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We have computed �2F’s for the hole-doped cuprates within the framework of the one-band Hubbard model,
where the full magnetic response of the system is treated properly. The d-wave pairing weight �2Fd is found
not only to contain a low-energy peak due to excitations near �� ,�� expected from neutron-scattering data but
also to display substantial spectral weight at higher energies due to contributions from other parts of the
Brillouin zone as well as pair-breaking ferromagnetic excitations at low energies. The resulting solutions of the
Eliashberg equations yield transition temperatures and gaps comparable to the experimentally observed values,
suggesting that magnetic excitations of both high and low energies play an important role in providing the
pairing glue in the cuprates.
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I. INTRODUCTION

Since the superconducting state in the cuprates evolves
from the doping of a Mott insulator, it is natural to conjecture
that the pairing is driven by magnetic fluctuations rather than
by phonons. Quantum Monte Carlo �QMC� calculations pro-
vide evidence for d-wave pairing,1,2 where the pairing
bosons reside predominantly in the �transverse� spin channel.
Recent debate in this connection has centered on whether or
not the magnetic-resonance peak is strong enough to account
for the condensation energy.3,4 Although recent estimates
seem to be affirmative,5 they do not take into account com-
peting pair-breaking effects which enter the Eliashberg
equations.6 Also, there are arguments that high-energy exci-
tations play a role.7–9 Here we report a computation of �2F’s
for the hole-doped cuprates based on the one-band Hubbard
model, where the full magnetic response of the system is
included, and the Eliashberg equations are then solved self-
consistently to obtain the superconducting properties over a
wide range of dopings and temperatures. The resulting tran-
sition temperatures and pairing gaps are found to be compa-
rable to experimental values, showing clearly the viability of
the magnetic mechanism in the cuprates. We find that exci-
tations at both high and low energies are important.

Early calculations of magnetic pairing in the cuprates em-
ployed parametrized models of the susceptibility. The analy-
sis of Radtke et al.10 �Radtke, Ullah, Levin, and Norman
�RULN�� invoked neutron-scattering measurements, while
that of Millis et al.11 �Millis, Monien, and Pines �MMP�� was
based on NMR data. The model �2F’s obtained lead to di-
vergent predictions concerning the feasibility of magnetic
mechanism.12 Our d-wave pairing weight �2Fd contains not
only a low-energy peak �LEP� from near-�� ,�� scattering
but also an additional high-energy feature �HEF� extending
to �1.5 eV dominated by other regions of the Brillouin zone
�BZ� as well as a significant pair-breaking contribution at
low energies from ferromagnetic �FM� fluctuations. The
HEF, which was missing in the RULN and MMP models,
turns out to be crucially important in producing high transi-
tion temperatures and pairing gaps. The pair-breaking terms
begin to dominate as the Fermi energy approaches the van
Hove singularity �VHS� with increasing doping and can lead
to the loss of superconductivity.

Our study bears on the recently discovered “waterfall” or
high-energy kink �HEK� features observed over 0.3–1.2 eV
range in the angle-resolved photoemission spectra �ARPES�
of a number of cuprates. The magnetic susceptibility under-
lying our computation of �2F’s yields self-energies and dis-
persions consistent with the waterfall effects,13,14 suggesting
that the boson responsible for the waterfall effects is also a
key player in generating significant pairing weight in �2Fd
and high condensation energy in the cuprates.

The calculations are based on a one-band Hubbard Hamil-
tonian extended to include pairing interaction. Specifically,
in terms of susceptibility �0 and the Hubbard on-site repul-
sion U, we use the singlet pairing potential15

Vs =
U

1 − U2�0
2�p� − p�

+
U2�0�p� + p�

1 − U�0�p� + p�
�1�

and the mass-renormalization potential �Eq. 8 of Ref. 15�a��

Vz =
U2�0�p� − p�

1 − U2�0
2�p� − p�

+
U3�0

2�p� − p�
1 − U�0�p� − p�

, �2�

where p and p� are the electron momenta, which are con-
strained to lie on the Fermi surface. Here Vz �Vs� is the po-
tential contributing to the normal �anomalous� part of the
self-energy. These expressions have been found to give tran-
sition temperatures in good agreement with QMC results.2

The resulting coupling constants in various pairing channels
� are

�̄� = −� � d2pd2p�g̃��p�g̃��p��V�p,p�,� = 0� , �3�

where V=Vs for the even-parity channels. The normalized
weighting function g̃�=g��p� / �N0�vp��, where vp is the
Fermi velocity and N0

2= �2��3�g��p�2d2p / �vp�. The g� are
weighting functions of various symmetry,15 of which the
most important are the lowest harmonics of s wave and dx2−y2

symmetry with gs=1 and gd=cos�pxa�−cos�pya�. We also
define the coupling constant �z via the s-wave version of
Eq. �3� with V=Vz. Then the effective BCS coupling is ��

= �̄� / �1+�z�. The symmetrized Eliashberg functions then are
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�2F���� = −
1

�
� � d2pd2p�g̃��p�g̃��p��V��p,p�,�� , �4�

where V� is the imaginary part of the corresponding V.
In the presence of strong magnetic fluctuations, the

pseudogap is a manifestation that Migdal’s theorem is not
obeyed.16,17 We have developed a relatively simple approxi-
mation scheme13,18 which can successfully reproduce the
pseudogap and waterfall phenomena in the normal state of
the cuprates over the full doping range. In the overdoped
regime, this scheme reduces to calculating the self-energy in
GW approximation using a reduced U=3.2t and dispersion
renormalized via Z0=2.19 These values of U and Z0 yield
self-energies in reasonable accord with the QMC results20

and explain the recently observed waterfall effects in photo-
emission spectra of the cuprates.13,14 We therefore expect
these parameters to be most appropriate near x=0.27, but to
gain some understanding of how the band structure would
affect superconductivity in the absence of pseudogap effects,
we solved the Eliashberg equations over the full doping
range x=0–0.4 assuming Z0 and U to be doping indepen-
dent. A more satisfactory procedure would be to let U in-
crease in the underdoped regime. However, in the presence
of a pseudogap, a tensor system of Eliashberg equations
needs to be solved, and that is beyond the scope of the
present calculation. In short, we proceed thus by solving Eqs.
�1� and �2� using U=3.2t and �0 renormalized by Z0. In
particular, we neglect the additional modifications of
Migdal’s theorem in the superconducting state. Despite this
limitation, our results provide a benchmark for the Eliash-
berg formulation in that we do not invoke empirical suscep-
tibilities as has been the case in much of the existing litera-
ture.

Concerning technical details, we use a tight-binding pa-
rametrization of the dispersion of Bi2212 with the bilayer
splitting neglected.21 �0 is first computed within the random-
phase approximation �RPA� scheme throughout the BZ for
frequencies up to 2.88 eV. �2F’s and the �’s are then com-
puted from Eqs. �1�–�4�. Fermi surface restricted Eliashberg
equations10 are finally used to self-consistently obtain the
gap ���� and renormalization Z��� functions, with Z�0�
	Z=1+�z.

22

II. PURE d-WAVE SOLUTION

Figure 1, which compares our typical d-wave pairing
weights �2Fd and �2Fz with RULN and MMP models, high-
lights our key finding. Our �2Fd �green line� in Fig. 1�a�
displays two clear features,23 a LEP around 40 meV and a
broad humplike HEF extending from �0.5 to 1.0 eV �see
also Fig. 2�a� below�. The LEP arises mainly from the mag-
netic response near �� ,��, but the HEF is connected with the
response from other parts of the BZ particularly near �� ,0�
and �� /2,� /2�. Our LEP in Fig. 1�a� is similar to the
weights assumed by RULN and MMP. This resemblance is
not surprising since the RULN model10 was designed to
match neutron-scattering data near �� ,��, while the NMR
data utilized by MMP �Ref. 11� are also most sensitive to
weight in this part of the BZ. It has long been known that

neutron scattering near �� ,�� accounts for only about 1/8th
of the integrated spectral weight expected from a total scat-
tering sum rule.24 By basing their estimate solely on the
neutron-scattering data near �� ,��, RULN severely underes-
timated the total d-wave pairing weight. The MMP analysis,
based on NMR data, appears to have captured more of the
weight—although still missing the HEF and thus underesti-
mating the total weight. Note also from Fig. 1�b� that both
models strongly underestimate the renormalization weight
�2Fz, which opposes the tendency for pairing.

The negative dip in Fig. 1�a� at energies below 20 meV
deserves comment. This dip reflects pair-breaking magnetic
scattering �PBS� near � and was overlooked in the phenom-
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FIG. 1. �Color online� Eliashberg functions �2Fd and �2Fz for
hole doping x=0.30 obtained in this work �green line� are compared
with results of Refs. 10 �red-dotted line� and 11 �blue-dashed line�.
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FIG. 2. �Color online� Eliashberg functions �2Fd and �2Fz over
the doping range x=0.0–0.4. Lines of various colors refer to differ-
ent dopings �see legend in �a��. Left hand panels �a� and �b� give
results over an extended frequency range of 0–1.5 eV, while right-
hand panels �c� and �d� highlight the low-energy region of
0–250 meV on an expanded energy scale.
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enological RULN and MMP models. For simplicity, we will
refer to these fluctuations as being FM, although this is
strictly so only at �. This PBS is related to earlier indications
of FM instabilities near a VHS.25,26 A similar scenario of
competing d-wave pairing vs pair-breaking effects has been
discussed in the context of electron-phonon pairing.27

Figure 2 shows how �2F’s evolve with doping. In �a�, the
pairing weight in the high-energy feature of �2Fd is seen to
increase monotonically with increasing doping, displaying an
approximate isosbestic point at ��0.24 eV. In the low-
energy region in �c�, position of the peak in �2Fd shifts to
lower energies with increasing doping, and the negative pair-
breaking peak grows dramatically consistent with the sug-
gestion of Kopp et al.26 The nature of �2Fd is seen to change
quite substantially as the Fermi energy approaches the VHS
at around x=0.39. Interestingly, by comparing �c� and �d�,
the low-energy peak in �2Fz is seen to follow that in �2Fd to
lower energies with doping.

Figure 3 shows the doping dependence of �z, �d, and the
low-temperature gap �d�T=0�. Three different estimates of
�z are compared in �a� for illustrative purposes. Values based
on using the bare susceptibility, Vz0=U2�0 �red-dashed line�,
are seen to be quite similar to the simple estimate N�0�U
�green-dotted line�, where N�0� is the density of states at the
Fermi energy. The full Vz �blue line� on the other hand yields
a significant enhancement of �z over that obtained from �0,
especially near the region of the VHS peak, indicating that
the system is close to a magnetic instability. Note that �d is
positive for dopings less than 
0.4, but as the Fermi energy
enters the region of the VHS with increasing doping, �d rap-
idly becomes large and negative due to FM fluctuations. Fig-
ure 3�c� shows that this doping dependence of �d is well
correlated with that of the pairing gap. We stress that these
results hold for a pure dx2−y2 order parameter. Harmonic con-
tent plays an important role as will be discussed below �Sec.
III�.

We turn now to discuss our solutions of the Eliashberg
equations. Following common practice, we proceeded by
discretizing the �2F’s on the real frequency axis.28 We find
that our results are sensitive to the number Nm of points in
the mesh. For the present calculations, based on a 768-point
nonuniform mesh over 0–2.88 eV, the gap ���� is approxi-
mately converged in the low-� regime allowing us to extract
�d�T�. Figure 4�a� shows typical results for the real part of
���� for a range of temperatures at x=0.10. The prominent
oscillations in ���� curves are the well-known consequence
of discretizing �2F’s in solving the Eliashberg equations.29

We define the gap by taking the intersection of the ����
=� line �thin-black line in Fig. 4�a�� with the ���� curve.

Figure 4�b� shows how the computed low-energy gap �d
evolves with temperature at various dopings. Due to the dif-
ficulty of finding well-converged solutions when � is small,
we calculate �d�T� at a few low temperatures and use a fit to
a d-wave BCS gap to estimate Tc. We find 2�d�0� /kBTc
�3.2 for different dopings. The resulting Tc’s are somewhat
smaller than QMC values,2 which is perhaps the effect of a
finite t�.

It is striking that the gap features in Fig. 4�a� extend to
very high energies raising the obvious question as to how
this high-energy tail would show up in tunneling spectra.30

Insight in this regard is provided by Fig. 5, where we show a
typical tunneling spectrum computed31 within our model.
�Tunneling spectra computed at other dopings are similar
except that the features scale with �d.� The weight in Fig. 5
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FIG. 3. �Color online� Doping dependence of: �a� �z; �b� �d; and
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at energies above the peak-dip-hump feature is seen to be
quite small with weak energy dependence �see inset� and
would not be readily observable in the presence of an experi-
mental background.

III. LOW- VS HIGH-ENERGY PAIRING GLUE

Within the present model, the LEP and HEF both play an
essential role in generating large gaps. For example, at
x=0.3, the HEF by itself produces a gap of only �0.4 meV
while the LEP is virtually nonsuperconducting, even though
the full �2Fd yields a gap of 5.5 meV. �To be definite, we
separate �2F into LEP and HEF at the minimum in �2F with
�min=0.3 eV.� Similarly, for x=0.1, LEP �HEF� by itself has
a �3 �0.4� meV gap with a combined gap of �17 meV with
�min=0.16 eV.

This behavior can be readily understood from a two-�
model.32 Since this is a purely electronic mechanism, we use
a modified Allen-Dynes formula,33,34

Tc =
�ln

1.2
exp�− 1.04�1 + �z�

�̄d
� =

�ln

1.2
exp�− 1.04

�d
� , �5�

��0�=3.54Tc with

�̄d = 2�
0

	 �2F���
�

�6�

and

ln��ln� =
2

�̄d

�
0

	

ln���
�2F���

�
. �7�

The Allen-Dynes equation has a well-known limitation34 that
it predicts a maximum Tc=�ln /1.2, whereas the Eliashberg

equations have a solution that grows without limit ��̄ as

�̄→	. We find that this leads to an underestimate of �LEP,
while the model provides good estimates for the remaining
gaps. For instance, for x=0.1, �LEP=�HEF=0.15, �ln,LEP
=83 meV, and �ln,HEF=530 meV so �LEF=0.26 meV and
�HEF=1.4 meV. When both features are combined,
�ln=200 meV and �d=0.3 leading to �d=19 meV, which is
in good agreement with the full calculation. While the Allen-

Dynes model is highly simplified, it does capture the ob-
served trend that both peaks contribute significantly. Physi-
cally, the effective � is in the weak-coupling regime,
�� 
1, so high Tc arises from the large �ln, and the
large boost from combining LEP and HEF arises since
e−1/2��2e−1/�. Clearly, an electron-phonon coupling could
play a similar role in further enhancing Tc.

IV. COMPETING ORDER PARAMETER SYMMETRIES

The above calculations have been limited to a pure
d-wave gap symmetry without harmonic content. In tetrago-
nal symmetry there are five symmetry classes of supercon-
ducting gap and each class can involve higher harmonics of
the given symmetry.35 While we have not solved the tensor
Eliashberg equations, it is straightforward to generalize the �
calculations to include harmonic structure and to calculate
the leading � eigenvalue for each symmetry class. The re-
sults are shown in Fig. 6 following the analysis of Ref. 36.
We see that: �1� the pure-d analysis of Sec. II holds in the
low doping regime; �2� near the VHS, harmonic content sta-
bilizes d-wave symmetry leading to the largest gaps; and �3�
in this regime, other symmetries can become comparable to
d wave. In particular, there is a tendency toward s-wave pair-
ing in the overdoped case.

V. CONCLUSIONS

In summary, we have shown that within the present model
the d-wave pairing weights �2Fd and �2Fz extend to very
high energies of �1 eV when the magnetic response of the
system is properly taken into account. The associated super-
conducting gap is quite substantial being around 16 meV at
low dopings. �2Fd is found to contain not only the expected
LEP below 200 meV but also a previously unrecognized
HEF over 0.3–1.2 eV. We find that the LEP and HEF both
play an important role in yielding a large gap in our model.
This suggests that electron-phonon coupling could be impor-
tant for further enhancing Tc as suggested by the isotope
effect.37 The gap spectrum ���� generally extends to the
limit of �2F ��1.5 eV� and may provide insight into a num-
ber of anomalous features connected with optical properties
of the cuprates summarized, for example, in Ref. 38.

The scarcity of high-Tc superconductors arises in part
from the fact that when superconducting pairing is suffi-
ciently strong, corresponding and stronger instabilities arise
in other channels. We have for the most part neglected the
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effects of competing phases, but it is clear that they will be
significant both in the underdoped regime and near the VHS.
Near the VHS pair-breaking ferromagnetic scattering in-
creases sharply, strongly suppressing a pure d-wave gap.
While we find that inclusion of harmonic content could sta-
bilize a d-wave superconductor even at the VHS, we have
not accounted for a competing FM instability. Indeed, Storey
et al.39 found that in Bi2212 the VHS induces strong pair
breaking, suppressing superconductivity so that optimum Tc
falls at a doping below the VHS. This is consistent with the
evidence for strong FM pair breaking adduced by Kopp
et al.26

To conclude, we have demonstrated that when realistic
�2F’s are used to solve the Eliashberg equations, the mag-
netic mechanism is capable of producing transition tempera-
tures and pairing gaps comparable in size to those observed

experimentally in the cuprates. The low values of these key
superconducting properties found in earlier calculations are
directly attributable to the fact that neutron scattering sees
only a fraction of the total magnetic spectral weight in these
materials.
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