are replaced by elementary bosons,
it is of importance to reconsider the exchange-energy argument for the stability of the Bose-Einstein conden-
sate in the case of composite bosons. We do this here in the light of the new many-body theory which allows
us to take exactly into account all possible exchanges between the fermionic components of the composite
bosons. We confirm that the condensate of composite bosons occupies a single state, this state being moreover
pure: a coherent superposition of states close in energy is shown to be less favorable for both elementary and
composite bosons.
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I. INTRODUCTION

Bose-Einstein condensation �BEC� is of high current in-
terest due to recent observations of condensates made of
atoms,1 molecules,2–5 and polaritons,6,7 which result from the
strong coupling of a photon and an exciton.8 The experimen-
tal observation of a pure exciton condensate,9,10 however,
remains a challenge. It has been recently argued11 that the
condensate in this system should appear in a dark state since
this is the lowest-energy state due to the weak valence-
conduction repulsive processes which do not exist for exci-
tons with spin S= �+2,−2�. Consequently, such a dark con-
densate cannot be directly seen by optical emission
investigated up to now,12 though it should be possible to
deduce its presence indirectly. In addition, excitons are ex-
cited states; so that in order to reach condensation, excitons
with a lifetime long compared to their thermalization time
are needed. This has motivated the development of coupled
quantum well structures13 with electrons well separated from
holes to increase their recombination time.

The standard formulation of BEC considers a set of free
elementary bosons. For particles with a center-of-mass mo-
mentum, a special role is then played by the zero-momentum
�k� =0� state. However, since the energy spectrum of such
particles confined in a large volume is essentially continuous,
it is physically hard to accept that this lowest-energy state is
favored over all the other nearby states just on the account of
an infinitesimally small kinetic-energy difference.

Actually, the essential characteristic of a Bose-Einstein
condensate, that there is a macroscopic number of particles
in a single quantum state, arises not from an argument for an
ideal gas but from interactions. This was made in a very
straightforward way by Nozières.14,15 By calculating the en-
ergy in the Born approximation of N elementary bosons with
repulsive interaction �necessary to avoid a density collapse�,
he showed that to break up the condensate into two different
states, we must pay a macroscopic exchange-energy penalty

which increases as N2. As Nozières14 said, “…it is the
exchange-interaction energy that makes condensation frag-
mentation costly. Genuine Bose-Einstein condensation is not
an ideal gas effect: it implies interacting particles!”

This nicely shows that exchange between indistinguish-
able quantum particles plays a fundamental, not peripheral,
role in the essential physics of Bose-Einstein condensation.
A similar role is actually played in the spin-spin J coupling
of ferromagnets, favoring particles to be in the same state:
without this coupling, there is no ferromagnetic phase tran-
sition. As shown below, even for just N=2 bosons, the result
is still valid. In other words, there already is an exchange-
energy penalty for two bosons to be in different states. As a
general rule, we can say that Bose-Einstein condensation oc-
curs when the exchange energy for two bosons becomes
comparable to their thermal energy.

As the conclusion of Nozières14 was obtained before the
development of the composite-boson many-body theory, it
was de facto reached in the framework of elementary bosons.
Yet, all real condensates consist of composite bosons which
are made of an even number of fermions. Due to the Pauli
exclusion principle between fermions, additional exchange
processes between the fermions which make up the compos-
ite bosons must be considered in the overall exchange en-
ergy. These effects are expected to be important not only for
excitons composed of light-mass electron and hole, but also
for atoms, since the electron exchange energy is known to
enter the effective interaction between two atoms.

A number of works16–26 have addressed interaction and
condensation of composite bosons �“cobosons” in short�
such as excitons. One approach is to stay completely in the
fermion picture. Treating the correlated pairs in this approach
can be cumbersome and can require heavy numerical meth-
ods. Another popular approach is the method of boson-
ization, in which the fermion pairs are treated as pure
bosons but with an altered interaction taking into account
the underlying Fermi statistics. As discussed in a series of
recent papers presenting a new approach to composite-boson
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theory,27,28 the bosonization method neglects certain ex-
change processes which are important even in low-order per-
turbation theory. Neglecting these can sometimes have dra-
matic consequences, for example, neglecting dominant terms
in semiconductor optical nonlinearities.29,30 In the present
paper we will use the new composite-boson theory, which
has a convenient diagrammatic method which lends itself to
analytical results. We reconsider the overall stability of Bose-
Einstein condensation in the case of composite bosons using
the framework of this new many-body theory since ex-
change, which is crucial for the condensate stability, is not
properly treated when the fermionic components of the par-
ticles are forgotten. Our aim in this paper is to show that,
indeed, the exchange-energy stability argument still applies
in the case of composite bosons, using the new tools that this
composite-boson many-body theory now offers.

This many-body theory shows that two composite bosons
interact through two conceptually different scatterings:27 en-
ergylike “interaction scatterings” for fermion interactions in
the absence of fermion exchange, and dimensionless “Pauli
scatterings” for fermion exchanges in the absence of fermion
interaction. These Pauli scatterings, by construction ignored
when the composite particles are “bosonized,” turn out to be
crucial in the many-body physics of composite bosons: they,
in particular, control all semiconductor optical nonlinearities
induced by unabsorbed photons. From these 2�2 Pauli scat-
terings, we can construct any possible fermion exchange
which exists between N composite bosons, which is neces-
sary since the Pauli exclusion principle from which these
exchanges originate is N body by essence. These N-body
exchanges are nicely visualized through new diagrams,
called “Shiva diagrams,”31 which allow one not only to see
the subtle many-body physics taking place between these
tricky objects but also to calculate it readily.

This new formalism also shows that it is impossible to
write an effective Hamiltonian for bosonized excitons which
produces the correct scattering rates and the correct lifetime
of N exciton states,32 even in the extreme dilute limit of N
=2. A way to grasp the difficulty is to note that by mapping
composite bosons into an elementary-boson subspace, we
strongly reduce the degrees of freedom of the problem. This
mathematically shows up through a change from 1 /N! to
�1 /N!�2 in the prefactor of the closure relation for N elemen-
tary or composite bosons,33 making all sum rules irretriev-
ably different.

In this paper, we consider the possibility of having not
only a condensate made of two different states but also a
condensate made of a coherent superposition of states close
in energy, for both elementary and composite bosons. Thus,
we are going to consider the three states

��0� = Bo
†N�0� , �1.1�

��12� = Bo1

†N1Bo2

†N2�0� , �1.2�

��� = �a�Bo�
† + a�Bo�

† �N�0� , �1.3�

where the Bi
† operators are creation operators for composite

bosons. Moreover, we will compare the results with the ones

obtained with elementary-boson operators, written with a bar

as B̄i
†. These operators have the standard commutation rela-

tion �B̄m , B̄i
†�=�mi. For composite bosons, the Bi

† operators
obey the relation �Bm ,Bi

†�=�mi−Dmi, where the “deviation-
from-boson” operator Dmi will be discussed in more detail
below. The third state, ���, defined in Eq. �1.3� is a coherent
superposition of composite bosons in two different eigen-
states. The possibility of having such a coherent superposi-
tion, not considered by Nozières14 but considered by
Leggett,15 will also be addressed here in the case of elemen-
tary bosons. In the spirit of the Nozières and Leggett argu-
ments, we consider only the lowest order of perturbation
theory, calculating the mean-field energy of the different
states. This is certainly valid in the low-density limit, al-
though as discussed by Leggett,15 a rigorous demonstration
of the stability of a condensate in the general case of inter-
acting bosons at all densities does not yet exist. We confirm
that the mean value of the Hamiltonian is minimum for ��̄0�
and ��0�, i.e., for a condensate which is pure and not frag-
mented, whatever the repulsive scatterings between particles
are and whether or not the bosons are elementary or compos-
ite.

As the calculations for a large number of composite
bosons are heavy and quite technical, especially for readers
who are not yet familiar with this new many-body theory for
composite bosons, we first perform the calculations for N
=2. Most of the important physics is usually seen just from
examining two interacting particles. A nice rule of thumb—
which will be explicitly confirmed—allows us to obtain the
results for N by replacing �aB /L�d in the results for N=2 with

� = N�aB/L�d, �1.4�

where aB is the composite-boson wave-function extension, L
is the sample size, and d is the spatial dimension. This rule of
thumb is less obvious for the fragmented state ��12� because
we then have two boson populations N1 and N2. However,
we physically expect to have the exchange terms between the
composite bosons in states 1 and 2 to appear with a prefactor
N1N2, while the ones involving exchange only in state 1 or
only in state 2 should appear with prefactors N1�N1−1� /2
and N2�N2−1� /2 for the number of ways to choose two par-
ticles among the N1 or N2 populations.

As with other many-body effects between composite
bosons, the tricky part of the calculation always is to deter-
mine the density expansion of the relevant scalar products
for N composite-boson states. While it is always possible to
get them through a brute-force algebra making use of the
commutations27 on which the composite-boson many-body
theory is based, these expansions are nicely performed by
using Shiva diagrams31 which visualize fermion exchanges
in a transparent way: the density expansions are naturally
associated with diagrams with an increasing number of
composite-boson lines. In the case of state ��12�, however,
we must work a little harder because we now have two large
numbers which are relevant, N1 and N2. In order to determine
the extra energy due to the fracturing of the condensate into
two different states, we must carefully distinguish between
the exchanges which are internal to the N1 population, those
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which are internal to the N2 population, and those which
occur between these two populations. Only the last contrib-
ute to the exchange penalty for fragmenting the condensate
into two different states.

The paper is organized as follows. In Secs. II and III, we
review the formalism for many-body effects with elementary
and composite bosons, and settle the notations. An important
part of this discussion is the normalization of N-particle
states, which is trivial for elementary bosons but far from
trivial for composite bosons. In particular, we present results
for the normalization of a state made of two large numbers of
different cobosons.

In Sec. IV, we calculate the mean value of an effective
Hamiltonian describing interacting elementary bosons, in the
case where there are two elementary bosons in each of the
three configurations ��̄0�, ��̄12�, and ��̄�, while in Sec. V we
perform the same calculations for two composite bosons, us-
ing the exact Hamiltonian for interacting fermions. This in
particular, allows us to identify the proper effective scatter-
ings one has to take for diagonal processes between
bosonized particles in terms of the interaction and Pauli scat-
terings appearing in the composite-boson many-body theory.

In Sec. VI, we calculate the effective Hamiltonian mean
value for N elementary bosons in the three states of interest,
namely, pure, fragmented, and coherent, while in Sec. VII,
we address the same problem for N composite bosons. In
Sec. VIII, we discuss the results and conclude. In the
Appendix, we briefly reproduce the original argument of
Nozières,14 for completeness and also because the spirit of
the present paper is the same: by calculating the Hamiltonian
mean values in the states ��̄0�, ��̄12�, and ��̄�, we by con-
struction study the effect of interactions between bosons in
the Born approximation, i.e., to first order in the interactions.

The states B̄0
†N�0� and B0

†N�0� are the system ground states in
zero order for the elementary and composite bosons, respec-
tively. For those states, the mean value of the Hamiltonian
reduces to NE0 in the low-density limit. By drawing our
conclusion about the nonfragmentation of the condensate
from the sign of the term linear in density, obtained within
the Born approximation, we of course implicitly assume that
higher-order terms in the interaction will not modify the
overall sign, which is likely in view of our past knowledge of
many-body effects. This approach assumes zero temperature
and low density. Actually, low density is implicitly assumed
when considering excitons, which can convert to electron-
hole plasma as density increases.34

II. FORMALISM FOR ELEMENTARY BOSONS

In this section, we briefly recall the formalism for
elementary-boson many-body calculations. The commutation
relation for these bosons is

�B̄m,B̄i� = 0, �B̄m,B̄i
†� = �mi. �2.1�

The index i usually stands for a center-of-mass momentum

Q� i and a relative motion index �i. For elementary bosons, it

is possible to split the system Hamiltonian as H̄= H̄0+ V̄,

where the one-body part is H̄0=�EiB̄i
†B̄i, while the interac-

tion can be written as

V̄ =
1

2 � �̄� n j

m i
	B̄m

† B̄n
†B̄jB̄i. �2.2�

The energylike prefactor �̄� n j
m i �, which describes the scatter-

ing from i to m and j to n �see Fig. 1� must be such that

�̄� n j
m i �

�= �̄� j n
i m � to ensure hermiticity. Momentum conserva-

tion requires that this scattering differs from zero only for

Q� m+Q� n=Q� i+Q� j. The argument of Nozières14 was made for a

structureless scattering, i.e., for �̄� n j
m i �=V0�Q� m+Q� n,Q� i+Q� j

. By

noting that B̄m
† B̄n

†= B̄n
†B̄m

† , it is possible to rewrite this poten-

tial V̄ in a fully symmetrical form,

V̄ =
1

2 � �̄mn;ijB̄m
† B̄n

†B̄jB̄i, �2.3�

where �̄mn;ij, equal to ��̄� n j
m i �+ �̄� m j

n i �� /2, is now such that

�̄mn;ij = �̄mn;ji= �̄nm;ij = �̄ij;mn
� .

In order to perform many-body calculations with elemen-
tary bosons in a convenient way, let us note that

�B̄m,B̄o
†N� = �B̄m,B̄o

†�B̄o
†N−1 + B̄o

†�B̄m,B̄o
†�B̄o

†N−2 + ¯

= N�moB̄o
†N−1. �2.4�

This gives for the state ��̄o� defined in Eq. �1.1� the follow-
ing:

B̄jB̄i��̄o� = N�N − 1��io� joB̄o
†N−2�0� . �2.5�

If instead of a single state, we now consider a coherent su-

perposition of two states, B̄†=a�B̄o�
† +a�B̄o�

† , Eq. �2.4� implies

�B̄i,B̄
†N� = N�iB̄

†N−1, �2.6�

with �i such that �B̄i , B̄
†�=�i, i.e.,

�i = a��io� + a��io�. �2.7�

III. FORMALISM FOR COMPOSITE BOSONS

A. Elementary scattering

We now consider composite bosons made of one fermion
� and one fermion �, and we briefly review the formalism
presented in Refs. 27 and 28. The Hamiltonian of these fer-
mions reads

H = H� + H� + V�� + V�� + V��. �3.1�

For excitons or hydrogen atoms, V��, V��, and V�� are Cou-
lomb potentials, while for the so-called cold Fermi gases,

FIG. 1. Scattering �̄� n j
m i �, as defined in Eq. �2.2�, between two

elementary bosons.

STABILITY OF A BOSE-EINSTEIN CONDENSATE… PHYSICAL REVIEW B 78, 144303 �2008�

144303-3



V��
V��
0, while V�� is short range. These interaction
terms can be formally written as

V�� = � V�k��� k���

k��� k��

	ak�
��

† bk�
��

† bk��
ak��

�3.2�

and similarly for V�� and V�� with a 1/2 prefactor. ak��

† and

bk��

† are, for simplicity, chosen to be the creation operators for

one fermion � or � in an eigenstate of the system Hamil-
tonian, namely, �k���=ak��

† �0� and �k���=bk��

† �0�, with �H
−	k�


��k�
�=0 for 
=� or �.

The creation operators of the one-pair eigenstates �i�
=Bi

†�0� of the system Hamiltonian, with �H−Ei��i�=0, can be
written in terms of these free-fermion operators as

Bi
† = � ak��

† bk��

† �k��k���i� . �3.3�

In the same way, the fermion pair-creation operators can be
written in terms of the Bi

†’s as

ak��

† bk��

† = � Bi
†�i�k��k��� . �3.4�

�k��k�� � i� is the wave function of the eigenstate i in momen-
tum space if �H� ,H�� only contain free-energy contributions.
These two equations, �3.3� and �3.4�, are quite fundamental
in the composite-boson many-body theory as they allow us
to “open” the composite bosons into their fermionic compo-
nents to let the fermions interact through their exact interac-
tion potentials and then to “close” these fermions back into
composite bosons after their interactions.

The Bi
†’s are composite-boson operators. Indeed, their be-

havior is like bosons since

�Bm,Bi� = 0. �3.5�

However, since these operators are such that

�Bm,Bi
†� = �mi − Dmi, �3.6�

they differ from elementary bosons, the deviation from
elementary-boson statistics appearing in the operator Dmi.
This operator is such that Dmi�0�=0, as can be seen by taking
the above equation acting on the vacuum state �0�. The Pauli
scatterings, which describe fermion exchanges between two
cobosons in the absence of fermion interaction, are obtained
from these deviation-from-boson operators Dmi, through the
commutation relation

�Dmi,Bj
†� = ���� n j

m i
	 + �m ↔ n�Bn

†, �3.7�

where the second term means the same as the first but with m
and n interchanged. �� n j

m i �, which is a dimensionless factor,
describes the fermion exchange between cobosons �i , j�
shown in Fig. 2�a�.

To get interaction scatterings which are energylike quan-
tities, we introduce the “creation potential” Vi

†, which arises
from the commutation relation27,35

�H,Bi
†� = EiBi

† + Vi
†, �3.8�

so that Vi
†�0�=0 for Bi

†�0� being the H eigenstate with energy
Ei. The interaction scatterings �� n j

m i � then appear through the
commutation relation27

�Vi
†,Bj

†� = � �� n j

m i
	Bm

† Bn
†. �3.9�

The prefactor �� n j
m i �, shown in Fig. 2�b�, describes the direct

scattering of the “incoming” cobosons �i , j� resulting from
the interactions of their fermions, the “outgoing” cobosons
�m ,n� being made with the same fermion pairs. From �� n j

m i �,
it is possible to construct the “in” and “out” exchange-
interaction scatterings shown in Figs. 2�c� and 2�d� through a
sequence of direct-interaction scattering and dimensionless
Pauli scattering, according to

�in� n j

m i
	 = � �� n q

m p
	��q j

p i
	 ,

�out� n j

m i
	 = � �� n q

m p
	��q j

p i
	 . �3.10�

In these exchange-interaction scatterings, the “in” and “out”
cobosons are made with different pairs, the fermion interac-
tions taking place between the “in” cobosons in �in� n j

m i � and
between the “out” cobosons in �out� n j

m i �. These exchange-

FIG. 2. �a� Pauli scattering �� n j
m i �, as defined in Eq. �3.7�, for

fermion exchange between two composite bosons in the absence of
fermion interaction. Note that this scattering can be seen as an
exchange of fermions � or an exchange of fermions � with the
indices �m ,n� permutated. �b� Interaction scattering �� n j

m i �, as de-
fined in Eq. �3.9�, for fermion interaction between two composite
bosons in the absence of fermion exchange. �c� Exchange-
interaction scattering �in� n j

m i �, as defined in Eq. �3.10�, when the
fermion exchange takes place after the interaction, so that these
interactions are between the in cobosons �i , j�. �d� Exchange-
interaction scattering �out� n j

m i �, as defined in Eq. �3.10�, when the
fermion exchange occurs before the interaction, so that these inter-
actions are between the out cobosons �m ,n�.
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interaction scatterings are linked to the Pauli scattering
through28

�in� n j

m i
	 − �out� n j

m i
	 = �Em + En − Ei − Ej��� n j

m i
	 ,

�3.11�

so that they are equal for energy-conserving processes. Since
both interaction processes and fermion exchanges conserve

momenta, all these scatterings differ from zero only for Q� m

+Q� n=Q� i+Q� j.
In the following, we will see that the physically relevant

combinations of energylike scatterings appear to be

�̂� n j

m i
	 = �� n j

m i
	 − �in� n j

m i
	 , �3.12�

which we are going to symmetrize as

�̂mn;ij =
1

2
�̂� n j

m i
	 + �m ↔ n� , �3.13�

in order to have �̂mn;ij = �̂nm;ij = �̂mn;ji. In the same way, we
introduce the symmetrized Pauli scatterings �mn;ij, equal to
��� n j

m i �+ �m↔n�� /2.

B. Many-body effects

To derive many-body effects with identical cobosons, it is
convenient to iterate the four commutation relations
�3.5�–�3.9� on which the composite-boson many-body theory
is based. This leads to27,28

�Bm,Bo
†N� = NBo

†N−1��mo − Dmo�

− N�N − 1�Bo
†N−2 � �� n o

m o
	Bn

†, �3.14�

�Dmi,Bo
†N� = NBo

†N−1 ���� n i

m o
	 + �m ↔ n�Bn

†

�3.15�

for many-body effects dealing with fermion exchanges and

�H,Bo
†N� = NBo

†N−1�EoBo
† + Vo

†�

+
N�N − 1�

2
Bo

†N−2 � �� n o

m o
	Bm

† Bn
†,

�3.16�

�Vi
†,Bo

†N� = NBo
†N−1 � �� n o

m i
	Bm

† Bn
† �3.17�

for many-body effects dealing with fermion interactions. The
N prefactors in front of the � and � terms come from the
number of ways among N to choose the cobosons in state o
involved in these scatterings. This gives N when only one
coboson in state o is involved and N�N−1� /2 when two co-
bosons in state o are involved, the additional 2 in Eq. �3.14�
coming from the fact that these cobosons can exchange ei-

ther their fermion � or their fermion �, the ��↔�� exchange
being identical to an �i↔ j� exchange, as seen in Fig. 2�a�.

In typical problems dealing with N cobosons, most of
them are in the same state. Scalar products of such N cobo-
son states are easy to expand31 in terms of

�0�Bo
NBo

†N�0� = N ! FN. �3.18�

The normalization factor FN reduces to 1 for the case of
elementary bosons, but it is not a number on the order of 1
for cobosons due to the Pauli exclusion principle between the
fermionic components of the particles. Indeed, from the re-
cursion relation obeyed by FN, it has been shown28 that for
large samples, FN is exponentially small �FN�e−N��, where
� is the dimensionless parameter associated with density de-
fined by Eq. �1.4�. However, in calculations of physical
quantities, FN always appears in ratios FN−n /FN which, for n
small, is equal to 1 within corrections on the order of �,

FN−1

FN
= 1 + O��� . �3.19�

C. Coherent superposition of cobosons

Besides many-body states with a given number of par-
ticles in a specific eigenstate, we wish also to consider co-
herent superpositions of cobosons, i.e., states of the form

B† = a�Bo�
† + a�Bo�

† . �3.20�

While calculations for N=2 are easy to perform by simply
expanding �a�Bo�

† +a�Bo�
† �2, calculations for large N are more

tricky. For those, we are forced to keep the coherent state B†

as an entity, and to produce equations similar to Eqs.
�3.14�–�3.17� with Bo

† replaced by B†.

1. Fermion exchanges

To get the fermion exchanges in a convenient way, let us
first introduce the operator Dm through the commutator
�Bm ,B†�=�m−Dm, where �m is defined in Eq. �2.7�. Dm reads
in terms of the deviation-from-boson operators as Dm
=a�Dmo�+a�Dmo�. From it, we then construct the �mn’s
through the commutator �Dm ,B†�=2��mnBn

†. They read in
terms of the Pauli scatterings as

�mn = a�2�� n o�

m o�
	 + a�2�� n o�

m o�
	

+ a�a���� n o�

m o�
	 + �� n o�

m o�
	� . �3.21�

Iteration of these two commutators allows us to write
�Dm ,B†N� and �Bm ,B†N� in terms of this �mn. We find

�Dm,B†N� = 2NB†N−1 � �mnBn
†, �3.22�

�Bm,B†N� = NB†N−1��m − Dm� − N�N − 1�B†N−2 � �mnBn
†.

�3.23�

From these two commutators, it is also possible to show that
�B ,B†�=1−D, while �D ,B†�=2��nBn

†, in which the prefac-
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tor �n reads in terms of the Pauli scatterings as

�n = a��a��2�� n o�

o� o�
	 + a��a��2�� n o�

o� o�
	

+ a��a��2��� n o�

o� o�
	 + �� n o�

o� o�
	

+ a��a��2��� n o�

o� o�
	 + �� n o�

o� o�
	 . �3.24�

Similar commutators for N, obtained by iteration, read in
terms of this �n as

�D,B†N� = 2NB†N−1 � �nBn
†, �3.25�

�B,B†N� = NB†N−1�1 − D� − N�N − 1�B†N−2 � �nBn
†.

�3.26�

These two commutation relations, along with Eqs. �3.22� and
�3.23�, are the equivalent of Eqs. �3.14� and �3.15� for coher-
ent superpositions of cobosons.

2. Fermion interactions

To perform calculations for N of these coherent superpo-
sitions in a convenient way, we also need similar commuta-
tors for the interaction part. They are obtained through

�H ,B†�=EoB̃†+V†, in which we have set V†=a�Vo�
† +a�Bo�

† ,
while

B̃† = �a�Eo�Bo�
† + a�Eo�Bo�

† �/Eo, �3.27�

so that B̃† reduces to B† for Eo�
Eo�
Eo. We are then led to
define �mn through �V† ,B†�=��mnBm

† Bn
†. This scalar is found

to be

�mn = a�2�� n o�

m o�
	 + a�2�� n o�

m o�
	

+ a�a���� n o�

m o�
	 + �� n o�

m o�
	 , �3.28�

so that the iteration of these commutators leads to

�V†,B†N� = NB†N−1 � �mnBm
† Bn

†, �3.29�

�H,B†N� = NB†N−1�EoB̃† + V†� +
N�N − 1�

2
B†N−2 � �mnBm

† Bn
†.

�3.30�

3. Normalization factors

As for single composite bosons, the norm of the state
made of N identical coherent superpositions of cobosons is
going to play a key role in the many-body physics of these
systems. This leads us to introduce, just as we defined FN for
single cobosons, the normalization factor GN, determined by

�0�BNB†N�0� = N ! GN. �3.31�

GN is expected to be exponentially small due to the many
exchanges which take place between the fermions of the N
coherent bosons. As for FN, we reach GN through the recur-
sion relation it obeys. From Eq. �3.26� and the fact that
D�0�=0, we find

�0�BNB†N�0� = �0�BN−1�B,B†N��0�

= N�N − 1� ! GN−1 − N�N − 1�

�� �n�0�BN−1Bn
†B†N−2�0� . �3.32�

We now use Eq. �3.23� to get �0�BN−1Bn
†. This leads to

GN = GN−1 − �N − 1���1�GN−2 + �N − 1��N − 2���2�GN−3 + ¯ ,

�3.33�

where the precise value of the first-order term ��1� is

��1� = � �n�n
� = �a��4��o� o�

o� o�
	 + �a��4��o� o�

o� o�
	

+ 2�a�a��2���o� o�

o� o�
	 + ��o� o�

o� o�
	 . �3.34�

Equations �3.33� and �3.34� show that like FN, the GN cor-
rection to the bare elementary-boson normalization factor N!,
although not on the order of 1, is such that

GN−1

GN
� 1 + N��1� = 1 + O��� . �3.35�

D. Mixture of cobosons

In this paper, we are also going to consider a mixture of
cobosons of the form Bo1

†N1Bo2

†N2�0�. Like FN for many-body
effects between N identical cobosons, GN1,N2

, defined by

�0�Bo2

N2Bo1

N1Bo1

†N1Bo2

†N2�0� = N1 ! N2 ! GN1,N2
, �3.36�

is a key factor for many-body effects between N1 cobosons
in state o1 and N2 cobosons in state o2. This factor, which
would be exactly 1 for elementary bosons, differs from 1 due
to the many fermion exchanges which exist not only among
the N1 cobosons in state o1 and among the N2 cobosons in
state o2, but also between the cobosons in state o1 and the
cobosons in state o2. They make GN1,N2

not on the order of 1
but exponentially small. As with FN, we can determine
GN1,N2

through the recursion relation it fulfills. To get this
recursion relation, we use Eq. �3.14� to rewrite Bo1

Bo1

†N1. This
leads to

�0�Bo2

N2Bo1

N1Bo1

†N1Bo2

†N2�0�

= �0�Bo2

N2Bo1

N1−1�Bo1

†N1Bo1
+ N1Bo1

†N1−1�1 − Do1o1
�

− N1�N1 − 1�Bo1

†N1−2 � �� i o1

o1 o1
	Bi

†Bo2

†N2�0� .

�3.37�

M. COMBESCOT AND D. W. SNOKE PHYSICAL REVIEW B 78, 144303 �2008�

144303-6



The 1 in the second term in the bracket readily gives
N1��N1−1� !N2 !GN1−1,N2

�. The first term in the bracket is cal-
culated using Eq. �3.14� for Bo1

Bo2

†N2�0�, while the third term
is calculated using Eq. �3.15� for Do1o1

Bo2

†N2�0�. This allows us
to write the norm of Bo1

†N1Bo2

†N2�0� given in Eq. �3.36� as

N2 ! N2 ! GN1,N2
= N1��N1 − 1� ! N2 ! GN1−1,N2

�

− N1�N1 − 1�A11 − N2�N2 − 1�A22

− N1N2A12, �3.38�

where A11, A22, and A12 contain one Pauli scattering explic-
itly, so that they are related to fermion exchanges. Equation
�3.38� is shown in Fig. 3, the factors �N1 ,N2� coming from
the number of ways we can choose the cobosons involved in
fermion exchanges with the coboson o1 on the left. The lead-
ing term for N1�N1−1�A11, shown in Fig. 4, reduces to

�N1 − 1���o1 o1

o1 o1
	N1�N1 − 1���N1 − 2� ! N2 ! GN1−2,N2

� .

�3.39�

Similarly, the leading term for N1N2A12, shown in Fig. 5, is

N2���o2 o2

o1 o1
	 + ��o2 o1

o1 o2
	�N1N2

���N1 − 1� ! �N2 − 1� ! GN1−1,N2−1� . �3.40�

They contain fermion exchanges between two cobosons. On
the opposite, the leading term of N2�N2−1�A22 must have
fermion exchange between three cobosons since ��

o1 o2

o2 o2
�=0

for o1�o2. Therefore, we end with

GN1,N2
= GN1−1,N2

− �N1 − 1���o1 o1

o1 o1
	GN1−2,N2

− N2���o2 o2

o1 o1
	 + ��o2 o1

o1 o2
	�GN1−1,N2−1 + ¯ .

�3.41�

This shows that, in the same way that FN−1 /FN
1+O���,
we have

GN1−1,N2

GN1,N2

= 1 + O��1� + O��2� , �3.42�

so that, even if GN1,N2
is exponentially small due to the large

number of fermion exchanges, the effect of these exchanges
on GN1,N2

ratios is negligible at lowest order in density.
We now have all the tools to tackle many-body effects

with a large number of identical cobosons, a large number of
coherent cobosons, and a mixture of two large numbers of
cobosons. However, since the calculations for large N’s are
obviously quite technical, in this paper we have chosen to
start with N=2, as most of the many-body physics can usu-
ally be understood from this limit. We are also going to first
perform these calculations for elementary bosons, in order to
enlighten the differences between elementary and composite
particles.

IV. TWO ELEMENTARY BOSONS

A. Single state

Let us start with a state with two identical elementary

bosons, ��̄0�= B̄o
†2�0�. Since B̄i��̄0�=2�ioB̄o

†�0� due to Eq.
�2.4�, we find that ��̄0 � �̄0�=2, while

��̄0�H̄0��̄0� = � Ei���̄0�B̄i
†��B̄i��̄0�� = 4Eo, �4.1�

FIG. 3. Shiva diagram expansion for the normalization factor
�0�Bo2

N2Bo1

N1Bo1

†N1Bo2

†N2�0� appearing in Eq. �3.38�.

FIG. 4. Shiva diagram expansion for the first exchange contri-
bution N1�N1−1�A11 to �0�Bo2

N2Bo1

N1Bo1

†N1Bo2

†N2�0�, as given in Eq.
�3.39�.

FIG. 5. Same as Fig. 4 for the third exchange contribution
N1N2A12, as given in Eq. �3.40�.
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��̄0�V̄��̄0� =
1

2 � �̄� n j

m i
	��̄0�B̄m

† B̄n
†B̄jB̄i��̄0� = 2�̄�o o

o o
	 .

�4.2�

This readily gives the Hamiltonian mean value in this two-
elementary-boson state as

��̄0�H̄��̄0�

��̄0��̄0�
= 2Eo + �̄�o o

o o
	 = 2Eo + �̄oo;oo, �4.3�

where �̄mn;ij is defined in terms of �̄� n i
m j � as in Eq. �3.13�.

B. Fragmented state

We now consider ��̄12�= B̄o1

† B̄o2

† �0� for elementary bosons

in states o1�o2. From �B̄i�̄12�, we readily find ��̄12 � �̄12�
=1, while ��̄12�H̄0��̄12�=Eo1

+Eo2
. In the same way,

B̄jB̄i��̄12�= �� jo2
�io1

+� jo1
�io2

��0� leads to

��̄12�V̄��̄12� = �̄�o2 o2

o1 o1
	 + �̄�o1 o2

o2 o1
	 , �4.4�

so that we end up with

��̄12�H̄��̄12�

��̄12��̄12�
= Eo1

+ Eo2
+ 2�̄o1o2;o1o2


 2Eo + 2�̄oo;oo

�4.5�

for o1
o2
o.

C. Coherent superposition

The third state of interest is the coherent superposition of

states, ��̄�= B̄†2�0�, with B̄† defined as in Eq. �3.20�, with Bo�
†

replaced by B̄o�
† . The prefactors �a� ,a�� are chosen such that

�a��2+ �a��2=1 in order for the state to be normalized. We also
impose that the �o� ,o�� states differ at least through their

center-of-mass momenta �Q� o��Q� o�� in order for scatterings

such as �̄� o� o�
o� o�

� to cancel due to momentum conservation.
From Eq. �2.6� taken for N=2, we readily find ��̄ � �̄�=2,

while ��̄�H̄0��̄�=4��a��2Eo�+ �a��2Eo��. In the same way, from

B̄jB̄i��̄�=2�a��io�+a��io���a�� jo�+a�� jo���0� and the fact that

the nonzero �̄’s reduce for Q� o��Q� o� to the diagonal terms

�̄� i i
j j �, with �i , j�= �o� or o��, or to the cross term �̄� o� o�

o� o�
�,

we find that

��̄�V̄��̄� = 2�a��4�̄�o� o�

o� o�
	 + 2�a��4��o� o�

o� o�
	

+ 4�a�a��2���o� o�

o� o�
	 + ��o� o�

o� o�
	� . �4.6�

Consequently, the Hamiltonian mean value for two elemen-
tary bosons in a coherent state reads as

��̄�H̄��̄�

��̄��̄�
= 2��a��2Eo� + �a��2Eo�� + �a��4�̄o�o�;o�o�

+ �a��4�̄o�o�;o�o� + 4�a�a��2�̄o�o�;o�o�


 2Eo + �1 + 2�a�a��2��̄oo;oo �4.7�

for o�
o�
o.
From Eqs. �4.3�, �4.5�, and �4.7�, we thus see that, since

the interaction scattering �oo;oo must be positive to avoid a
density collapse, the energy of two elementary bosons is
minimum when the particles are in a single eigenstate, and
not a mixture or a coherent superposition of two eigenstates.

V. TWO COMPOSITE BOSONS

The calculations for composite bosons will need to explic-
itly treat the exchange between the constituent fermions,
through the deviation-from-boson operator Dmi and the Pauli
scattering �� n j

m i �.

A. Single state

For ��0�=Bo
†2�0�, we now have, due to Eq. �3.14�,

Bm��0� = 2�moBo
†�0� − 2 � �� n o

m o
	Bn

†�0� , �5.1�

since Dmi�0�=0. This leads to

��0��0� = 2 − 2��o o

o o
	 , �5.2�

with �� o o
o o �= �33� /2��aB /L�3 for three-dimensional �3D�

cobosons28 with zero center-of-mass momentum and relative
motion wave function �r ��0�=e−r/aB /��aB

3 , so that this Pauli
scattering goes to zero when the sample size L increases.

Using Eq. �3.16� and the fact that V0
†�0�=0, we find

H��0� = 2EoBo
†2�0� − � �� n o

m o
	Bm

† Bn
†�0� . �5.3�

From Eqs. �3.6� and �3.7�, it is easy to show that the scalar
product of two coboson states reads as31

�0�BmBnBi
†Bj

†�0� = ��mi�nj − �� n i

m j
	 + �m ↔ n� .

�5.4�

So that, from the two above equations, we end up with

��0�H��0�
��0��0�

= 2Eo +

��o o

o o
	 − �in�o o

o o
	

1 − ��o o

o o
	

= 2Eo +
�̂oo;oo

1 − �oo;oo

 2Eo + �̂oo;oo �5.5�

since �oo;oo goes to 0 as �aB /L�d when the sample size in-
creases.
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B. Fragmented state

We now turn to the fragmented state ��12�=Bo1

† Bo2

† �0� for
�o1 ,o2� with different center-of-mass momenta in order for
the Pauli and interaction scatterings to cancel due to momen-
tum conservation if the number of o1 cobosons in the in and
out states are different. Using Eq. �5.4�, its norm is found to
be

��12��12� = 1 − ��o2 o2

o1 o1
	 − ��o1 o2

o2 o1
	 �5.6�

=1 − 2�o1o2;o1o2
, �5.7�

while from Eqs. �3.8� and �3.9�, the Hamiltonian mean value
in this fragmented state appears as

��12�H��12�
��12��12�

= Eo1
+ Eo2

+

��o2 o2

o1 o1
	 − �in�o2 o2

o1 o1
	 + ��o1 o2

o2 o1
	 − �in�o1 o2

o2 o1
	

1 − 2�o1o2;o1o2

. �5.8�

So that if we use the fully symmetrized scattering defined in
Eq. �3.13� and take a large sample volume in order for the �
term to give a negligible contribution, this Hamiltonian mean
value reduces, for �o1 ,o2�
o, to

��12�H��12�
��12��12�

= Eo1
+ Eo2

+ 2
�̂o1o2;o1o2

1 − �1o2;o1o2


 2Eo + 2�̂oo;oo.

�5.9�

C. Coherent superposition

The third state of interest is the coherent superposition
���=B†2�0�, where B†=a�Bo�

† +a�Bo�
† , with �a��2+ �a��2=1 and

Q� o��Q� o� in order for the Pauli and interaction scatterings to
again cancel due to momentum conservation if the number of
o� cobosons in the in and out states are different. As a direct
consequence, �� ��� and ���H��� can only have terms in
�a��4, �a��4, and �a�a��2. Using Eq. �5.4�, the bare expansion of
B†2 in terms of Bo�

†2, Bo�
†2, and Bo�

† Bo�
† readily leads to the norm

of the coherent state given by

����� = �a��4Lo� + �a��4Lo� + �a�a��2Lo�,o�, �5.10�

with Lo�=2−2�� o� o�
o� o�

� and similarly for Lo�, while Lo�,o�=1
−�� o� o�

o� o�
�−�� o� o�

o� o�
�. In terms of the symmetrized Pauli scat-

terings defined as in Eq. �3.13�, this norm reduces to

����� = 2 − 2�a��4�o�o�;o�o� − 2�a��4�o�o�;o�o�

− 8�a�a��2�o�o�;o�o�. �5.11�

In the same way, Eqs. �3.8� and �3.9� allow us to write

���H��� = �a��4Ao� + �a��4Ao� + 4�a�a��2Ao�,o�, �5.12�

where Ao�=2Eo��2−2�� o� o�
o� o�

��+2�̂� o� o�
o� o�

� and similarly for
Ao�, while

Ao�,o� = �Eo� + Eo���1 − ��o� o�

o� o�
	 − ��o� o�

o� o�
	�

+ �̂�o� o�

o� o�
	 + �̂�o� o�

o� o�
	 .

For o�
o�
o in a large sample volume, the expectation
value of the Hamiltonian then reduces to

���H���
�����

� 2Eo +
�1 + 2�a�a��2��̂oo;oo

1 − �1 + 2�a�a��2��oo;oo


 2Eo + �1 + 2�a�a��2��̂oo;oo. �5.13�

D. Effective scattering for bosonized particles

When compared to similar results for elementary bosons,
namely Eqs. �4.3�, �4.5�, and �4.7�, the Hamiltonian mean
values in the three two-coboson states, obtained above, lead
us to identify the diagonal effective scattering for elementary

bosons �̄oo;oo with the physically relevant combination of en-
ergylike scatterings defined in Eq. �3.12�, namely,

�̄oo;oo � �̂oo;oo = ��o o

o o
	 − �in�o o

o o
	 . �5.14�

This effective scattering contains a direct contribution as
well as an exchange contribution which is symmetrical with
respect to the in and out processes, as physically reasonable
for �in� o o

o o �=�out� o o
o o � due to Eq. �3.11�.

For excitons or H atoms,28 the diagonal direct scattering
�� o o

o o � reduces to 0, the repulsion between fermions � or
fermions � being as large as the attraction between �� ,��.
On the opposite, the diagonal exchange scattering of these
cobosons differ from zero: in three dimensions, it reads
�in� o o

o o �=−�26� /3�R0�aB /L�3, where R0=e4 /2�2	2

=e2 /2aB is the coboson Rydberg energy.28

VI. MANY ELEMENTARY BOSONS

We now turn to states with a large number of bosons and
first consider that these bosons are elementary bosons.
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A. Single state

Let us start with the state with its N bosons in a single

state, ��̄0�= B̄o
†N�0�. We physically expect the interaction term

of the Hamiltonian expectation value to depend on the boson
number through N�N−1� /2 which corresponds to the num-
ber of interacting boson pairs �o ,o� we can form out of N
bosons in state o. This leads us to expect that the Hamil-
tonian expectation value obtained for N=2, as given in Eq.
�4.3�, must transform for general N as

��̄0H̄��̄0�

��̄0��̄0�
= NEo +

N�N − 1�
2

�̄oo;oo. �6.1�

For scatterings �oo;oo in �aB /L�d, this will induce a correction
to the bare energy NEo on the order of N�, where � is the
dimensionless parameter associated to the density given in
Eq. �1.4�. Let us now recover this physically expected result.

Equation �2.4� readily gives the well-known normaliza-
tion factor for elementary bosons, namely,

��̄0��̄0� = �0�B̄o
N−1B̄oB̄o

†N�0� = N�0�B̄o
N−1B̄o

†N−1�0� = N ! .

�6.2�

Using the same equation, Eq. �2.4�, on the one-body part of
the Hamiltonian leads to

��̄0�H̄0��̄0� = � Ei���̄0�B̄i
†��B̄i��̄0��

= N2Eo�N − 1� !

= NEo��̄0��̄0� , �6.3�

while on the two-body part, we find

��̄0�V̄��̄0� =
1

2 � �̄� n j

m i
	���̄0�B̄m

† B̄n
†��B̄jB̄i��̄0��

=
1

2
N2�N − 1�2�̄�o o

o o
	�N − 2� ! . �6.4�

This just proves that the guess of Eq. �6.1� is correct.

B. Fragmented state

We now consider the fragmented state ��̄12�
= B̄o1

†N1B̄o2

†N2�0�. The same physical understanding leads us to
expect the interaction term between elementary bosons
�o1 ,o2� of the Hamiltonian expectation value, as given in Eq.
�4.5�, to appear with a N1N2 prefactor. Since we now have
many bosons o1 and many bosons o2, we should also have an
interaction term between bosons o1 with a prefactor N1�N1
−1� /2 and an interaction term between bosons o2 with a
prefactor N2�N2−1� /2. From Eq. �4.5�, we are thus led to
guess

��̄12�H̄��̄12�

��̄12��̄12�
= N1Eo1

+ N2Eo2
+

N1�N1 − 1�
2

�̄o1o1;o1o1

+
N2�N2 − 1�

2
�̄o2o2;o2o2

+ 2N1N2�̄o1o2;o1o2
.

�6.5�

For o1
o2
o, the Hamiltonian expectation value should
thus be given by

��̄12�H̄��̄12�

��̄12��̄12�
� NEo + �N�N − 1�

2
+ N1N2	�̄oo;oo �6.6�

for N1+N2=N. Let us now show this result explicitly.
Equation �2.4� leads to

B̄i��̄12� = �N1�io2
B̄o1

†N1−1B̄o2

†N2 + N2�io2
B̄o1

†N1B̄o2

†N2−1��0� ,

�6.7�

so that for o1�o2, we find B̄N1��̄12�=N1 ! B̄o2

†N2�0�. This

readily gives ��̄12 � �̄12�=N1 !N2!, while

��̄12�H̄0��̄12� = � Ei��̄12�B̄i
†B̄i��̄12�

= Eo1
N1

2�N1 − 1� ! N2 ! + Eo2
N2

2�N2 − 1� ! N1 ! .

�6.8�

If we now use Eq. �6.7� to calculate B̄jB̄i��̄12�, the scalar

product ���̄12�B̄m
† B̄n

†� �B̄jB̄i��̄12�� which appears in

��̄12�V̄��̄12� leads to

��̄12�V̄��̄12� =
1

2
�W̄o1

+ W̄o2
� + W̄o1,o2

, �6.9�

in which we have set

W̄o1
= �̄�o1 o1

o1 o1
	�N1�N1 − 1��2�N1 − 2� ! N2 ! , �6.10�

and similarly for W̄o2
, while

W̄o1,o2
= ��̄�o2 o2

o1 o1
	 + �̄�o1 o2

o2 o1
	�

��N1N2�2�N1 − 1� ! �N2 − 1� ! . �6.11�

The expected result, Eq. �6.5�, then readily follows from Eqs.
�6.8� and �6.9�.

C. Coherent superposition

The third state of interest is the coherent superposition of

states ��̄�= B̄†N�0� with B̄†=a�B̄o�
† +a�B̄o�

† . Through similar
physical arguments, we expect to have the interaction term in
the energy for N=2 cobosons, as given in Eq. �4.7�, to appear
with a prefactor N�N−1� /2. To show it explicitly, we use Eq.
�2.6� to get
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��̄��̄� = �0�B̄N−1�a��B̄o� + a��B̄o��B̄
†N�0�

= N��a��2 + �a��2��0�B̄N−1B̄N−1�0� . �6.12�

Its iteration, for �a��2+ �a��2=1, gives ��̄ � �̄�=N! as for a con-
densate made of a single state. In the same way, the norm of

B̄i��̄� deduced from Eq. �2.6�, leads to

��̄�H̄0��̄� = N��a��2Eo� + �a��2Eo��N ! , �6.13�

while the scalar product of the states ��̄�B̄m
† B̄n

† and B̄iB̄j��̄�
leads, for Q� o��Q� o�, to

��̄�V̄��̄� =
1

2
�N�N − 1��2�N − 2� ! ��a��4�̄�o� o�

o� o�
	

+ �a��2�̄�o� o�

o� o�
	 + 2�a�a��2��̄�o� o�

o� o�
	

+ �̄�o� o�

o� o�
	� , �6.14�

which also reads

��̄�V̄��̄� =
N�N − 1�

2
��a��4�̄o�o�;o�o� + �a��2�̄o�o�;o�o�

+ 4�a�a��2�̄o�o�;o�o��N ! .

So that for o�
o�
o�, we end with the expected result,
namely,

��̄�H��̄�

��̄��̄�
� NEo +

N�N − 1�
2

�1 + 2�a�a��2��̄oo;oo.

�6.15�

VII. MANY COMPOSITE BOSONS

A. Single state

The Hamiltonian mean value for the pure state ��0�
=Bo

†N�0� was already calculated in a previous work.28,36 It has
a naive contribution NEo. It also has a set of density-
dependent corrections in �n with n�1, in contrast with el-
ementary bosons which only have a n=1 term. This set of
density terms comes from fermion exchanges between the N
cobosons. Since the Hamiltonian expectation value �H� only
contains one interaction by construction, the density terms
for n�2 can only come from the fermion exchanges be-
tween three or more cobosons induced by the Pauli exclusion
principle. They are nicely visualized by Shiva diagrams with
n+1 cobosons and one interaction process between any two
of these coboson lines �see Fig. 6�. Let us here repeat the
main steps of this calculation for completeness—and also
because the ones for ��12� and ��� are conceptually similar
while far more complex.

In order to calculate ��0�H��0�, we use one of the two key
equations for coboson many-body effects, namely, Eq.
�3.16�, to find

��0�H��0� = NEo��0��0� +
N�N − 1�

2 � �� n o

m o
	

��0�Bo
NBo

†N−2Bm
† Bn

†�0� . �7.1�

The second term of this equation is shown in Fig. 6. In it,
appears the scalar product of N coboson states with two co-
bosons different from o on the right �see Fig. 7�. This scalar
product is calculated using another key equation for many-
body effects, namely, Eq. �3.14�. This equation leads to

FIG. 6. Shiva diagram for a process having one fermion inter-
action between N cobosons o, as given by the second term in Eq.
�7.1�.

(b)

(a)

(c)

FIG. 7. �a� Shiva diagram for the scalar product of N coboson
states appearing in Eq. �7.2�, with N cobosons o on the left and
�N−2� cobosons o plus two cobosons �m ,n� on the right. The stan-
dard way �Refs. 28 and 31� to calculate this scalar product is to
isolate �N−2� , �N−3� , . . . cobosons o not involved in fermion ex-
changes with �m ,n�. The N prefactors come from the number of
ways to choose the cobosons o having fermion exchanges with
�m ,n�. These possible exchanges are shown in �b� and �c�.
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�0�Bo
N−2BmBnBo

†N�0� = �0�Bo
N−2Bm�N�noB0

†N−1

− N�N − 1�Bo
†N−2 � ��p o

n o
	Bp

†��0� .

�7.2�

We then use the same commutation, Eq. �3.14�, to pass Bm

over Bo
†N−1 and Bo

†N−2. Since ��� n i
m j ��

�=�� j n
i m �, this allows us

to expand the above scalar product as �see Fig. 7�

�0�Bo
NBm

† Bn
†Bo

†N−2�0�

= N�N − 1���on�om − ��o n

o m
	��N − 2� ! FN−2

+ N�N − 1��N − 2�2�− �on��o o

o m
	 − �om��o o

o m
	

+ �3 + �3���N − 3� ! FN−2 + ¯ , �7.3�

where �3 and �3� are three-leg scatterings shown in Fig. 7�c�,

�3 = ��o o

o n

o m
�, �3� = ��o n

o o

o m
� ,

in which the cobosons �m ,n� exchange their fermions with
one coboson o to produce three cobosons o. This expansion
actually follows the standard procedure31 to calculate scalar
products, namely, we first isolate terms in

�0�Bo
N−PBo

†N−P�0� = �N − P� ! FN−P,

with P�2. We then connect the remaining cobosons in all
possible ways while enforcing the cobosons o to be “never
alone” as in Figs. 7�b� and 7�c�. The N prefactors in Fig. 7�a�
correspond to the number of ways we can choose the co-
bosons o among N on the left and among �N−2� on the right.
In the case of the first term in this figure, we just have to
choose the two cobosons o on the left; this is why this first
term appears with a prefactor N�N−1�. In the second term,
we also have to choose a coboson o on the right and a third
coboson o on the left. This is why this term appears with a
prefactor �N�N−1��N−2���N−2�, and so on.

By inserting Eq. �7.3� into Eq. �7.1�, we readily find

��0�H��0�
��0��0�

= NEo +
FN−2

FN

N�N − 1�
2

���o o

o o
	 − �in�o o

o o
	�

+ ¯ , �7.4�

so that, since FN−2 /FN= �FN−2 /FN−1��FN−1 /FN�=1+O���,
we end for large N with

��0�H��0�
��0��0�

= N�Eo +
N

2
�̂oo;oo + O��2�� . �7.5�

This shows that the first correction to the bare energy Eo is of

order �=N�aB /L�d, because, as shown in Sec. V D, �̂oo;oo is
on the order of �aB /L�d. Note that as for the Coulomb inter-

action �� o o
o o �=0, the effective scattering �̂oo;oo reduces to

−�in� o o
o o � which for 3D excitons is equal to

−�26� /3�R0�aB /L�3. Consequently, this Hamiltonian mean
value is just the energy of N electron-hole pairs obtained by
Keldysh and Kozlov,16 using a completely different approach
in which these pairs are not treated as coboson entities, as we
do here.

B. Coherent superposition

In order to calculate the mean value of the Hamiltonian
for the N coherent cobosons ���=B†N�0�, we use the results
derived in Sec. III C. From Eq. �3.30�, this mean value ap-
pears as

�0�BNHB†N�0� = NEo�0�BNB̃†B†N−1�0� +
N�N − 1�

2
� ,

�7.6�

� = � �mn�0�BNBm
† Bn

†B†N−2�0� , �7.7�

where �mn is given in Eq. �3.28�. The first term of Eq. �7.6�
reduces to NEo�� ��� for Eo�
Eo�
Eo since B̃†
B†. To
calculate �, we use Eq. �3.26� for �0�BNBm

† . This leads to

� = N � �mn�m
� �0�BN−1Bn

†B†N−2�0�

− N�N − 1� � �mn�mp
� �0�BN−2BpBn

†B†N−2�0� . �7.8�

In the first term, we again use Eq. �3.23� for �0�BN−1Bn
†, while

we use the commutator �Bp ,Bn
†� given in Eq. �3.6� to calcu-

late the second term of �. This leads to

� = N�N − 1��N − 2� ! GN−2 � �mn��m
� �n

� − �mn
� � + ¯ GN−3

+ ¯ . �7.9�

If we now use the definitions of �m, �mn, and �mn given in

Eqs. �2.7�, �3.21�, and �3.28�, we find that for Q� o��Q� o�, the
sum in Eq. �7.9� reduces to

�a��4�̂�o� o�

o� o�
	 + �a��4�̂�o� o�

o� o�
	

+ 2�a�a��2��̂�o� o�

o� o�
	 + �̂�o� o�

o� o�
	 ,

with �̂=�−�in as defined in Eq. �3.12�. By collecting all the
terms, we end with

���H���
�����

� NEo +
N�N − 1�

2

GN−2

GN
��a��4�̂o�o�;o�o�

+ �a��4�̂o�o�;o�o� + 4�a�a��2�̂o�o�;o�o�� + ¯

�7.10�

within corrections on the order of �Eo�−Eo��. For o�
o�

o and N large, the above result reduces to

���H���
�����

= N�Eo +
N

2
�1 + 2�a�a��2��̂oo;oo + �O��2�� .

�7.11�
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C. Fragmented state

The last N-coboson state we must consider, ��12�
=Bo1

†N1Bo2

†N2�0�, has two large numbers of different cobosons
in states o1 and o2. The very many exchanges which exist
within the o1 population, within the o2 population, and be-
tween the o1 and o2 populations make this many-body cal-
culation quite tricky. This is why we have kept it for the end,
the previous ones having the role of useful exercises. In view
of the above results, we can however guess that the Hamil-
tonian mean value for composite bosons in this fragmented
state should read as the one for elementary bosons, namely,

Eq. �6.5�, with, according to Eq. �5.14�, �̄o1o1;o1o1
and

�̄o1o2;o1o2
replaced by �̂o1o1;o1o1

and �̂o1o2;o1o2
, respectively. Let

us show this explicitly.
We first use Eq. �3.16� in Sec. III B to replace HBo1

†N1 in
H��12�. This leads to

H��12� = �Bo1

N1H + N1Eo1
Bo1

†N1 + N1Bo1

†N1−1Vo1

†

+
N1�N1 − 1�

2
Bo1

†N1−2 � �� n o1

m1 o1
	Bm

† Bn
†Bo2

†N2�0� .

�7.12�

We again use Eq. �3.16� for HBo2

†N2�0� and Eq. �3.17� for
Vo1

† Bo2

†N2�0�. This allows to split ��12�H��12� into

��12�H��12� = �N1Eo1
+ N2Eo2

���12��12� +
N1�N1 − 1�

2
�11

+
N2�N2 − 1�

2
�22 + N1N2�12. �7.13�

�11, shown in Fig. 8, describes the interactions of two among
N1 cobosons in state o1, the other N2 cobosons o2 possibly
having fermion exchanges with the cobosons o1. The precise
value of �11 is

�11 = � �0�Bo2

N2Bo1

N1Bm
† Bn

†Bo1

†N1−2Bo2

†N2�0��� n o1

m o1
	 ,

�7.14�

and similarly for �22, while �12, shown in Fig. 9, results
from the interaction of one coboson o1 with one coboson o2.
It reads

�12 = � �0�Bo2

N2Bo1

N1Bm
† Bn

†Bo1

†N1−1Bo2

†N2−1�0��� n o2

m o1
	 .

�7.15�

The reader who is knowledgeable about Shiva diagrams28,31

will immediately see from Fig. 8 that for Q� o1
�Q� o2

, i.e., for

��
o2 o1

o1 o1
�=0=�in�

o2 o1

o1 o1
�, we must have

�11 � N1�N1 − 1����o1 o1

o1 o1
	 − �in�o1 o1

o1 o1
	�

��N1 − 2� ! N2 ! GN1−2,N2
, �7.16�

and similarly for �22. Here GN1,N2
is defined as FN, through

the norm of the Bo1

†N1Bo2

†N2�0� state �see Eq. �3.36��.
In the same way, the Shiva diagram in Fig. 9 readily leads

to, for Q� o1
�Q� o2

,

�12 � N1N2���o2 o2

o1 o1
	 + ��o1 o2

o2 o1
	 − �in�o2 o2

o1 o1
	

− �in�o1 o2

o2 o1
	��N1 − 1� ! �N2 − 1� ! GN1−1,N2−1.

�7.17�

By collecting all these terms, we end with

FIG. 8. Shiva diagrams for �11 defined in Eq. �7.14�, in which
two cobosons o1 among N1 have an interaction scattering, the other
N2 cobosons o2 just possibly exchanging their fermions with the
cobosons o1. The N prefactors are the numbers of ways to choose
the cobosons o1 on the left.

FIG. 9. Same as Fig. 8, for �12 defined in Eq. �7.15�, the inter-
action taking place between one coboson o1 among N1 and one
coboson o2 among N2. The N prefactors are the number of ways to
choose the cobosons �o1 ,o2� on the left.
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��12�H��12�
��12��12�

� N1Eo1
+ N2Eo2

+
N1�N1 − 1�

2
�̂o1o1;o1o1

GN1−2,N2

GN1,N2

+
N2�N2 − 1�

2
�̂o2o2;o2o2

GN1,N2−2

GN1,N2

+ 2N1N2�̂o1o2;o1o2

GN1−1,N2−1

GN1,N2

. �7.18�

Like FN, the factor GN1,N2
, which comes from the many fer-

mion exchanges which take place between the N1 cobosons
in state o1 and the N2 cobosons in state o2, is exponentially
small. However the ratios of GN1,N2

’s are nearly 1 at lowest
order in density. Enforcing N1+N2=N and o1
o2
o, we
ultimately find the expected result, namely,

��12�H��12�
��12��12�

� NEo + �N�N − 1�
2

+ N1N2	�̂oo;oo.

�7.19�

Let us end this section by returning to the interaction parts
�11, �22, and �12 of the Hamiltonian mean value defined in
Eqs. �7.14� and �7.15� and by calculating them, not through
Shiva diagrams, but in a pedestrian way using the commuta-
tors appropriate to many-body effects, namely, Eqs. �3.14�
and �3.15�. The problem is to get the scalar products of co-
boson states which appear in these �’s. This always is the
tricky part of any calculation involving cobosons. The ones
of interest here are

S�P� = �0�Bo2

N2Bo1

N1Bm
† Bn

†Bo1

†N1−1−PBo2

†N2−1+P�0� �7.20�

for P= �0, �1�. This calculation is done along a line similar
to the one we have used when we only had one type of
cobosons, namely, we isolate the norm of states such as

Bo1

†N1�Bo2

†N2��0� with �N1� ,N2�� decreasing from �N1−1− P ,N2

−1+ P�. To do it, we first use Eq. �3.14� to rewrite Bo1

N1Bm
† .

This leads to four terms. We then use Eq. �3.14� to get
�0�Bo2

N2Bm
† and Eq. �3.15� to get �0�Bo2

N2Dom. This allows to
split S�P� as

S�P� = N1T1
�P� + N2T2

�P� − N1�N1 − 1�U11
�P� − N2�N2 − 1�U22

�P�

− N1N2U12
�P�, �7.21�

where the contributions T1
�P� and T2

�P� are somewhat direct
since they read

T1
�P� = �o1m�0�Bo2

N2Bo1

N1−1��n,P� , �7.22�

T2
�P� = �o2m�0�Bo1

N1Bo2

N2−1��n,P� , �7.23�

where we gave set ��n,P�=Bn
†Bo1

†N1−1−PBo2

†N2−1+P�0�.
The three other terms U11

�P�, U22
�P�, and U12

�P� contain one
Pauli scattering explicitly which describes the fermion ex-
changes between two cobosons in state o1, two cobosons in
state o2, and one coboson in state o1 with one coboson in
state o2, as understood from their N prefactors. These U�P�

terms precisely are

U11
�P� = �

i

��o1 i

o1 m
	�0�Bo1

N1−2Bo2

N2Bi��n,P� , �7.24�

U22
�P� = �

i

��o2 i

o2 m
	�0�Bo2

N2−2Bo1

N1Bi��n,P� , �7.25�

U12
�P� = �

i
���o2 i

o1 m
	 + ��o1 i

o2 m
	��0�Bo2

N2−1Bo1

N1−1Bi��n,P� .

�7.26�

Their leading contributions in fermion exchanges are ob-
tained by passing Bi over Bn

† in ��n,P� through commutator
�3.6�. The trivial term corresponds to taking i=n, while the
two other terms generate additional exchanges between i, or
n, and the other cobosons in states o1 and o2. In the case of
U11

�P�, the remaining matrix element is just �N1
−2� !N2 !GN1−2,N2

for P=1, while it contains additional Pauli
scatterings for P�1. In the same way, the remaining matrix
element of U12

�P� is just �N1−1� ! �N2−1� !GN1−1,N2−1 for P=0,
while for other P’s, this matrix element contains additional
Pauli scatterings. Consequently, the contributions to the
U�P�’s with only one Pauli scattering reduce to

U11
�1� � ��o1 n

o1 m
	�N1 − 2� ! N2 ! GN1−2,N2

,

U12
�0� � ���o2 n

o1 m
	 + ��o1 n

o2 m
	�

��N1 − 1� ! �N2 − 1� ! GN1−1,N2−1, �7.27�

and similarly, U22
�1� obtained from U11

�1� by changing 1 into 2.
Let us now turn to the T1

�P� term defined in Eq. �7.22�. For
P=1, we pass Bn

† over Bo1

N1−1 using many-body commutator
�3.14�. The contribution without exchange, which is the
dominant one at small density, reads

T1
�1� � �N1 − 1��o1m�o1n�N1 − 2� ! N2 ! GN1−2N2

. �7.28�

If for P=0, we do the same but with Bo2

N2, we find

T1
�0� � N2�o1m�o2n�N1 − 1� ! �N2 − 1� ! GN1−1N2−1.

�7.29�

On the opposite, for P=−1, additional exchange processes
are necessary to transform the Bo1

†N1 operator on the right into
Bo1

†N1−1 in order to get rid of the Bo1

N1−1 operator on the left, as
necessary to generate a GN1−1,N2

factor. By calculating T2
�P�

along the same line and by inserting all these matrix ele-
ments into �11 and �12 given in Eqs. �7.14� and �7.15�, we
end with the Hamiltonian mean value written in Eq. �7.18�.

VIII. DISCUSSION

In Secs. IV–VII, we have performed detailed calculations
of the Hamiltonian mean value for three different types of
states, namely, a pure state ��0�=Bo

†N�0�, a coherent state
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���= �a�Bo�
† +a�Bo�

† �N�0�, and a fragmented state ��12�
=Bo1

†N1Bo2

†N2�0� with N1+N2=N. We have taken N=2 first
since the calculations are rather trivial and most of the phys-
ics can already be understood from this two-body problem.
As explicitly shown, the results for large N can be deduced
from the ones for N=2 by putting N in front of the scatter-
ings, in this way producing a density correction in �
=N�aB /L�d to the bare energy, as physically reasonable.

We have considered elementary bosons as well as com-
posite bosons. The calculations with composite bosons are
done using the new many-body theory designed for them, in
which the fermion exchanges appear explicitly through a set
of Pauli scatterings �� n j

m i �. These exchanges are visualized
by using Shiva diagrams, which are of great help in driving
the algebra in the right direction in case of many-body
effects—Sec. VII being quite convincing with respect to the
utility of these diagrams. The Hamiltonian used when the
composite nature of the particles is retained is the micro-
scopic Hamiltonian for fermions. By contrast, an effective
Hamiltonian is necessary when the composite bosons are re-
placed by elementary particles. In order to recover the exact
composite-boson results from this effective Hamiltonian, for
the simple problem in which only one interaction scattering
appears—the Hamiltonian mean value being first order in the
interaction by construction—we must adjust the diagonal
scattering of this effective Hamiltonian to be such that

�̄ij;ij � �̂ij;ij , �8.1�

where �̂ij;ij is the symmetrical combination of direct and
exchange-interaction scatterings of two composite bosons,
defined as

�̂ij;ij =
1

2
��� j j

i i
	 + ��i j

j i
	� −

1

2
��in� j j

i i
	 + �in�i j

j i
	� .

�8.2�

The term �� n j
m i � corresponds to the interaction scattering of

the composite-boson many-body theory which describes fer-
mion interactions without fermion exchange, while the term
�in� n j

m i �=��� n q
m p ��� q j

p i � corresponds to the exchange-
interaction scattering, with �� n q

m p � describing fermion ex-
change in the absence of fermion interaction. Note that in the
case of diagonal scattering, we do have �in� j j

i i �=�out� j j
i i �, as

physically required by the time reversal of the scattering.
Within this identification of the diagonal effective scatter-

ing for bosonized particles, we find that the Hamiltonian
mean values read the same for elementary and composite
bosons in the three states of interest, namely,

��0�H��0�
��0��0�

� NE0 +
N�N − 1�

2
�̂oooo, �8.3�

���H���
�����

� NE0 +
N�N − 1�

2
�1 + 2�a�a��2��̂oooo, �8.4�

��12�H��12�
��12��12�

� NE0 + �N�N − 1�
2

+ N1N2	�̂oooo. �8.5�

The above results are exact for elementary bosons and only
approximate for composite bosons, being valid to lowest or-
der in density only: indeed, in the case of elementary bosons,
the many-body physics is induced by 2�2 interactions,
while for composite bosons, a quite subtle new set of many-
body effects arise from fermion exchanges which can exist
between more than two cobosons.

The single-state case is recovered for a� or a�=0 in Eq.
�8.4� and for N1 or N2=0 in Eq. �8.5�, as expected. We also

see that, since �̂oooo must be positive �otherwise the system
would suffer a density collapse, its energy decreasing with
increasing density�, the minimum energy is obtained for
macroscopic occupation of the single state ��0�. Conse-
quently, a condensate in just one state is stable—a conden-
sate fragmented into two eigenstates or in a superposition of
different eigenstates has a macroscopically higher energy,
even when the other states �o1 ,o2� or �o� ,o�� are infinitesi-
mally close to the ground state o.

We end with one last comment. We have here considered
the possibility of the condensate to differ from a macroscopi-
cally occupied single state through the study of the Hamil-
tonian mean value for the states ��0�, ���, and ��12�. Of
course, Bo

†N�0� is not the true ground state of the system. It
however corresponds to this ground state to lowest order in
the interaction, as can be seen from the fact that the Hamil-
tonian mean value of this state has a zero-order term in scat-
tering which is the expected one, namely, NEo �see Eq.
�8.3��. It is important to stress, however, that while “lowest
order in the interaction” is a well-defined concept in the case
of elementary particles, for which the Hamiltonian reads

H̄0+ V̄, such a concept has no clean meaning for composite
bosons since it is not possible to describe the interaction
between cobosons as a potential, and thus define a zero-order
Hamiltonian or a zero-order eigenstate.
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APPENDIX: NOZIÈRES’ ORIGINAL ARGUMENT

For completeness, we here reproduce the original argu-
ment of Nozières14 on Bose-Einstein condensate, that there
are a macroscopic number of elementary bosons in a single
quantum state, not from a difference in the free-particle ki-
netic energy but the exchange part of the interaction energy.
Nozières14 calculates this interaction energy, within the Born
approximation, namely,

�V̄� =
��̄�V̄��̄�

��̄��̄�
, �A1�

for a structureless interaction Hamiltonian
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V̄ =
V0

2 �
k�1,k�2,k�3

B̄k�1

† B̄k�2

† B̄k�3
B̄k�1+k�2−k�3

.

He first considers an elementary-boson condensate made of a

single state ��̄0�= B̄0
†N�0�, the elementary-boson operator B̄k�

being such that �B̄k� , B̄k���=�k�,k��. The interaction energy is then
found to be, in the large-N limit,

�V̄�0 �
1

2
V0N2. �A2�

Nozières then considers a condensate made, not of a single
quantum state, but of two degenerate or nearly degenerate

states, ��̄12�= B̄1
†N1B̄2

†N2�0�, with the same total number of par-
ticles N1+N2=N. In this fragmented state, the interaction en-
ergy is found to be

�V̄�12 = �V̄�0 + V0N1N2. �A3�

For V0 positive, as necessary to prevent a density collapse,
this readily shows that it we must pay a macroscopic amount
of energy to break up the condensate into two parts, due to

exchange between these two parts, as seen from the N1N2
prefactor of this additional energy.

Instead of the structureless constant scattering V0 used by
Nozières,14 we have, in this paper, decided to use a scattering
�̄� n j

m i �, which a priori depends on the in and out states. The
idea is to make an easier comparison with the results ob-
tained for composite bosons which read in terms of the spe-
cific combination of direct and exchange processes given in

Eq. �3.12�, namely, �̂� n j
m i �=�� n j

m i �−�in� n j
m i �. This, in particu-

lar, allows us to identify the proper effective scattering we
must use for bosonized particles. Let us however stress that
this identification can only be done for energy-conserving
processes as in the case of diagonal processes, i.e., processes
in which the in and out states are identical. Indeed, such a

scattering �̂� n j
m i � cannot be used in general because, as

��in� n j
m i ��

�=�out� i m
j n �, the resulting Hamiltonian would not be

Hermitian, due to Eq. �3.11�, which tells that the in and out
scatterings are equal only when energy is conserved. This
difficulty is basically linked to the fact that there is no way to
have an effective Hamiltonian for bosonized particles which
is Hermitian and valid for all many-body effects. By taking a
real constant V0, Nozières14 hides this difficulty.
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