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We consider incommensurate order parameters for electrons on a square lattice which reduce to d-density
wave order when the ordering wave vector Q is close to Q0= �� /a ,� /a�, a being the lattice spacing and
describe the associated charge and current distributions within a single-harmonic approximation that conserves
current to lowest order. Such incommensurate orders can arise at the mean-field level in extended Hubbard
models, but the main goal here is to explore thoroughly the consequences within a Hartree-Fock approxima-
tion. We find that Fermi surface reconstruction in the underdoped regime can correctly capture the phenom-
enology of the recent quantum oscillation experiments that suggest incommensurate order, in particular the de
Haas–van Alphen oscillations of the magnetization in high fields and very low temperatures in presumably the
mixed state of these superconductors. For 10% hole doping in YBa2Cu3O6+�, we find in addition to the main
frequency around 530 T arising from the electron pocket and a hole frequency at around 1650 T, a new low
frequency from a smaller hole pocket at 250 T for which there are some indications that require further
investigations. The oscillation corresponding to the electron pocket will be further split due to bilayer coupling,
but the splitting is sufficiently small to require more refined measurements. The truly incommensurate
d-density wave breaks both time reversal and inversion, but the product of these two symmetry operations is
preserved. The resulting Fermi surface splits into spin-up and spin-down sectors that are inversion conjugates.
Each of the spin sectors results in a band structure that violates reflection symmetry, which can be determined
in spin and angle-resolved photoemission spectroscopies. For those experiments such as the current photo-
emission experiments or the quantum oscillation measurements that cannot resolve the spin components, the
bands will appear to be symmetric because of the equal mixture of the two spin sectors. There is some
similarity of our results with the spiral spin-density wave order which, as pointed out by Overhauser, also
breaks time reversal and inversion. Calculations corresponding to higher order commensuration produce results
similar to antiphase spin stripes but appear to us to be an unlikely explanation of the experiments. The analysis
of the Gorkov equation in the mixed state shows that the oscillation frequencies are unshifted from the putative
normal state and the additional Dingle factor arising from the presence of the mixed state can provide a subtle
distinction between the spiral spin-density wave and the d-density wave, although this is very difficult to
establish precisely.
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I. INTRODUCTION

Despite more than twenty years of intense effort, the tell-
tale evidence of competing order parameters in the phase
diagram of high-temperature cuprate superconductors re-
mains an enigma. Other than antiferromagnetism of the un-
doped materials1 and stripe order at special doping and spe-
cial materials,2 not much is truly understood. Yet, the
attractive option of classifying the pseudogap as a broken-
symmetry state has spurred intense interest.3–7 Indeed, this
option has the great power to unify the diverse phenomenol-
ogy of these materials. We are strongly motivated by the
recent quantum oscillation measurements8–13 to address this
question anew. These are the Shubnikov–de Haas �SdH� ef-
fect, the de Haas–van Alphen �dHvA� effect, and the oscil-
lations of the Hall coefficient �RH�. The rapidly evolving
experimental situation suggests, under various circum-
stances, evidence of commensurate and incommensurate or-
ders. It is perhaps best at this time to explore as thoroughly
as possible both kinds of order within a very general frame-
work. Such a framework is provided by the Hartree-Fock
theory.

Our basic assumption, justified when compared to experi-
ments, is that the observed quantum oscillations in high mag-

netic fields and low temperatures in underdoped
YBa2Cu3O6+� arise from the Landau levels of the quasipar-
ticles of the Fermi liquid corresponding to the putative nor-
mal state. It is known, and shown here, that in the mixed
state of many superconductors the oscillations remain un-
shifted in their frequencies from the normal state but exhibit
increased damping. Thus, the beauty of the present experi-
ments is that one can in principle determine the closed Fermi
surfaces, through the Onsager relation that involves only the
fundamental constants and the Fermi surface area, of the
normal state without having to cross the upper critical field.
At face value these observations have revealed some striking
facts not noticed previously.14 The most important of which
is the existence of both positively and negatively charged
quasiparticles in a hole doped cuprate at variance with the
conventional wisdom. That these particles behave like qua-
siparticles in a Fermi liquid, even in the underdoped regime,
which has so far been plagued with complex theoretical con-
cerns involving the proximity to a Mott insulator,15 is strik-
ing to say the least and should be of great value in uncover-
ing the mystery of these enigmatic superconductors. One of
us has elaborated on the striking nature of these discoveries
and has explained that the root of these observations is the
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Fermi surface reconstruction due to broken symmetries.14

One of us has also elucidated the role of commensurate sin-
glet d-density wave �DDW� to explain the oscillations of the
Hall coefficient.16 The Hall measurement is more telling than
either SdH or dHvA because it contains the striking informa-
tion regarding the sign of the charge carriers. There is evi-
dence of the presence of electron pockets in what is really a
hole doped material, which is difficult to explain without
spontaneously breaking symmetries in the putative normal
state, in particular by the featureless liquid of resonating va-
lence bond theories.17

For a particle-hole condensate, which DDW is, the sym-
metry of the orbital wave function does not constrain the
symmetry of the spin-wave function.18 Triplet DDW has not
yet been adequately explored and remains a subject for fu-
ture work. The more recent experiments have, however, re-
vealed some indication of an incommensurate ordering,9

which was only briefly touched upon previously.16,19 Here
we focus on the incommensurate case.

Before we begin, it is important to state what a Hartree-
Fock theory can or cannot accomplish. A Hartree-Fock
theory can identify the possible broken symmetries and
phases but cannot establish that such symmetries are indeed
broken. The prime deficiency is the absence of all fluctuation
effects, but often such deficiencies can be remedied by edu-
cated guesses. Of course, deep inside a broken-symmetry
phase, critical fluctuations are absent and some of the collec-
tive modes can be physically identified from the symmetries
of the order parameters. Most importantly, symmetries pro-
tect the Hartree-Fock calculations; those properties that are
determined by the symmetries alone can be determined in the
weak-interaction limit, where the calculations are better con-
trolled from a suitable effective Hamiltonian. The results
protected by symmetries should be at least qualitatively valid
even in the strong-interaction limit.20 However, the thermal
properties in low-dimensional systems are badly predicted by
the Hartree-Fock theories because fluctuations are often very
important. Nonetheless, it is expected that the results at zero
temperature retain a considerable degree of validity, except
close to quantum critical points where quantum fluctuations
become important.

When a commensurate one-dimensional �1D� charge den-
sity wave �CDW� is doped, the resulting charges may be
viewed as defects in the CDW. If the interactions between
them are sufficiently strong compared to their effective ki-
netic energy, then they will form an ordered lattice �which
can be stabilized by a crossover to three dimensions if there
are many 1D chains coupled together� of defects and the
CDW will become incommensurate with the lattice. This can
be energetically more favorable than simply doping holes
into the rigid band formed in the presence of CDW order at
a fixed wave vector. The reason, in the latter case, is the
single-particle energy gap of the CDW. In a two-dimensional
DDW state, however, there are nodes in the order parameter,
so it may be more favorable for doped holes to simply go to
the nodes and expand into Fermi pockets �in quasi-1D sys-
tems, however, this might not be possible, so doping must
lead to incommensurability21�. However, this cannot persist
indefinitely if the DDW state is stabilized by approximate
nesting since the Fermi surface would eventually move away

from the nesting wave vector. Thus, incommensurate DDW
order is a possibility at least over a range of doping. In this
paper, we explore the phenomenology of this possibility. But
it is very difficult to determine if this incommensuration hap-
pens before the commensurate gap collapses and some other
order takes over. In this respect the tendency of the spin-
density wave �SDW� to incommensurate is stronger because
it is gapped everywhere on the Fermi surface being intrinsi-
cally a s-wave object.

Near half-filling, the Hubbard model, the t-J model, and
generalizations of these appear to have many phases which
are close in energy. Thus, small perturbations can strongly
influence the competition between them. Consequently, it
should not be too surprising that experiments on the cuprate
superconductors have also uncovered some evidence for a
cornucopia of phases, particularly on the underdoped side of
the phase diagram, which appear in particular materials and
for certain values of the doping level, temperature, magnetic
field, etc. Depending on the interfacial energies between
these phases, one way in which their competition can be
resolved is through the formation of stripes22 or other inho-
mogeneous patterns of microscale phase separation. Further-
more, as the cuprates are doped, their Fermi surfaces evolve
away from the twofold commensurate nesting wave vector
Q0= �� /a ,� /a�, so we would expect translational
symmetry-breaking order parameters to occur at incommen-
surate wave vectors. Hence, it would seem important for any
theory of the pseudogap to incorporate the tendency toward
incommensuration, which we take as further impetus to
study incommensurate order parameters related to DDW or-
der, the IC-DDW. Direct attempts to measure DDW order
through neutron scattering have neither ruled it out23,24 nor
unambiguously verified its presence, but there are intriguing
suggestions that it may be present.25,26

In Sec. II the construction of both commensurate and in-
commensurate order parameters are discussed. This discus-
sion serves to motivate our principal approximations. Section
III on fermiology is the heart of our paper. We begin with the
calculation of the electronic spectra of a chosen IC-DDW
order and deduce the corresponding areas of Fermi pockets
that, through the Onsager relation, lead to the oscillation fre-
quencies. The similarity of these results with the spiral SDW
scenario is explained. Higher order commensurate DDW re-
sults are also discussed. These also turn out to be similar to
the antiphase spin stripe calculations.27 Thus, simply from a
Hartree-Fock calculation it is not possible to single out a
mechanism. One must invoke other considerations to distin-
guish between mechanisms. Next we show that interlayer
coupling can lead to bilayer splitting of the areas of the elec-
tron pockets leaving the hole pockets essentially untouched.
The subtleties of this result are discussed in some depth.
Section IV contains a calculation of the self-energy of the
quasiparticles in the mixed state patterned after the work of
Stephen,28 which we find to be by far the soundest approach
despite its deficiencies. The calculation for the nodal quasi-
particles of DDW is a little subtle and leads to a vortex
contribution of the scattering rate that we find very reason-
able. If this calculation can be better controlled, it may be
possible to distinguish between the SDW and the DDW sce-
narios. Given the approximate nature of this calculation,
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which can only yield a semiquantitative estimate, it seemed
sufficient to illustrate our calculation with the commensurate
case. Of course, the vortex contribution to the scattering rate
is only a part of the total that also contains an impurity
contribution. In the concluding section, Sec. V, we discuss
our thoughts on microscopic models and whether or not in-
commensuration does actually occur. We also elaborate on
experimental consequences of our work and point out the
unresolved issues and future directions of research.

II. ORDER PARAMETERS

A. Commensurate

Before addressing the IC-DDW order parameter, let us
summarize some of the features of the commensurate
case.29,30 A commensurate singlet particle-hole condensate is
defined by the order parameter

�c��k�
† c�,k� = � iWk���,��k�,k+Q0

, �1�

where Q0= �� /a ,� /a�. Although the right-hand side should
correctly contain a factor �iWk, we will choose iWk for
clarity, as no confusion should arise. The electron destruction
operator, ck�, is indexed by the wave vector k and spin �; a
is the lattice spacing. We say that the order is commensurate,
or strictly twofold commensurate, because 2Q0 is a
reciprocal-lattice vector. The form factor Wk transforms non-
trivially under the point group of the two-dimensional square
lattice, defined by R=max̂+naŷ, where �m ,n� is a set of
integers positive or negative. It is related to the orbital angu-
lar momentum of the condensate. For DDW,

Wk =
W0

2
�cos kxa − cos kya� , �2�

which corresponds to angular momentum �=2 and dx2−y2

symmetry. For a particle-hole condensate, the symmetry of
the orbital wave function does not constrain the spin-wave
function. Thus, there can also be a triplet DDW which cor-
responds to circulating staggered spin currents,31 as opposed
to charge currents. If we set W�k� by a function that trans-
forms as the identity and remove the factor i, the order pa-
rameter would correspond to the conventional CDW. Simi-
larly, the triplet DDW is the �=2 generalization of the
conventional spin-density wave and is given by

�c��k�
† c�,k� = iWkn̂ · ��,���k�,k+Q0

, �3�

where �’s represent the Pauli matrices, and n̂ is a unit vector
in the spin space. Once again, if we replace iWk by unity, this
order parameter is the conventional SDW.

Because W0 is real, the order in Eq. �1� breaks time-
reversal and hence represents a state with nonzero orbital
current configuration. This is most easily seen in real space,
where Eq. �1� can be written as �the spin indices � sup-
pressed for clarity�

�cR�
† cR� = � i�− 1�m�+n�W0

2
VR�,R. �4�

The d-wave hopping amplitude factor VR�,R is

VR�,R = − �R�,R+x̂a − �R�,R−x̂a + �R�,R+ŷa + �R�,R−ŷa �5�

and also represents a current-conserving vertex centered at R
as in Fig. 1�a�.

A positive or negative sign in front of each term in Eq. �5�
corresponds to current going out or in of the vertex. This
analogy motivated a six-vertex description of the transition
to a commensurate DDW state,32 where in addition to the
d-wave vertices in Figs. 1�a� and 1�b� one considers the ef-
fects of the p-wave vertices in Figs. 1�c�–1�f�.29 Such a de-
scription was shown to have a finite temperature phase tran-
sition without any specific-heat anomaly. As it will become
evident below, one would have to include additional vertices
to describe the transition to a bond-incommensurate DDW
state.

B. Incommensurate

To obtain an incommensurate version of DDW order, one
first notes that since it breaks the Z2 time-reversal symmetry,
one can construct anti-phase-domain walls of mutually re-
versed current configurations. In Fig. 2�a� we have an ex-
ample of a bond-oriented domain wall. It can be written as,

�cR�
† cR� = i�− 1�m�+n�W0

2
VR�,R � ��ma� + iVR�,R

edge , �6�

where

��x� = � 1, x � 0

0, x = 0

− 1, x � 0
� �7�

is an overall antiphase modulation. The additional vertices
VR�,R

edge in Eq. �6� are necessary to ensure current conservation
along the domain-wall boundary where the current is half of
that in the bulk. Explicitly, they are given by the following:

VR�,R
edge = VR�,R

L �m,0 + VR�,R
R �m,1,

VR�,R
L = �R�,R−x̂a −

1

2
�R�,R+ŷa −

1

2
�R�,R−ŷa,

(a)

(e)

(c)(b)

(d) (f)

FIG. 1. The six-vertex model generalization of DDW. The ver-
tices �c�–�f� are the singlet p-wave density wave vertices. Such a
model has a thermodynamic phase transition to the low-temperature
DDW state but with no specific-heat anomaly.
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VR�,R
R = �R�,R+x̂a −

1

2
�R�,R+ŷa −

1

2
�R�,R−ŷa, �8�

and where VR�,R
L and VR�,R

R are shown in Fig. 2�b�.
Note that the vertices in Eq. �8� violate both d-wave and

p-wave symmetries and hence a transition to bond IC-DDW
order will not be in the universality class of the six-vertex
model. On the other hand, a diagonal domain wall, as in Fig.
3, does not require extra vertices, and hence the transition to
diagonal IC-DDW does belong to the six-vertex model uni-
versality class.

Because the contribution of VR�,R
edge is important only near a

sharp bond-domain-wall boundary, we drop it from now on.
We will shortly see that at least in the single-harmonic ap-

proximation, this is justified, for it leads to current conserva-
tion up to quadratic order in the inverse domain-wall spac-
ing. Specifically, we can consider an array of antiphase-
domain walls at positions �d /2, �3d /2, . . .. Because the
array is periodic, we can focus on the region −d	ma	d,
where due to the two domains at �d /2 the antiphase modu-
lation ��ma� in Eq. �6� is replaced by


�ma +
d

2
� − 
�− ma +

d

2
� − 1 = 	

l−odd
Al cos��lma

d
�

�9�

with Al=4 /�l.
Dropping the short-range contributions VR�,R

edge and keeping
the first harmonic33,34 l=1 in Eq. �9� amounts to considering
an order parameter of the form

�cR�
† cR� = i�− 1�m�+n�W0

2
cos�q · R�VR�,R, �10�

where the incommensurability wave vector is proportional to
the inverse domain-wall separation, so that for the bond-
oriented domain in Eq. �6�, q= �� /d ,0�. Note that we regain
the commensurate case of Eq. �4� as q→0 since all domains
are pushed to infinity in this limit. With the expression in Eq.
�10� we can therefore analyze a continuous transition to an
IC state. It remains to check that the boundary contributions
VR�,R

edge are unimportant by verifying that current is conserved
at each site to quadratic order in q.

The current along a bond R and R+aŝ, where ŝ= x̂ or ŝ
= ŷ, arising from the IC-DDW state, Eq. �10�, is given by

JR,R+aŝ = −
W0

2
VR,R+aŝ�− 1�m+n
cos q · �R + aŝ� + cos�q · R�� .

�11�

Therefore, the total current flowing out of a site vanishes up
to quadratic order in q.

In the momentum space, the single-harmonic expression

Eq. �10�� looks particularly simple

�ck�
† ck� = iWk
�k�,k+Q + �k�,k−Q� . �12�

As the ordering wave vector Q= �� /a ,� /a�+q in Eq. �12�
becomes commensurate, the above order reduces to that in
Eq. �1�. Moreover, because DDW is odd with respect to ro-
tations by � /2 and transpositions about the �� ,�� direction
one can check that in addition to domain walls, a checker-
board pattern results from the following momentum-space
representation:

�ck�
† ck� =

i

2
Wk
�k�,k+Q + �k�,k−Q� − 
Q → O�Q�� , �13�

where the operation O�Q� can be either a transposition, or a
rotation by � /2. Physically, the checkerboard pattern in Eq.
�13� corresponds to simply superimposing two domain walls
rotated by � /2 with respect to each other. In deriving Eq.
�12� we have considered bond-oriented domains, but the con-
struction is easily generalizable for the diagonal domain
walls in Fig. 3.

(b)

(a)

FIG. 2. �a� A bond-oriented domain wall. �b� The additional
vertices ensuring current conservation at the domain boundary.

FIG. 3. A diagonal domain wall. It can be entirely constructed
from the six vertices in Fig. 1.
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III. FERMIOLOGY

A. Band structure

We need to choose the band structure of the unrecon-
structed Fermi surface. Although this is not precisely known,
it is generally accepted that it should contain at least a
nearest-neighbor, a next-nearest-neighbor, and a third-
neighbor matrix element in a tight-binding Hamiltonian.35

Thus, a sufficiently general form is

�k = − 2t�cos kxa + cos kya� + 4t� cos kxa cos kya

− 2t��cos 2kxa + cos 2kya�. �14�

In the past one of us has chosen16 the parameters to be t
=0.3 eV, t�=0.3t, and t�= t� /9.0, and to be consistent we
shall adhere to these, although other reasonable choices will
not change our main conclusions in the least; we could even
set t�=0 or set it to a larger number, such as t�=0.16t.27 This
ambiguity is understandable because the precise results are
not known, either empirically or theoretically, especially in
the underdoped regime. A more serious problem is to cor-
rectly reconcile the picture of the Fermi surface emerging
from the quantum oscillation observations with the angle-
resolved photoemission spectroscopy �ARPES�.36 Finally,
we will have to choose a chemical potential, �, to attain the
carrier concentration we desire, and this we will mostly take
to be about 10% of holes, simply because many quantum
oscillation experiments are available for this doping level.
However, we will comment on what our theory yields as the
doping increases or decreases.

B. Strict incommensurability

In this subsection we address the situation when strict
incommensurability holds. For example, Q=Q0+q
= �� /a ,� /a�−��2
 ,0� /a, where 
 is not a rational number.
It is of course a slight abuse of terminology to add the ad-
jective “strict” but it dispels any possible sources of confu-
sion. In this case each and every k and k+Q correspond to a
distinct point in the full Brillouin zone �BZ� of the underly-
ing crystal lattice, and the fermion operators are similarly
distinct. When necessary all sums will be carried out over the
full BZ of the lattice with the conventional reciprocal-lattice
vectors.

Consider now the mean-field DDW Hamiltonian given by

H = 	
k

�k
†Xk�k, �15�

where

Xk �

�k − � iGk 0 0

c.c. �k+Q − � 0 0

0 0 �k − � − iGk�

0 0 c.c. �k+Q� − �
� �16�

and

Gk = �Wk − Wk+Q�/2, �17�

Gk� = �Wk − Wk+Q��/2. �18�

The four component spinor is �k
† ��ck↑

† ,ck+Q↑
† ,ck↓

† ,ck+Q�↓
† �.

It is useful to elaborate on this mean-field Hamiltonian. For a
given wave vector Q= �� /a ,� /a�+q, the inversion symme-
try is broken, while the pure imaginary character of the order
parameter �and the compex Hermitian character of the
Hamiltonian� implies broken time-reversal symmetry. Note
that the product of inversion and time reversal must be pre-
served as a physical requirement. Because the order param-
eter is a singlet in the spin space, this implies a very a simple
matrix structure of the Hartree-Fock DDW Hamiltonian. The
inversion conjugate of this order parameter, Q�
= �� /a ,� /a�−q, must belong to the down-spin sector if Q
belongs to the up-spin sector. To further clarify the form of
this Hamiltonian, note that the use of the full BZ allows us to
appropriately shift the wave vectors to use identities such as

	
k

ck,�
† ck+Q,��iGk� + H.c. = 	

k,k�

ck�
† ck���iWk�
�k�,k+Q

+ �k�,k−Q� + H.c. �19�

for any given spin direction �.
The Fermi surfaces obtained from the spectra of Eq. �16�

are shown in Fig. 4. The pockets proximate to
��� /a , �� /a� /2 are hole pockets while those close to
�� /a ,0� and its symmetry equivalents are electron pockets.
To obtain this figure we have chosen W0=0.112 eV, 

=0.09,37 �=−0.256 eV, and nh�10%. The corresponding
dHvA frequencies determined by the Onsager relation

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

a kx

a ky

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

a kx

a ky

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

a kx

a ky

(c)

(b)(a)

Q Q‘

FIG. 4. �Color online� Reconstructed Fermi surfaces for incom-
mensurate DDW order: �a� the up-spin case with wave vector Q
= �� /a ,� /a�+q; �b� the down-spin case with Q�= �� /a ,� /a�−q;
�c� the combined up and down-spin spectra.
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F =
�c

2�e
A��F� , �20�

where A��F� is the cross sectional area of a closed Fermi
surface, are F1=526 T �electron pocket�, F2=1670 T �large
hole pocket�, and F3=250 T �small hole pocket�. We have
chosen the parameters to fit the data,9 but the existence and
frequency of the small hole pocket is a prediction for which
there appears to be very preliminary indications requiring
further investigations and confirmation.9

It is important to specify how we arrive at the total hole
doping of 10%. Fermi surface is a topological invariant.38

Even when quasiparticles behave anomalously, as in one-
dimensional electronic systems, this surface is still defined
by the same topological invariant. A break up of this surface,
termed reconstruction, requires a global deformation in the
topological sense, most likely a macroscopic broken symme-
try. The key here is Luttinger’s sum rule. The most general
form of this sum rule states that the particle density is twice
�for two spin directions� the volume of the wave vector space
in d dimensions divided by �2��d over which the real part of
the single-particle Green’s function at the Fermi energy is
positive, which applies even to Mott insulators.39 This is eas-
ily applied here. There is one big hole pocket for a given spin
direction within the reconstructed BZ. Considering the two
spin directions producing identical pockets but reflected with
respect to each other, the big hole pockets correspond to a
fraction of carriers, xbh, to be

xbh = 2
Abh��F�
�2�/a�2 , �21�

in terms of carriers per Cu. Here Abh��F� is the area of a big
hole pocket. Note that the normalization in Eq. �23� is with
respect to the area of the unreconstructed BZ. Similarly,
there is only one-electron pocket in the reconstructed BZ and
therefore the fraction of carriers, xe, is, considering both spin
partners,

xe = 2
Ae��F�

�2�/a�2 . �22�

But there is also one small hole pocket per reconstructed BZ
and therefore

xsh = 2
Ash��F�
�2�/a�2 . �23�

The hole doping, nh, is

nh = xbh + xsh − xe. �24�

It is important to compare the DDW case with the spiral
SDW case. The mean-field potential, Vspiral, is

Vspiral = V0
Sx cos�Q · R� + Sy sin�Q · R�� , �25�

where Sx and Sy are the conventional spin half operators. As
pointed out by Overhauser,40,41 this interaction Hamiltonian
breaks time reversal and inversion. It immediately follows
that the mean-field Hamiltonian matrix for the spiral SDW is

Yk =

�k − � � 0 0

� �k+Q − � 0 0

0 0 �k − � �

0 0 � �k+Q� − �
� , �26�

where the four component spinor is �k
†

��ck↑
† ,ck+Q↓

† ,ck↓
† ,ck+Q�↑

† �. Here, �, the spiral SDW gap pa-
rameter is of course real. But it is trivial to see that the
eigenvalue structure is identical to the IC-DDW because both
inversion and time reversal are broken. In contrast to IC-
DDW, however, the up and down sectors are mixed instead,
as it should be, because DDW is a singlet in spin space,
while SDW is a triplet, bearing in mind that both conden-
sates are in the particle-hole channel. We can redefine, how-
ever, the spinors, such as

� dk,�

dk+Q,�
� = � ck,�

i���ck+Q,�
� , �27�

similarly for Q→Q�. The antisymmetric tensor ��� is de-
fined by �11��↑↑=�22��↓↓=0, �12��↑↓=1, and �21��↓↑
=−1. With the redefined spinors the Hamiltonian matrix is
now

Yk� =

�k − � i� 0 0

− i� �k+Q − � 0 0

0 0 �k − � − i�

0 0 i� �k+Q� − �
� , �28�

which closely resembles Eq. �16�. The transformation clearly
leaves the anticommutation rules unchanged.

The Fermi surfaces resulting from Eq. �26� are essentially
indistinguishable from Fig. 4. This is despite the fact that the
SDW order parameter is a triplet and is gapped, separating
the valence band and the conduction band over the entire
Fermi surface, in contrast to the DDW order parameter. This
is unfortunate because from dHvA frequencies, there is no
way of telling if they arise from an incommensurate spiral
SDW or an incommensurate DDW; one must invoke other
considerations. In constructing this Fermi surface, we have
chosen the following parameters: �=0.08 eV, 
=0.08, �
=−0.27 eV, and nh�10%. The corresponding dHvA fre-
quencies are F1=533 T �electron pocket�, F2=1667 T
�large hole pocket�, and F3=274 T �small hole pocket�. We
suspect that a more diligent optimization of these parameters
could be performed but it will not change the main observa-
tions.

C. Higher order commensurability

As an example, consider higher order incommensuration
of Q=Q0− �

a �2�
1
8 ,0�= �

a � 3
4 ,1�. With the eight-component

spinor defined by �k
† = �ck,�

† ,ck+Q,�
† ,ck+2Q,�

† , . . .ck+7Q
† �, the

Hamiltonian can be written as

H = 	
k,�

�k�
† Zk,��k�. �29�

Now the up and down-spin sector eigenvalues merely dupli-
cate each other, and we can consider simply one of them
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Zk =

�k − � iGk 0 0 0 0 0 − iGk+7Q

c.c �k+Q − � iGk+Q 0 0 0 0 0

0 c.c �k+2Q − � iGk+2Q 0 0 0 0

0 0 c.c �k+3Q − � iGk+3Q 0 0 0

0 0 0 c.c �k+4Q − � iGk+4Q 0 0

0 0 0 0 c.c �k+5Q − � iGk+5Q 0

0 0 0 0 0 c.c �k+6Q − � iGk+6Q

iGk+7Q 0 0 0 0 0 c.c �k+7Q − �

� . �30�

In the real space, we have

�cR�
† cR� =

1

N
	
k�k

�ck�
† ck�exp
− i�k� · R� − k · R��

= �
i

N
	
k

Gk exp
ik · �R − R���exp
− iQ · R��

= �
iW0

2
�− 1�n�+m��ṼR�,R + iŨR�,R� , �31�

where R�= �m�a ,n�a�, and ṼR�,R and ŨR�,R are of the form:42

ṼR�,R = �1 + cos 2�


2
��R�,R+ax̂ + �R�,R−ax̂�

− ��R�,R+aŷ + �R�,R−aŷ��cos 2m��


+
sin 2�
 sin 2m��


2
��R�,R+ax̂ − �R�,R−ax̂� ,

ŨR�,R = − �1 + cos 2�


2
��R�,R+ax̂ + �R�,R−ax̂�

− ��R�,R+aŷ + �R�,R−aŷ��sin 2m��


+
sin 2�
 cos 2m��


2
��R�,R+ax̂ − �R�,R−ax̂� .

�32�

We compute the current pattern from

JR�,R = i
�cR�
† cR� − �cR

† cR��� = − W0�− 1�n�+m�ṼR�,R.

�33�

As an example, the current pattern with 
=1 /8 is drawn in
Fig. 5. The relative amplitudes of currents on bonds are la-
beled by different arrows. Because Qy =� /a, the currents on
a vertical slice have same amplitudes but alternating direc-
tions. Qx=� /a−2�
 /a=3� /4a results in a modulation of a
period of eight lattice spacing along the horizontal direction.

From 	k�BZGk=0, it follows that �cR
† cR�=0. This result is

in disagreement with Ref. 42, where the sum was incorrectly
performed over the reduced Brillouin zone �RBZ�. Namely

there is no site charge modulation in the higher order com-

mensurate d-density wave state. However, note that ŨR�,R
�0 for R�R�, and there are bond charge modulations.

The Fermi surface corresponding to the spectra of Eq.
�30� is shown in Fig. 6. It is not essentially different from the
mean-field theory of 1/8 magnetic antiphase stripe order.27

This higher order commensuration generically produces
complicated Fermi surfaces, involving open orbits, hole
pockets, and electron pockets. However, it is difficult to sat-
isfy simultaneously the constraints of the Luttinger sum rule,
the periodicity of the oscillations, and the negative sign of
the Hall coefficient; see, however, Ref. 43. It is not clear how
this picture can be consistent with experiments, unless disor-
der, fluctuations, or magnetic breakdown44 conspire deli-
cately to reproduce the experimental observations, which of
course cannot be ruled out. We shall not pursue this approach
further.

D. Interlayer tunneling and bilayer splitting

Bilayer coupling, t��k�, in YBCO is parametrized in
terms of a momentum-conserving tunneling matrix element.
For tetragonal structure it is35,45

t��k� =
t�

4

cos�kxa� − cos�kya��2, �34�

where a is the lattice spacing. The tunneling Hamiltonian
H12 is given by

FIG. 5. Current pattern for Q= � 3�
4a , �

a �. The relative magnitudes
of the currents are depicted by the arrows in the legend. Note the
antiphase-domain wall structure.
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H12 = 	
k,�

t��k��ck,�
†�1�ck,�

�2� + 1 ↔ 2� . �35�

The superscripts on the fermion operators refer to the layer
index. For simplicity consider first the commensurate case.
The Hartree-Fock approximation, H0=H1+H2 can be written
as the effective DDW Hamiltonians

H0 = 	
k�RBZ,�

��kck,�
†�1�ck,�

�1� + �k+Q0
ck+Q0,�

†�1� ck+Q0,�
�1� �

+ 	
k�RBZ,�

�iWkck�
†�1�ck+Q0,�

�1� + H.c.� + �1 ↔ 2� . �36�

The reduced Brillouin zone is bounded by ky �kx= �� /a.
With the choice of the quadratic Hamiltonian H0 in Eq. �36�,
it can be easily diagonalized along with H12. This is a first-
order degenerate perturbation theory. Because t� will turn
out to be so small, we do not expect a large correction.

At each wave vector k in the RBZ, we need to diagonalize
a 4�4 matrix to extract the energy eigenvalues. This matrix
is19

H = 

�k iWk t��k� 0

− iWk �k+Q0
0 t��k + Q0�

t��k� 0 �k iWk

0 t��k + Q0� − iWk �k+Q0

� . �37�

From t��k� it is clear that the electron pockets will be much
more affected by it than the hole pockets. The bilayer split-
ting of the electron pocket frequency in the dHvA measure-
ment, if it is to occur, should be smaller or of the order of the
half-width at the half-maximum of the peak in the Fourier
spectra, otherwise it would have been already resolved.8,9

Combined with the Luttinger sum rule this provides a strong
constraint on the chosen parameters.

As an illustration for YBa2Cu3O6.5, we choose t�

=8 meV and W0=0.0825 eV, and the chemical potential �
is set to −0.2627 eV, which leads to a hole doping of nh
�10%. The corresponding dHvA frequencies are F1
�944 T, F2�967 T, F3�570 T, and F4�450 T. The fre-
quencies F1 and F2, corresponding to the hole pockets are
essentially unchanged to our accuracy, while F3 and F4 cor-
respond to the electron pockets split by the bilayer coupling.
The Fermi surfaces are shown in Fig. 7.

The generalization to the incommensurate case is straight-
forward and has been discussed previously.19 Here we do not
pursue this further but turn to a number of important concep-
tual issues.

�1� The interlayer tunneling Hamiltonian is real and can-
not lead to orbital currents flowing between the layers. This
is actually quite fortunate because the DDW order param-
eters within the planes remain undistorted. The sole effect of
the interlayer Hamiltonian is to lead to linear superpositions
of the independent quasiparticle states, which lead to a bi-
layer splitting, as in a generic two-state system.

�2� If we are to choose opposite phasing of the orbital
currents of the two layers and change the matrix to

H� = 

�k iWk t��k� 0

− iWk �k+Q0
0 t��k + Q0�

t��k� 0 �k − iWk

0 t��k + Q0� iWk �k+Q0

� , �38�

there is no bilayer splitting of the areas of the Fermi pockets.
On the other hand, the ground-state energy, to a very high
degree of precision, is identical to the previous cases even
though the spectra are changed. We suspect that this equality
is exact but have not been able to prove it analytically.
Therefore, at the level of approximation discussed here, en-
ergetics do not allow us to choose between the alternatives

FIG. 6. Reconstructed Fermi surfaces for a plausible high order
commensurate DDW with Q= �

a � 3
4 ,1� and W0=0.0825 eV. There

are electron pockets, hole pockets, and open orbits. Note that the
figure is depicted in the extended BZ for clarity.

�3 �2 �1 0 1 2 3
�3

�2

�1

0

1

2

3

a kx

a ky

FIG. 7. �Color online� Fermi surface split by bilayer coupling
for commensurate DDW. The hole pockets centered at
1
2 ��� /a , �� /a� are essentially unsplit by the bilayer coupling; in
contrast, the electron pockets centered at �� /a ,0� and symmetry
related points are split as described in the text.
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and the correct phasing should be determined from experi-
ments.

�3� We have argued that the interlayer tunneling Hamil-
tonian is both real and bilinear and therefore does not result
in a flow of current between the layers. The only way such
currents can appear is if there are further four fermion terms
connecting the two layers such as particle-hole or particle-
particle pair hopping terms. This would allow us to form
further condensates made out of the two layers and would
seriously distort the planar DDW order parameter. This has
apparently gone unnoticed in Ref. 46. The distortion of
DDW order parameter must be thought through anew.

There is a further important consideration that is worth
spelling out carefully. One of us recently argued47 that the
first-order interlayer tunneling can be traded by a second-
order Hamiltonian in which virtual pair hopping of both
particle-particle and particle-hole are present. The second-
order Hamiltonian involves four Fermi interactions from
which appropriate condensates can be constructed. It was
shown there that for such a Hamiltonian antiferromagnetic
arrangement of the orbital currents of the layers in a bilayer
unit would be lower in energy than the ferromagnetic ar-
rangement. There were two arguments behind this effective
Hamiltonian. The first consisted in noticing that the DDW
quasiparticle spectra are substantially gapped at the antinodal
points. Alas, given the existence of electron pockets in the
quantum oscillation experiments, this mechanism could not
be operative because there is no longer any gap at the anti-
nodal points. The second argument involved non-Fermi-
liquid spectral function. One can easily see that with in-
creased doping there would be Fermi surface reconnections
near optimal doping and the electron pockets will evaporate.
But at such doping, close to the middle of the superconduct-
ing dome, there will be a quantum critical point and one can
expect the non-Fermi-liquid behavior.48 The systematics of
the superconducting transition temperature of optimally
doped homologous series can still be correctly given by the
second-order pair hopping terms.49

IV. QUANTUM OSCILLATIONS IN THE MIXED STATE

There is considerable evidence that the quantum oscilla-
tion frequencies remain unshifted from the normal state in
the mixed state of a wide class of superconductors although
there is increased damping arising from vortices.50 We shall
closely follow Stephen28 where this problem is solved for a
conventional metal in the normal state and a s-wave super-
conductor with a gap �s. Since the Bogoliubov quasiparticles
do not couple minimally to the gauge field, they do not form
Landau levels and clearly cannot be the source of quantum
oscillations.51 The quantum oscillations must then arise from
normal quasiparticles. By solving the Gorkov equations in
the mixed state, Stephen arrived at a formula for the self-
energy, which for high Landau levels, relevant for the
present problem, is

�n�i�� �
�s

2

�4�n��c

�− i� sgn��� +��

n

�n − �

��c
� .

�39�

where �c= eB
m�c

and m� is the corresponding effective mass.
The real part of the self-energy shifts the chemical potential

and the Landau-level positions equally. Hence, the real part
of the self-energy does not affect the oscillation frequency.
The imaginary part of the self-energy leads to the following
scattering rate:

�

�v
=��

�

�s
2

��c
= �s

2� �

�����c
= �0

2�1 −
B

Bc2
�� �

�����c
,

�40�

where the filling fraction is �= ��� / ���c� and Bc2 is the upper
critical field.

To illustrate our main points, we shall treat the simpler
commensurate case. The extension to the incommensurate
case is straightforward. There are two cases to consider. The
effective mass corresponding to the electron pocket within
the commensurate DDW theory, obtained by expanding
around �� /a ,0�, is given by

�2

2m�
� �2t� + 4t� −

W0

4
�a2. �41�

Note that t does not enter in the leading order. Assuming,
W0=0.0825 eV, �=−0.2642 eV, and �0=10 meV, we get

1

�v
= 2.9 � 1012 s−1, �42�

where we have used B=40 T and Bc2=60 T for the purpose
of illustration. Using Eq. �41� and the parameters given
above, we find that m�=1.27me, where me is the free-electron
mass.

A more interesting situation arises for the hole pocket,
which, to an excellent approximation, can be described by
the nodal fermions of DDW. For the purpose of illustration,
we choose again the commensurate case. The Stephen for-
mula has to be rederived for nodal fermions.

If the Fermi surface reconstruction is due to SDW, the
excitations of both the electron and hole pockets can be ap-
proximated by the nonrelativistic Schrödinger equations with
the appropriate effective masses and Stephen’s formula will
apply without further modifications. As an aside, we note
that for the spiral SDW given in Ref. 9, the effective masses
corresponding to both electron and hole pockets are consid-
erably smaller �of the order of 0.5me� and do not seem to
agree with the experimental results. Similarly, the Dingle
factors for the spiral SDW are different from those of the
DDW order simply because SDW is gapped everywhere and
the excitations are given by nonrelativistic fermions.

A. Commensurate DDW

The linearized two component Hamiltonian for DDW
quasiparticles, corresponding to the node �� /2a ,� /2a�, in
the presence of an external magnetic field is given by

H =� dr�†�r�Ĥ�r���r� , �43�

where ��r� is a two component spinor. The kernel Ĥ is given
by
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Ĥ = vF�px − eAx/c��3 + vD�py − eAy/c��2, �44�

where �’s are the standard Pauli matrices; vF is the velocity
orthogonal to the Fermi surface, and vD is the velocity tan-
gential to it; Ax and Ay are the vector potentials and c is the
velocity of light. The anisotropy between x and y directions
can be removed with the redefinition of the coordinates x̃
=�vD /vFx and ỹ=�vF /vDy. The measure of the integration

remains unchanged, as dr=dr̃, and Ĥ becomes

Ĥ = �vFvD�px̃ − eAx̃/c��3 + �vFvD�pỹ − eAỹ/c��2. �45�

Under the unitary transformation �→U�, where U= �1
+ i�2� /�2, Ĥ→ Ĥ�, such that

Ĥ� = �vFvD�px̃ − eAx̃/c��1 + �vFvD�pỹ − eAỹ/c��2. �46�

Hence, the energy eigenvalues are

�n,k̃,� = ��n��̃ = ���2nvFvD/lB, �47�

for n�1, where �= �1 stands for the particle and hole

branches of the spectra. Here �̃=�2vFvD / lB, k̃=2�m /Lỹ,
m=0, �1, �2, . . ., and the magnetic length lB=��c /eB. The
rescaled length Lỹ =�vF /vDLy. For n=0,

�0k̃ = �0 = 0. �48�

When sgn�eB��0, the spinor wave functions in the Lan-
dau gauge A�r̃�= �0,Bx̃ ,0� are

�
n�1,k̃,�

† �r̃� =
1
�2


�
n,k̃

� �r̃�,��
n−1,k̃

� �r̃�� �49�

�
n=0,k̃

† �r̃� = 
�0,k
� �r̃�,0� �50�

where

�n,k�r̃� = � 1
��lBLỹ2

nn!
�1/2

exp�− ik̃ỹ

−
�x̃ − k̃lB

2�2

2lB
2 �Hn� x̃ − k̃lB

2

lB
� , �51�

and Hn are the Hermite polynomials. The matrix Green’s
function is defined as

G0�r̃1, r̃2,i�� = 	
n�1,k̃,�

�n,k̃�r̃1��
n,k̃

† �r̃2�

i� − �n,� + �

+ 	
k̃

�0,k̃�r̃1��
0,k̃

† �r̃2�

i� + �
. �52�

After performing the sum over k̃ and �, Green’s function can
be expressed in terms of redefined coordinates as

G0�r̃1, r̃2,i�� =
1

2�lB
2 exp�−

�z̃21�2

4lB
2 �exp�i�21��	

n�1

i� + �

�i� + ��2 − �n
2
Ln� �z̃21�2

2lB
2 � 0

0 Ln−1� �z̃21�2

2lB
2 � �

+ 	
n�1

�n

lB
�2n
�i� + ��2 − �n

2�
 0 − z̃21Ln−1
1 � �z̃21�2

2lB
2 �

z̃21
� Ln−1

1 � �z̃21�2

2lB
2 � 0 � +

1

i� + �
�1 0

0 0
�� , �53�

where �21= �x̃2+ x̃1��ỹ2− ỹ1� /2lB
2 , z̃21= �x̃2− x̃1�+ i�ỹ2− ỹ1�, and

Ln
m are the associate Laguerre polynomials. The Gorkov

equation for the normal component of Green’s function of a
s-wave superconductor is

G�r̃, r̃�,i�� = G0�r̃, r̃�,i��

−� dr̃1dr̃2G0�r̃, r̃1,i���s�r̃1�G0�r̃2, r̃1,

− i���s
��r̃2�G0�r̃2, r̃�,i�� , �54�

For a disordered configuration of vortices �for other choices,
see Stephen28�

V�r̃1, r̃2� = ��s�r̃1��s
��r̃2�exp�2i�21�� = �s

2 exp�−
�r̃2 − r̃1�2

2lB
2 � .

�55�

From the Gorkov equation we can identify the real-space
self-energy for the average Green’s function to be

��r̃1, r̃2� = V�r̃1, r̃2�exp�2i�21�G0�r̃2, r̃1,− i�� . �56�

The matrix elements of ��r̃1 , r̃2� in the Landau-level basis
are given by
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�n1,k̃1,�1;n2,k̃2,�2
�i��

=� dr̃1dr̃2�
n1,k̃1,�1

† �r̃1�V�r̃1, r̃2�exp�2i�21�G0�r̃2, r̃1,− i��

��n2,k̃2,�2
�r̃2� . �57�

After performing the integrations we obtain

�n1,k̃1,�1;n2,k̃2,�2
�i�� =

�s
2

2
�n1,n2

�k̃1,k̃2�	
n=0

� �− i� + ��In1,n

�− i� + ��2 − �n
2

+ �1�2	
n=0

� �− i� + ��In1−1,n

�− i� + ��2 − �n+1
2 − ��1

+ �2��n1	
n=0

� In1,n

�− i� + ��2 − �n+1
2 � ,

�58�

where

In1,n =
�n + n1�!

n ! n1 ! 2n+n1+1 . �59�

When both n and n1 are large and comparable to the filling
fraction ������ /��̃�2,

In1,n �
1

�4�n
exp�−

�n − n1�2

4n
� �60�

and �n�i����n1
�i��. For large n and n1, using the

asymptotic form of In1,n, and converting the Landau level
sums into integrals we find

�n,�1,�2
�i�� �

�s
2���

4�n���̃�2� 1
��n

�2 − �n
2

���̃�2 − i sgn�����
��1 − �1��1 − �2� . �61�

It should be noted that for only the hole branch of the
spectra is the self-energy nonzero. When n��, we can ne-
glect the real part of the self-energy and find the vortex con-
tribution to the scattering rate to be

�

�v
=��

4

�s
2

��̃
=��

8

�s
2

������c
�

, �62�

where the effective mass for DDW quasiparticles and the
cyclotron frequency analogous to the nonrelativistic case are
defined dimensionally as

m� =
���

vFvD
, �63�

�c
� =

eB

m�c
. �64�

Note that being relativistic Weyl fermions, there is no real
mass associated with them. Here vF=2�2at /�; to leading
order neither t� nor t� enter. Similarly, vD=W0a /�2�. As-
suming, again, �0=10 meV and W0=0.0825 eV, we get

1

�v
=

28
�B

�1 −
B

Bc2
� � 1012 s−1, �65�

where B is in units of Tesla. For B=40 T and Bc2=60 T, we
get

1

�v
= 1.5 � 1012 s−1. �66�

Despite the relativistic nodal fermionic character of the qua-
siparticles, the quantum oscillation formulas at zero tempera-
ture, using the method of Ando,52 are formally identical to
the nonrelativistic case with appropriate redefinitions. The
damped oscillatory factor for the fundamental is53

e−�/�c
��v cos�2�F/B� , �67�

where F is again given by the Onsager formula. If we also
include the Dingle factor arising from the impurity scattering
with a scattering time �i, we need to multiply the above

formula by a factor e−�/�c
�
�i. At a temperature T, the ampli-

tude, A, is

A �

2�2kBT

��c
�

sinh�2�2kBT

��c
� � . �68�

We emphasize that m� here is a parameter, not the effective
mass of the nodal fermions, which are actually massless.
Thus, this formula could not be the conventional Lifshitz-
Kosevich formula derived for nonrelativistic fermions, de-
spite its formal similarity. From Eq. �63�, the m� for the
parameters given above is 2.72me, more than a factor of 2
larger than the nonrelativistic mass corresponding to the car-
riers comprising the electron pocket.

If we worked with a d-wave superconductor, then the
Gorkov equation is more complicated due to the nonlocal
gap function and there will be integration over four vari-
ables. However, the final answer for the scattering will not be
significantly different from the s-wave answer. We can just
replace �s

2 by the Fermi surface averaged ���k�2�, which is
the same as averaging over extremal orbit in 2D.

V. CONCLUSIONS

A. Thoughts on microscopic models

An effective Hamiltonian that can lead to both DDW and
d-wave superconductivity �DSC� in Hartree-Fock theory is
the following:54

H = − 	
i,j

tij�ci�
† cj� + H.c.� − tc 	

�i,j�,�i�,j�

i�i�

ci�
† cj�cj��

† ci���

+ U	
i

ni↑nj↓ + V	
�i,j�

ninj . �69�

In this formula, tij is hopping matrix element with tij = t for
nearest neighbors, tij =−t� for next-nearest neighbors, etc.

COMPETING ORDER, FERMI SURFACE… PHYSICAL REVIEW B 78, 134529 �2008�

134529-11



The operator ni� is the density at a site i and spin �. On the
other hand tc is a correlated hopping term which simulta-
neously hops an electron from site j to site i and hops an
electron from i� into the vacated site j. The on-site and
nearest-neighbor repulsions are, respectively, U and V. The
repeated spin indices � ,�� are assumed to be summed over.

At the mean-field level, the energetics of the DDW order
is described by the effective interaction

HDDW = − gDDW�
k,k�

f�k�f�k��ck+Q�
† ck�ck���

† ck�+Q��,

�70�

with gDDW=24tc+8V and f�k�= �cos kxa−cos kya�. A similar
reduced Hamiltonian for DSC has the coupling gDSC=12tc
−8V.54 Note that the processes responsible for both DSC and
DDW are essentially kinetic.

A Hamiltonian given in Eq. �69� has a d-wave supercon-
ducting ground state over a range of dopings and an antifer-
romagnetic ground state at half-filling. Since this is the sine
qua non for any description of the cuprates, we believe that
this is a good starting point for further calculations. Corre-
lated hopping terms naturally arise even from the one-band
Hubbard model away from half-filling, where their contribu-
tion can be computed in t /U perturbation theory

tc � nh
t3

U2 . �71�

At dopings nh=0.1, for t /U�0.2, we would have gDDW
=2gDSC�0.1t�J /2, J being the antiferromagnetic exchange
constant. Thus, not far away from half-filling, correlated
hopping terms are certainly not negligible.

Preliminary calculations55 at the Hartree-Fock level
shows that it is difficult to make DDW incommensurate in
the relevant underdoped regime. The physical reason is that
DDW has nodes. Our mean field results suggest that it costs
less energy to dope holes by opening pockets around the
nodes rather than by making DDW incommensurate, as long
as there is sufficient density of states left at the antinodes to
support commensurate DDW. To confirm the above intuition,
we tested the effect of gapping the nodes by either introduc-
ing s-wave order or including a idxy piece55 to DDW. We
could see that at finite chemical potential, the effect of in-
creasing the nodal gap created by the extra order is to induce
a first-order transition to an incommensurate state when the
nodal gap amplitude is larger than a critical value of the
order of the dx2−y2 amplitude itself. Of course Hartree-Fock
approximation need not be the full answer because the notion
of topological doping56 in the context of stripe order can be
equally operative in the present context, a point that requires
careful further work.

It is amusing to note that spiral SDW is also generically
energetically unfavorable compared to collinear SDW in the
weak coupling Hartree-Fock approximation, as was pointed
out by Overhauser.40 The strong-coupling analysis can in
principle lead to spirals, but these calculations are difficult to
justify.57

B. Experimental consequences

If the assumption of incommensurate order is correct we
would predict a number of interesting results. First, there
should be four frequencies: the electron pocket should be
split by the bilayer coupling, although this must be small
because otherwise it would have been already resolved. This
sets the bilayer splitting in the range of 10–20 meV at the
level of 10% doping. In the overdoped regime the experi-
mentally observed bilayer splitting of 88 meV is already
known to be substantially smaller than the estimate from the
electronic structure calculations, which is about 300 meV.58

Why bilayer splitting is so small compared to electronic
structure calculations is an important theoretical question re-
quiring attention. To satisfy Luttinger sum rule, we not only
predict a big hole pocket but also a smaller hole pocket of
frequency 250 T. Although there is a very preliminary
indication,9 it needs to be investigated in further measure-
ments and may constitute a confirming evidence of either a
spiral SDW or an incommensurate DDW.

IC-DDW could in principle be observed in Y-NMR mea-
surements, as the fact that Y atom is situated at a high-
symmetry point is no longer an issue. However, the magnetic
field at this site arising from the IC-DDW currents may be
too small to observe this splitting.

The most dramatic prediction of IC-DDW is the nonre-
flection symmetric band structure in a given spin sector. A
direct observation of such a band structure will be possible in
a spin resolved ARPES measurement. Note that for spiral
SDW, up and down spins are mixed. Neutron scattering in-
tensities from such quasiparticle bands may not be sufficient
to detect it.

C. Unresolved issues and future directions

On the theoretical side a firm grasp on the existence of
IC-DDW is necessary. This is beyond the scope of the
present paper whose fundamental concern was to explore the
phenomenological consequences of IC-DDW. As it stands,
theory seems to favor the commensurate picture, although
the predicted hole-pocket in the commensurate case is yet to
be observed in quantum oscillation measurements. We ex-
pect that many of the experimental puzzles will be resolved
in future experiments. It is of course desirable to go beyond
Hartree-Fock to formulate a correct microscopic theory of
IC-DDW. In particular, diagonal domain walls as a mecha-
nism for incommensuration have not yet been explored. This
seems necessary because it seems doubtful that the
antiphase-domain walls that result in higher order commen-
surability, be it from DDW or antiphase spin stripe, can ex-
plain the present experiments. Similarly, a rigorous theory of
spiral SDW is desirable. As to IC-DDW, it is necessary to go
beyond the approximation of retaining only the single har-
monic and to formulate a theory that fully conserves currents
at the vertices.

The chief experimental puzzle appears to be the conflict
of the picture of the Fermi surface emerging from the quan-
tum oscillations with the ARPES measurements.59,60 Al-
though the hole pocket is not a major concern because it has
been argued that the back side of the hole pocket may not be
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visible because of the DDW coherence factors61 and similar
coherence factors in other forms of competing mechanism,
the nonexistence of the electron pockets is more of a con-
cern. From our previous calculations it is easy to see that at
least two sides of the electron pockets should survive the
effects of the coherence factors. It is noteworthy that in the
past ARPES was able to detect both electron and hole pock-
ets in electron doped cuprates.62

Although we do not believe that the observed negative
Hall coefficient, its magnitude and oscillations can arise
merely from the vortices in the mixed state because it is
difficult in such a scenario to obtain multiple Fermi pockets
tightly constrained by the Luttinger sum rule, but it would be
interesting to explore further the oscillations of the Hall co-
efficient, in fact it seems almost imperative.

We have argued19 previously that the ortho-II potential of
YBa2Cu3O6.5 is not an important factor in the explanation of
the oscillations in contrast to the discussion in Ref. 46. The
highly polarizable BaO-layers next to the chains should
screen the potentials quite effectively, to the extent that even
disordered chains appear to have little effect in the planar
physics in many properties. It is important to recognize that
SdH and dHvA �Ref. 63� measurements are also available in
YBa2Cu4O8 ��14% doping,11� a stoichiometric compound
with intrinsic oxygen order, where even the negative Hall
coefficient is clearly observed, in agreement with the obser-
vations in ortho-II materials.11 This degree of universality is
unachievable if the chain potentials were playing an impor-
tant role.

A number of competing mechanisms15,27,64 to explain
these unusual experiments have been proposed and discussed
in a previous work by one of us.16 Thus, there is no need to
duplicate the discussion here, but the salient questions that

must be explained are worth repeating here. Are the oscilla-
tions, the negative sign, and the magnitude of the Hall coef-
ficient explainable without invoking a two-band scenario of a
hole pocket and an electron pocket? Can the experimentally
observed frequencies and the Luttinger sum rule be correctly
reproduced? If the spiral spin-density wave order or the an-
tiphase IC-DDW order is the explanation what would be the
defining experimental predictions that could be tested in fur-
ther experiments? If the quasiparticles of a Fermi liquid are
truly responsible for the oscillation measurements, what is
the role of Mott physics in the cuprates?

The lack of any definitive measurements vindicating the
static order parameters necessary to explain Fermi surface
reconstruction �recall that dHvA is an equilibrium effect� is
worth exploring. A magnetic field even as large as 60 T is not
sufficient to provide enough perturbation to energetically
nucleate static order in YBCO with an order parameter large
enough to reproduce the measurements, especially in
YBa2Cu4O8 with about 14% doping. We hope that as other
cuprates are explored and the theoretical tools are sharpened,
many of these questions will be answered and will provide a
resolution of the enigma of high Tc.
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