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We consider the minimal two-band model for the Fe-based superconductors with a phenomenological
pairing interaction which mimics short-range antiferromagnetic fluctuations. Two superconducting �SC� gap
solutions are found to exist with the model: sign-changing s-wave gap ��s wave� and double d-wave gap
states. Both solutions hold the approximate relation �h

maxNh��e
maxNe, a generic feature of two-band model

with a dominant interband pairing interaction. We carried out the calculations of the SC properties of the both
SC states such as the density of states, temperature dependencies of spin-lattice relaxation rate 1 /T1, Knight
shift, and penetration depth, particularly taking into account of the interband coherence factors. The results are
discussed in comparison with the currently available experimental data.
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I. INTRODUCTION

Recent discovery of the Fe-based superconducting com-
pounds provided a great impetus to the research of supercon-
ductivity �SC�. Since the first report on the superconducting
transition at 7 K with the doped LaOFeP by Kamihara et al.,1

various substitutions �mainly P by As and La by Ce, Gd, Sm,
and Pr� for this mother compound increase the superconduct-
ing temperature Tc over 50 K with Sm�OF�FeAs.2 Intensive
investigations by many experimentalists and theorists have
already revealed main metallic and superconducting proper-
ties of this group of materials.

From band calculations,3–8 it is agreed on that the 3d elec-
trons of Fe atoms are the main contributors to the conduction
bands crossing the Fermi surface �FS�. Besides the degree of
degeneracy, the key feature of conduction bands is that it
consist of hole band�s� around � point and electron band�s�
around M point �in the notation of the folded Brillouin-zone
�BZ� scheme�.3,5

Regarding the pairing symmetry, there are already many
experiments: �1� Knight shift below Tc shows a clear drop
indicating a spin singlet pairing;9 �2� tunneling
spectroscopy10 showed the zero-bias conductance peak
�ZBCP�—signature of a sign changing gap, but the interpre-
tation of the shape of density of states �DOS� N��� is di-
verse; �3� nuclear-spin-lattice relaxation rate 1 /T1 �Refs. 9
and 11� unanimously showed no coherent peak and �T3 de-
pendence below Tc, hence strongly suggesting a d-wave type
gap; and �4� specific-heat coefficient C�T� /T below Tc �Ref.
12�—although the measurement is not yet reaching low
enough temperature—appears T linear indicating the gap
with lines of node. All these experiments appear to be con-
sistent with a d-wave-type gap. However, recent penetration
depth measurements with PrFeAsO, Sm�OF�FeAs and
Nd�OF�FeAs �Ref. 13� strongly suggest a fully opened gap at
low temperatures indicating a s-wave-type pairing symmetry.

Regarding the paring glues, the phonon interaction ap-
pears unlikely mainly because the electron-phonon coupling
is estimated to be very weak ���0.2�.14 On the other hand,

this series of materials, without doping, commonly has a
spin-density wave �SDW� transition at around �150 K.
When the superconductivity appears with doping, the SDW
correlation is expected to remain albeit the long-range order
disappears.

Recent neutron-scattering experiments with La�OF�FeAs
and Ce�OF�FeAs �Ref. 15� directly measured the antiferro-
magnetic �AFM�-type correlation of the Fe d-electron-spin
moment. The overall phase diagram with doping for
Ce�OF�FeAs reveals a close correlation with an antiferro-
magnetism and superconductivity, suggesting the important
role of magnetic fluctuations as a pairing glue. It also shows
that the generic phase diagram of these compounds shares
the universal features with the high-Tc cuprates, Pu-115
superconductor,16 and various heavy fermion superconduct-
ors; namely, the SC occurs in the neighborhood of the mag-
netic long-range order when this magnetic order is sup-
pressed. In particular, the magnetic order is an AFM type.
This universal phase diagram is very tantalizing because it
appears to cover a wide class of unconventional SC materials
with a range of Tc from a few millikelvin to 100 K and
suggests that the AFM fluctuation is a common thread and its
characteristic energy roughly scales with the SC Tc.

16

For the Fe-based SC materials, several theoretical models
were already proposed and most of them started with the
orbital basis of the Fe 3d electrons including Hubbard U in-
teraction�s� and Hund coupling�s� J.5,17–20 Some of these
studies5,17,18 found the �s-wave gap as a dominant instabil-
ity. A d-wave gap also often appears as a second
instability.17,19 In this paper, we took a phenomenological
approach to investigate possible pairing states in the Fe-
pnitide superconductors. The noninteracting part of Hamil-
tonian is constructed by choosing a minimal set of topologi-
cally distinct two bands and the interaction part of
Hamiltonian is assumed from the experimental input15,21

simulating a short-range AFM correlation. By solving the
coupled BCS gap equations, we found the two SC gap solu-
tions: a sign-changing s-wave gap and a double d-wave gap.
For the both SC states, we carried out the calculations of the
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SC properties such as the DOS, temperature dependencies of
the spin-lattice relaxation rate 1 /T1, Knight shift, and pen-
etration depth. We particularly take into account of the inter-
band coherence factors, unique to the two-band model, in
these calculations. The results are discussed in comparison
with the currently available experimental data.

II. MODEL

We propose a minimal phenomenological two-band
model for the Fe-based superconductors. For the noninteract-
ing part of Hamiltonian, we observe that several band-
structure calculations3–8 of the Fe-pnictide compounds
reached the consensus that the FS of the doped compounds
consists of two hole pockets and two electron pockets. To
keep the essential physics, but avoiding unnecessary com-
plexity, we choose only two topologically distinct bands: one
hole band around � point �0,0� and one electron band around
M point ��� , ���.

The main phenomenological assumption of our model is
the interacting part of Hamiltonian. This pairing interaction
V�q� is chosen to simulate a short-range AFM spin fluctua-
tions peaking at the ordering wave vector Q= ��� , ���.
This assumption is directly motivated by the experimental
observations of the AFM correlation in the Fe-pnictide com-
pounds by the neutron-scattering measurements.15,21 The
elastic neutron-scattering experiments for La�FxO1−x�FeAs
and Ce�FxO1−x�FeAs by Zhao and co-workers15 showed the
long-range AFM order of the Fe 3d-electron spins for the
doping range of x=0–0.05. When this long-range AFM or-
der disappears beyond the doping around x=0.05, SC ap-
pears up to the doping range x�0.2 �this is only the limit of
the measured data�. This overall phase diagram appears to be
generic for the Fe pnictides and clearly shows that the AFM
correlation is the dominant magnetic correlation in this group
of materials.

More importantly, this AFM correlation is expected to
continue to exist in the doping range where the SC phase
occurs albeit becoming a short-range one. This speculation is
supported by more recent inelastic neutron-scattering experi-
ment in the doped �BaK�Fe2As2 compound �Tc=38 K� by
Christianson et al.21 In this experiment, a clear magnetic-
resonance peak is observed at the expected position of the
AFM correlation, i.e., at �� ,�� momentum. With this series
of experiments it is clear that the AFM correlation is the
dominant magnetic correlation in the Fe pnictides among
other competing magnetic correlations such as weak
ferromagnetism,3,4 checkerboard AFM,8,6 and AFM stripe
phase,8,22 which were theoretically proposed. Finally, the
coupling matrix element is assumed to be a constant for sim-
plicity. The Hamiltonian is written as

H = �
k�

	h�k�hk�
† hk� + �

k�

	e�k�ek�
† ek�

+ �
kk�↑↓

V�k,k��hk↑
† h−k↓

† hk�↓h−k�↑

+ �
kk�↑↓

V�k,k��ek↑
† e−k↓

† ek�↓e−k�↑

+ �
kk�↑↓

V�k,k��hk↑
† h−k↓

† ek�↓e−k�↑

+ �
kk�↑↓

V�k,k��ek↑
† e−k↓

† hk�↓h−k�↑, �1�

where hk�
† and ek�

† are the electron creation operators on the
hole and the electron bands, respectively. 	h,e�k� are the dis-
persions of the hole band and electron bands, respectively,
defined as 	h�k�= t1

h�cos kx+cos ky�+ t2
h cos kx cos ky +	h and

	e�k�= t1
e�cos kx+cos ky�+ t2

e cos
kx

2 cos
ky

2 +	e. In this paper, we
choose the band parameters as �0.30,0.24,−0.6� for hole band
and �1.14,0.74,1.70� for electron band with the notation
�t1 , t2 ,	�.18

The pairing interaction V�k ,k�� is phenomenologically de-
fined below. It is all repulsive in momentum space and it
represents a short-range AFM spin fluctuations as explained
above.

V�k,k�� = VM

2

��k� − k��� − Q� �2 + 
2
, �2�

where k� and k�� are the two-dimensional momenta on the
two-dimensional BZ and the parameter 
 controls the mag-
netic correlation length as �AFM=2�a /
 �a is the unit-cell
distance�. This interaction mediates the strongest repulsion
when two momenta k� and k�� are spanned by the ordering

wave vector Q� . This condition is better fulfilled when the
two momenta k� and k�� reside each other on different bands in
the model band structure �see Fig. 1�. As a result, the sign-
changing s-wave gap can form on each band as already sug-
gested by several papers.5,17–19 However, this opposite sign
gap on the hole and electron bands is not limited with the
�s-wave state �Fig. 1�a��. Another possibility, which con-
forms to the lattice symmetry, is that each band develops a
d-wave gap but with � phase shift between two bands �Fig.
1�b��. We call this type of gap as double d-wave gap.

We need to mention that our model did not include the
screened Coulomb interaction �neither did the other theoret-
ical investigations5,17,19�, which certainly exists in the Fe-
pnitide superconductors as well as in all metals in general.
The screened Coulomb interaction is traditionally treated as
“Coulomb pseudopotential” �� in the conventional phonon-
driven SC. However, the reliable estimate for its strength is
practically impossible because even a small difference in ��

would cause a large change in Tc. In the Fe pnictides, if we
are to determine Tc theoretically, a quantitative estimate of
�� is necessary. We did not include it in our model interac-
tion, first, because we do not know how to reliably estimate
it in these compounds and, second, because the primary pur-
pose of the present paper is not the prediction of the precise
Tc. Still we could investigate its generic effects on the dif-
ferent pairing symmetries such as �s-wave and double
d-wave gaps; for example, how large value of �� is neces-
sary to kill the �s-wave pairing for a given strength of the
AFM interaction. We think that this kind of analysis will
dilute the focus of the present paper and therefore should be
a separate investigation. We only briefly remark on the gen-
eral effects of the screened Coulomb interaction. The
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screened Coulomb interaction becomes a short-range inter-
action in real space and therefore weakly momentum depen-
dent in momentum space. This type of interaction is almost
harmless for the d-wave-type pairing but extremely detri-
mental for the s-wave-type pairing. The pairing solutions in
this paper should be considered with this point in mind.

Now we solve the Hamiltonian �1� using the BCS ap-
proximation and the two band electrons need two SC order
parameters �OPs�

�h�k� = �
k�

V�k,k��	hk�↓h−k�↑
 , �3�

�e�k� = �
k�

V�k,k��	ek�↓e−k�↑
 . �4�

After decoupling the interaction terms of Eq. �1� using the
above OPs, the self-consistent mean-field conditions lead to
the following two coupled gap equations.

�h�k� = − �
k�

�Vhh�k,k���h�k��
h�k��

+ Vhe�k,k���e�k��
e�k��� , �5�

�e�k� = − �
k�

�Veh�k,k���h�k��
h�k��

+ Vee�k,k���e�k��
e�k��� , �6�

where Vhh�k ,k��, Vhe�k ,k��, etc. are the same interaction de-
fined in Eq. �2� but the subscripts are written to clarify the
meaning of Vhh�k ,k��=V�kh ,kh��, Vhe�k ,k��=V�kh ,ke��, etc.,
and kh and ke specify the momentum k located on the hole
and electron bands, respectively. The pair susceptibilities are
defined as


h,e�k� = N�0�h,e�
0

�AFM

d�
tanh�Eh,e�k�

2T �
Eh,e�k�

, �7�

where Eh,e�k�=��2+�h,e
2 �k� and N�0�h,e are the quasiparticle

excitations and the DOS of the hole and electron bands, re-
spectively, and �AFM is the cutoff energy of the pairing po-
tential V�q�.

When we solve the above gap equations �5� and �6�, we
numerically restricted the momenta kh,e and kh,e� around the
FSs of the hole and electron bands within �AFM energy
range. Therefore, the FS shapes and the local DOS N�0�h,e of
the realistic bands are faithfully taken into account in our gap
solutions. Also no restriction on the functional forms of the
gaps �h,e�k� was imposed except the general symmetry de-
picted in Fig. 1, so that the k dependence of the gap functions
�h,e�k� will follow the characteristics of the bands and pair-
ing interaction.

III. GAP SOLUTIONS

As explained in Sec. II, the main pairing process with the
AFM spin-fluctuation-mediated interaction V�q� is the inter-
band pair hopping between the hole and the electron bands,
in which a pair of electrons �k ,−k� on the hole band scatters
to a pair of electrons �k� ,−k�� on the electron band and vice
versa. This process is particularly dominant when the size of

the FS of each band is much smaller than the size of Q�

vector. Considering only this interband pair process �keeping
only Vhe and Veh terms in Eqs. �5� and �6��, we observe the
fact that the pair potential �h�k� for the hole band electrons is
provided by the pairs of electrons in the electron band and
vice versa. The physical consequence of it is that the relative
sizes of the gaps and DOSs on each band are reversed;
namely, if Nh�0��Ne�0�, then ��h�k��� ��e�k�� holds in gen-
eral. This relation holds both for the �s-wave and for the
double d-wave gap solutions and affects all superconducting
properties such as tunneling DOS, Knight shift 1 /T1, and
penetration depth.

For all numerical calculations in this paper, we choose the
parameters 
=0.2� ��AFM�10a�, �AFM=20 meV, and VM
=10 eV �average interaction 	V�q�
=1.115 eV�. Our choice
of band parameters produces Nh�0�=0.74 /eV and Ne�0�
=0.285 /eV, so that Nh�0� /Ne�0��2.6. We think that these
numbers represent the Fe-based SC materials but should not
be taken too seriously; in particular, the pairing strength
VM =10 eV is chosen freely for demonstration.

A. ±s-wave gap

This solution for the Fe-based SC is already proposed by
several authors.5,17–19 Here we demonstrate that this solution
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FIG. 1. �Color online� FSs of
	h�k� �red� and 	e�k� �green�
bands and two gap solutions con-
sidered in the paper: �a� �s-wave
gap and �b� double d-wave gap.
The width of the FS represents the
local DOS for each band within
�AFM=20 meV energy.
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is indeed realized with a simple phenomenological interac-
tion, which mimics an AFM spin fluctuations, on the mini-
mal two-band model representing the Fe-based SC com-
pounds.

As we described above, the reversed relation between the
magnitude of the DOSs and the size of gaps holds more
rigorously for the s-wave case and we suggest an approxi-
mate relation �h

maxNh��e
maxNe �see the Appendix for more

detailed discussions�. This relation is a generic feature of the
model. Therefore, given a substantial difference of DOS be-
tween the hole and electron bands �several band
calculations3–8 indicate that this is true for the Fe-based SC
materials�, at least two distinctively different sizes of the SC
gaps should be observed in various experiments.23 In particu-
lar, because the band with a larger DOS would dominate the
physical properties but actually holds a smaller gap, this fea-
ture will modify various SC properties of the Fe-based SC in
unorthodox manner such as � /Tc value, temperature depen-
dencies of various SC properties below Tc, and the responses
to impurities.

In Fig. 2, the solution of the �s-wave gap and the corre-
sponding DOS are shown. As mentioned, Nh�0�=2.6Ne�0�

for our bands. Accordingly the size of gaps of the hole band
and the electron band is reversed as �h

max�10 meV and
�e

max�25 meV. The strongly momentum-dependent pairing
interaction and the realistic bands naturally induce an aniso-
tropic modulation of the s-wave gaps with C4 symmetry; the
modulation is stronger for the larger gap on the smaller DOS
band �electron band around M point�. Compared to the case
of the double d-wave solution, the average size of the
�s-wave gap is larger by a factor of �5 with the same
pairing potential. Therefore, unless some other interactions
are added, the ground state of our model is the �s-wave SC
state. This conclusion is already obtained by other
authors5,17–19 with different models and approaches. The
separate and total DOSs plotted in Fig. 2�b� show the main
features of the �s-wave gap: two-peak structure, the large
DOS with a small gap and the small DOS with a large gap.
The overall shape of the total DOS is not very much reveal-
ing compared to the current tunneling DOS measurements.10

However, it is too early to make a decisive conclusion with
our calculations without including Andreev scattering. Also
the ZBCP, the hallmark of a d-wave gap and observed in
experiments with the Fe-based superconductors,10 can
equally be obtained with the �s-wave gap state.

We consider nuclear-spin-lattice relaxation rate 1 /T1 for
the �s-wave gap. Several groups9,11 have reported that 1 /T1
shows no coherence peak and the T3 power law below Tc,
strongly suggesting an unconventional gap with lines of node
such as a d-wave gap. s-wave gap is known to have a con-
structive coherent factors for 1 /T1 to induce the coherence
peak over a temperature range below Tc. However, as Mazin
et al.5 envisaged, the sign-changing gaps between two bands
provide a destructive coherent factor for the interband scat-
tering which will largely cancel the intraband coherent fac-
tors. As a result the coherent peak of 1 /T1 for the �s-wave
gap SC will be substantially reduced. The explicit formula
that we used for the calculations is the following:

1

T1
� − T�

0

� � fFD���
�� 
�Nh

2�0��Re
�

��2 − �h
2�k��

k

2

+ 2Nh�0�Ne�0�

��Re
�

��2 − �h
2�k��

k
�Re

�

��2 − �e
2�k���k�

+ Ne
2�0�

��Re
�

��2 − �e
2�k��

k

2� + �Nh
2�0��Re

�h�k�
��2 − �h

2�k��
k

2

+ 2Nh�0�Ne�0�

��Re
�h�k�

��2 − �h
2�k��

k
�Re

�e�k��
��2 − �e

2�k���k�

+ Ne
2�0�

��Re
�e�k�

��2 − �e
2�k��

k

2�� . �8�

For the temperature dependence of the gaps �h,e�k ,T�, we
use a phenomenological formula �h,e�k ,T�=�h,e�k ,T
=0�tanh���Tc /T−1�. By choosing the values of �h,e

max /Tc, we
can partially take into account of the strong-coupling super-

(a)

(b)

FIG. 2. �Color online� �a� �s-wave gap solutions �h�k� and
�e�k�. �b� Normalized DOS of the hole band Nh��� �red dotted
line�, electron band Ne��� �blue dotted line�, and the total Ntot���
�solid black squares�.
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conductivity effect. � is not a sensitive parameter for final
results; we take �=1.74 in this paper.

Figure 3�a� shows the contributions to the 1 /T1 relaxation
rate from each terms of Eq. �8�: the hole band, the electron
band, and the interband terms. It shows that the cancellation
of the coherence factors is not perfect in general unless the
conditions Nh�0�=Ne�0� as well as ��h�k��= ��e�k�� are ful-
filled. Nevertheless, due to the large cancellation by the in-
terband coherence factor, the height of the coherence peak is
very much reduced �compare the total 1 /T1 and the hole
band only 1 /T1 in Fig. 3�a��. Small amount of impurities can
easily wash out this reduced coherence peak as shown in Fig.
3�b�; the damping rate �=0.05�h

max is enough to completely
kill the coherence peak. The subtle part is to fit the �T3

power law below Tc. It requires to tune R=�h
max /Tc ratio. In

Fig. 3, R=1.5 �automatically, it makes �e
max /Tc�3.75 which

is quite a large value� is used for the best fit. Figure 3�c�
shows that this pseudo-T3 behavior is not extended to the
very low-temperature region as in the d-wave case because
this T3 behavior in the �s-wave gap is not an intrinsic prop-
erty of the lines of nodes. At low temperatures, there appears
the exponential drop inevitably due to the full gaps, and then
it finally reaches the impurity-induced T-linear region be-
cause we added some amount of impurities to kill the coher-
ent peak. All these details put rather stringent conditions to
confirm the �s-wave gap state with experiments.

Now we consider the Knight shift which is the measure of
uniform susceptibility in SC phase. Because it is a q→0
probe, there is no interband contribution and the total Knight
shift is just sum of the contributions from each band as fol-
lows:


S�T� � − �
0

� � fFD���
�� �Nh�0��Re

�

��2 − �h
2�k��k

+ Ne�0�

��Re
�

��2 − �e
2�k��k

� �9�

In Fig. 4, the normalized Knight shift �uniform spin sus-
ceptibility� is plotted and it shows the typical flat behavior of
a s-wave gap at low temperatures. The contributions from
the hole and electron bands show separately the feature of
the larger DOS with small gap and the smaller DOS with a
larger gap. Figure 4�a� is the results with �h

max /Tc=1.5, the

FIG. 3. �Color online� 1 /T1�T� of the �s-wave gap with
�h

max /Tc=1.5. �a� Separate term contributions of Eq. �8�: total �solid
black square�, hole band �open red square�, electron band �open
blue triangle�, and interband terms �solid green square�. �b� Total
1 /T1�T� without �solid black square� and with �open green penta-
gon� damping. �c� The log-log plot of �b�. The inset is a wide view.

FIG. 4. �Color online� Normalized Knight shift �uniform spin
susceptibility� of �s-wave gap. The total �solid black square�, hole
band �open red circle�, and electron band �open blue triangle� con-
tributions are shown separately. �a� �h

max /Tc=1.5 and �b��h
max /Tc

=0.5.
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best gap-Tc ratio to fit T3 behavior of 1 /T1 in Fig. 3. Figure
4�b� showed the results with �h

max /Tc=0.5 to demonstrate the
convex shape of Knight shift which was reported by Matano
et al.9 for Pr�FO�FeAs. Impurities do not change much of
this feature unlike in the case of d-wave gap.

Finally, we consider the penetration depth. The static re-
sponse function to the electromagnetic fields is the
following:24

Kh,e�q,T� = 2�T�
n
� k̂�2 �h,e

2 �k�
��n

2 + �h,e
2 �k���n

2 + �h,e
2 �k� + �2��k

.

�10�

The q=0 limit of this kernel K�q=0,T� is directly propor-
tional to the superfluidity density or 1 /�L

2�T� in the London
limit. For our two-band model, total kernel is the sum of
Kh�q ,T� and Ke�q ,T� with the proper weighting factor pro-
portional to the DOS Nh,e�0� of each band and there is no

interband screening current. �= �vF /2�q� k̂ is the nonlocal pa-
rameter and can be rewritten in more convenient form as �

= �
�0

�0
�q̃k̂. �0�vF /�max and �0 are the coherence length and

the penetration depth at zero temperature, respectively. Ap-
parently if �

�0

�0
�=�0 is small compared to 1, the nonlocal

effect becomes negligible. A typical value of �0 for
YBa2Cu3O7−� was estimated about 0.01, for example.24 For
the Fe-based superconductors, we believe that �0 is not much
larger than the values of high-Tc cuprates. Also for a s-wave
case, the nonlocal effect does not change much of the tem-
perature dependence of 1 /�2�T� except the overall magni-
tude. Therefore, we take �0=0.0 for the calculations of the
penetration depth in the �s-wave case. However, this effect
can induce an important modifications in the d-wave case,
which will be discussed in Sec. III B.

Figure 5 shows the normalized superfluidity density
�2�0� /�2�T� and separate contributions from the hole and
electron bands. The exponentially flat region appears at low
temperatures due to the full gap opening, which is consistent
with recent experiments.13 Relatively narrower region of the
flat part �for T�0.2Tc� compared to the ordinary s-wave gap
is another feature due to the smaller gap with the larger DOS
of the �s-wave gap SC. A subtle part here is to fit the high-
temperature region �0.3Tc�T�Tc�. With �h

max /Tc=1.5 �the

same value used for the 1 /T1 fit�, this part becomes too con-
vex �Fig. 5�a�� in comparison to the experiments.13 A smaller
gap-Tc ratio can make it concave as shown in Fig. 5�b� �with
�h

max /Tc=0.5�; this concave feature was recently observed by
Martin et al.13

In summary, the �s-wave gap state provides the most
consistent descriptions for the penetration depth experiments.
However, it explains 1 /T1 only for a limited temperature
range even with a fine tuning of �h,e /Tc ratio and impurities.
Knight shift of any shape can be fit with two-band parameter
�this is also true with the double d-wave gap�. The tunneling
DOS does not provide a decisive conclusion.

B. Double d-wave gap

In Fig. 6, the gap solution and the corresponding DOS of
the double d-wave gap are shown. As mentioned, our model
bands have Nh�0�=2.6Ne�0�, and consequently gap in the
hole band �h

max�2 meV is smaller than the one of the elec-
tron band �e

max�4 meV. The sizes of the maximum gaps
are �5� smaller than the �s-wave gap solutions. Therefore,
the double d-wave gap solution is not the best SC state for
our phenomenological model with an antiferromagnetic pair-
ing interaction. This result is in agreement with other theo-
retical studies.5,17,18 This conclusion may change with the
correlation length of the AFM fluctuations, the sizes of the
FS of the hole and electron bands, etc. But we numerically
found that �s-wave gap solution is favored compared to the
double d-wave gap solution for most cases. As discussed in
Sec. II, however, the screened Coulomb interaction may

FIG. 5. �Color online� Normalized superfluidity density
�2�0� /�2�T� of �s-wave gap and its separate contributions from the
hole and electron bands. �a� �h

max /Tc=1.5 and �b��h
max /Tc=0.5.

FIG. 6. �Color online� �a� Double d-wave gap solutions �h�k�
and �e�k�. �b� Normalized DOS of the hole band Nh��� �red dotted
line�, electron band Ne��� �blue dotted line�, and the total Ntot���
�black squares�.
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change this conclusion. The detailed studies about this issue
will be discussed in a separate paper.

To complete the comparisons, we calculated the same SC
properties of the double d-wave gap state. The separate and
total DOSs shown in Fig. 6�b� demonstrate the main features
of the double d-wave gap: the large DOS band with a small
gap and the small DOS band with a large gap. This result
shows a similar feature of the tunneling DOS measurement
by Wang et al.10 except the ZBCP, which does not show up
in our simple DOS calculation but should appear when the
tunneling conductivity is properly calculated with Andreev
scattering process.

We consider the nuclear-spin-lattice relaxation rate 1 /T1.
As in the case of �s-wave gap, there are three contributions
for the total 1 /T1 relaxation rate: hole band, electron band,
and interband scattering terms. The formula is the same as
Eq. �8� but the last three terms should be dropped because
the FS average of �h,e�k� vanishes in this case. We use the
same form of temperature-dependent gap function as
�h,e�k ,T�=�h,e�k ,T=0�tanh�1.74�Tc /T−1�. In Fig. 7, R
=�h

max /Tc=1.75 is used for the best T3 fit below Tc. How-
ever, in the double d-wave gap, R=1.5–2.5 provide reason-
ably good fits, showing a more tolerance than the �s-wave
gap state.

Figure 7�a� shows the separate contributions from each
channel together with the total contribution. As in the
�s-wave case, 1 /T1,h provides the largest contribution and
1 /T1,e provides the smallest contribution. There is also the
interband term 1 /T1

inter. In contrast to the �s-wave case, all

three terms display a similar temperature dependence and no
coherence peaks. Figure 7�b� shows the same 1 /T1

total �black
squares� in log-log plot. The overall features of 1 /T1 are the
ones of the typical d-wave SC state: no coherence peak near
Tc and �T3 below Tc and consistent with the current NMR
experiments.9,11 At very low temperatures, T-linear behavior
starts to appear due to a small damping for the numerical
calculations ��=0.005�h

max�. For comparison, we also show
1 /T1

total �open green circles� with �h
max /Tc=1.0, a smaller

gap-Tc ratio; it exhibits a substantial convex part below Tc
and then starts displaying the universal T3 behavior before
entering the impurity-dominating region.

In Fig. 8, we show the result of the uniform spin suscep-
tibility which is measured as Knight shift. Figure 8�a� shows
the results with �h

max /Tc=1.75. The hole band contribution is
dominant as in 1 /T1 and the electron band contribution show
the steeper drop just below Tc because of the larger gap-Tc
ratio �e

max /Tc�3.5. The overall behavior of the total 
s�T�
below Tc shows a typical d-wave behavior such as T linear at
low temperatures. Figure 8�b� shows the results with
�h

max /Tc=1.0. A smaller gap-Tc ratio makes the Knight shift
convex as in the �s-wave case and observed by Matano
et al.9 for Pr�FO�FeAS. This result demonstrates that this
convex behavior of Knight shift is irrelevant to the gap sym-
metry but a generic feature of the two-gap �or multigap� SC.
But it reveals that the gap-Tc ratio �max�0� /Tc is much
smaller than the standard BCS value, where �max�0� refers to
the gap of the band with largest DOS.

Now we calculate the penetration depth. As we discussed
in Sec. II, most of experiments, up to now, report a flat tem-

FIG. 7. �Color online� 1 /T1�T� of the double d-wave gap. �a�
Each term contributions of Eq. �8�: total �solid black square�, hole
band �open red square�, electron band �open blue triangle�, and
interband terms �open green triangle�. �b� Log-log plot of total
1 /T1�T� for �h

max /Tc=1.75 �black square� and 1.0 �green circle�.

FIG. 8. �Color online� Normalized Knight shift �uniform spin
susceptibility� of the double d-wave gap: the total �solid black
square�, the hole band �open red circle�, and electron band �open
blue triangle� contributions are shown separately. �a� �h

max /Tc

=1.75 and �b� �h
max /Tc=1.0.
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perature dependence of ��T� at low-temperature region and
suggest a fully gapped SC state.13 A naive double d-wave
gap state has no chance to explain this flat behavior at low
temperatures. Therefore, we consider a nonlocal effect of the
electromagnetic response of the double d-wave gap super-
conductor as a possible cause to modify the typical tempera-
ture dependence. In order to include the effect of the nonlo-
cal electrodynamics, we use the fully q-dependent kernel
Kh,e�q ,T� �Eq. �10�� and put it into the integral formula for
��T� with the specular boundary condition

�spec�T�
�0

=
2

�
�

0

� dq̃

q̃2 + Nh�0�K̃h�q,T� + Ne�0�K̃e�q,T�
,

�11�

where K̃h,e�q ,T� are the normalized kernels as K̃h,e�0,0�=1
and q̃=q�0 is a dimensionless momentum. The results with a
diffusive boundary condition are qualitatively the same;
therefore, they will not be discussed. For the nonlocal param-
eter �0, we think it to be much smaller than 1 for the Fe-
based superconductors, but here we take it as a free param-
eter and see how large value is needed to fit experimental
data.

Figures 9 and 10 show the normalized total superfluidity
density �2�0� /�2�T� and separate contributions from the hole
and electron bands for the double d-wave gap state. Figure 9
used �h

max /Tc=1.75 and Fig. 10 used �h
max /Tc=1.0. In each

figure, panel �a� is a local limit ��=0.0� and the panel �b� is
a nonlocal limit ��=0.5�. The local cases display the typical
d-wave behavior at low temperatures, i.e., the linear decrease
in T from T=0. The extreme nonlocal cases ��0=

�0

�0
=0.5�

introduce a substantial round-off ��T2� region at low tem-
peratures which is, however, not an exponentially flat behav-
ior as the recent experiments claim. Further, even a rough
fitting requires an unreasonably large nonlocal parameter �0.

In summary, the double d-wave gap state can provide con-
sistent descriptions for tunneling DOS, 1 /T1, and Knight
shift. However, there is an intrinsic difficulty to explain the
flat behavior of the penetration depth at low temperatures.
Also, in our model with an AFM mediated pairing interac-

tion only, the double d-wave gap solution is energetically
less favored than the �s-wave gap solution.

IV. CONCLUSION

We demonstrated that a minimal model with a phenom-
enological pairing interaction of the AFM spin fluctuations
can allow both the �s-wave gap and the double d-wave gap
solutions with the realistic bands of the Fe-based SC com-
pounds. With the same parameters, the �s-wave gap solution
is energetically more favorable by a factor of �5�, so that it
has a better chance to be realized in the Fe-based SC com-
pounds.

In both cases, we found that the approximate relation
�h

maxNh��e
maxNe holds because it is a generic feature of the

two-gap SC when an interband pair scattering is the domi-
nant pairing interaction. This relation appears for all SC
properties in subtle way, which modifies the value of
��0� /Tc and other SC properties in unorthodox way. Nu-
merically solving the coupled gap equations for the two
bands, we found the detailed structure of the gap functions
�h,e�k�, which showed an anisotropy ��20%� of the
�s-wave gaps. We also calculated the key SC properties for
both gap states such as tunneling DOS, 1 /T1, Knight shift,
and penetration depth and discussed them in comparison
with experiments. When we calculated these quantities, we
paid special attention to the interband coherence factor
which is a unique feature of multigap SC. This interband
coherence factor particularly produced an important modifi-
cation to the 1 /T1 relaxation rate of the �s-wave gap state.

The �s-wave gap state provides the most consistent de-
scriptions for the penetration depth experiments: the flat low-
temperature behavior.13 Besides the low-temperature behav-
ior, the high-temperature �0.3Tc�T�Tc� behavior—due to a
large difference of the gap sizes �h and �e and their corre-
sponding DOS Nh,e—can be either concave or convex. How-
ever, 1 /T1 experiments can only be fitted for a limited tem-
perature range even with a fine tuning of �h,e /Tc ratio and
impurities. The �s-wave gap state is not inconsistent with
the Knight shift and the tunneling DOS data but overall does
not provide any decisive merit in comparison with the double
d-wave gap.

FIG. 9. �Color online� Normalized superfluidity density
�2�0� /�2�T� of double d-wave gap and its separate contributions

from the hole and electron bands with �h
max /Tc=1.75. �a� �0=

�0

�0

=0.0 and �b� �0=0.5.

FIG. 10. �Color online� Normalized superfluidity density
�2�0� /�2�T� of double d-wave gap and its separate contributions

from the hole and electron bands with �h
max /Tc=1.0. �a� �0=

�0

�0

=0.0 and �b� �0=0.5.
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The double d-wave gap state, although it is energetically
less favorable in our model unless additional interactions are
added, provides the best fit to the 1 /T1 experiments. How-
ever, it has a difficulty to explain the penetration depth ex-
periments for the low-temperature flat behavior. It requires
an unreasonably large nonlocal effect to fit the low-
temperature part; it is still not exponentially flat but only
�T2. If this low-temperature part of ��T� is, indeed, con-
firmed to be exponentially flat, the double d-wave gap state
should be ruled out. Tunneling DOS and Knight shift can be
fit with the double d-wave gap state as much as with the
�s-wave gap state.

In conclusion, quantitative calculations carried out in this
paper, with the two most promising SC gap states, can serve
as guidelines for sorting out the possible pairing states of the
Fe-based SC in comparison with the current and future ex-
periments. For that, very low-temperature measurements and
systematic studies with the amount of impurities will provide
decisive information to determine the correct gap symmetry.

Note added. Recently, we have known that similar studies
of 1 /T1 for the �s-wave state were carried out by two
groups25 where only the interband scattering process was
analyzed and by another recent paper26 where both the inter-
band and intraband processes were considered as in our pa-
per.
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APPENDIX: RELATION BETWEEN �h Õ�e AND Nh ÕNe

In the main text, we claimed the approximate relation
Nh�h�Ne�e as a generic feature of the two-band model with
a dominant interband interaction. This kind of relation will
have direct and important implications to the experimental
observations. However it is pointed out by Mazin27 that this
is not a rigorous identity in general. In this appendix, we
clarify the degree of the validity of this relation.

Here we consider the �s-wave gap state only. Assuming
constant gaps �h�k�=�h and �e�k�=−�e and only the inter-
band interaction, the coupled gap equations �5� and �6� are
simplified as

�h = Vhe�e
e�T,�e,�AFM� , �A1�

�e = Veh�h
h�T,�h,�AFM� , �A2�

where 
h and 
e are defined with Eq. �7�.
First, when T=Tc, the above equations can be written as

�h = VheNe�e � const, �A3�

�e = VehNh�h � const, �A4�

where const=�0
�AFMd�

tanh��/2Tc�
� � log 1.14�AFM /Tc. Because

Vhe=Veh, we immediately obtain the following relation from
the above equations:

�e

�h
=�Nh

Ne
, T = Tc. �A5�

Next, when T=0, Eqs. �A1� and �A2� are written as

�h = VheNe�e log��AFM + ��AFM
2 + �e

2

�e
� , �A6�

�e = VehNh�h log��AFM + ��AFM
2 + �h

2

�h
� . �A7�

In general, these equations do not yield a simple algebraic
relation between �e /�h and Nh /Ne, but we can obtain the
simple relations for the limiting cases. First, for the extreme
weak-coupling limit, i.e., when �h,e��AFM, the two loga-
rithmic terms become asymptotically equal as
log�2�AFM /�e�� log�2�AFM /�h�, and we obtain the same
relation as the T=Tc case �A5�. On the other hand, for
strong-coupling limit, i.e., when �h,e��AFM �which is cer-
tainly an unphysical limit�, log���AFM+��AFM

2 +�h,e
2 � /�h,e�

��AFM /�h,e and we obtain the relation

�e

�h
=

Nh

Ne
, T = 0, �h,e � �AFM. �A8�

Having found the results of the two limiting cases, we can
guess that the gap ratio �e /�h should be in between these
two limiting ratios. For example, we can attempt an expan-
sion with x=log�Nh /Ne� starting from the weak-coupling
limit27 and we obtain, in the first order of x,

�e

�h
��Nh

Ne
�1 +

log�Nh/Ne�
4

� + . . .� , �A9�

where �=�VheVehNhNe is a dimensionless coupling constant.
For practical use, we numerically solve Eqs. �A1� and �A2�
and plot the ratio �e /�h as a function of � in Fig. 11. The
ratio �e /�h becomes a universal curve when it is normalized

by the distance between �Nh

Ne
and

Nh

Ne
. The result indeed shows

that when ��1, it is in between two limiting ratios �Nh

Ne
and

Nh

Ne
as we expected from the above analysis.

FIG. 11. �Color online� Normalized gap ratio ��e� / ��h� vs the
dimensionless coupling constant �=�VheVehNhNe. The bottom
baseline is �Nh /Ne and the top baseline is Nh /Ne.
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In reality, there exist two complications. First, the intra-
band couplings Vhh and Vee need to be included. A little
analysis of Eqs. �5� and �6� as well as of numerical results
reveals that this effect always enhances the gap ratio toward
the limit

Nh

Ne
. Another complication arises from the fact that

there are more than two bands in real materials.3–8 Applying
the results of the above analysis, we can suggest the follow-
ing approximate relations. First, we classify the bands of the
real materials into two groups: the hole bands around � point
and the electron bands around M point, respectively. Then in
the strong-coupling limit,

�
i

�h,iNh,i � �
i

�e,iNe,i, �A10�

and in the extreme weak-coupling limit,

�
i

�h,i
�Nh,i � �

i

�e,i
�Ne,i. �A11�

Considering several uncertainties in reality, Eq. �A10� can
serve as a practical rule of the thumb.
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