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We analyze antiferromagnetism and superconductivity in novel Fe-based superconductors within the itiner-
ant model of small electron and hole pockets near �0,0� and �� ,��. We argue that the effective interactions in
both channels logarithmically flow toward the same values at low energies; i.e., antiferromagnetism and
superconductivity must be treated on equal footing. The magnetic instability comes first for equal sizes of the
two pockets, but loses to superconductivity upon doping. The superconducting gap has no nodes, but changes
sign between the two Fermi surfaces �extended s-wave symmetry�. We argue that the T dependencies of the
spin susceptibility and NMR relaxation rate for such a state are exponential only at very low T, and can be well
fitted by power laws over a wide T range below Tc.
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I. INTRODUCTION

Recent discovery of superconductivity in the iron-based
layered pnictides with Tc ranging between 26 and 52 K gen-
erated enormous interest in the physics of these materials.1–5

The superconductivity has been discovered in oxygen con-
taining RFeAsO �R=La,Nd,Sm� as well as in oxygen free
AFe2As2 �A=Ba,Sr,Ca�. Like the cuprates, the pnictides are
highly two dimensional, their parent material shows antifer-
romagnetic long-range order below 150 K,1,6–9 and supercon-
ductivity occurs upon doping of either electrons1–4 or holes5

into the FeAs layers.
The close proximity of antiferromagnetism and supercon-

ductivity fueled early speculations that the physics of the
pnictides is similar to the cuprates, and involves insulating
behavior.10–12 However, there is a growing consensus among
researchers that Mott physics does not play a significant role
for the iron pnictides, which remain itinerant for all doping
levels, including parent compounds, in which magnetic order
is of spin-density wave �SDW� type rather than Heisenberg
antiferromagnetism of localized spins.13,14 This is evidenced
by, e.g., a relatively small value of the observed magnetic
moment per Fe atom, which is around 12–16% of 2�B.7,9 In
another distinction to the cuprates, electronic structure pro-
posed by band-structure calculations15–19 and supported by
angle-resolved photoemission spectroscopy �ARPES� �Refs.
20 and 21� consists of two small hole pockets centered
around � point �p= �0,0�� and two small electron pockets
centered around M point �p=Q= �� ,��� in the folded Bril-
louin zone �BZ� �two Fe atoms in the unit cell; we set inter-
atomic spacing a=1�.

In this paper, we address three issues for the pnictides: �i�
what interactions cause SDW order and superconductivity;
�ii� what is the gap symmetry; and �iii� what are the impli-
cations of the gap symmetry for the experiments in the su-
perconducting �SC� state. We argue that both magnetic and
pairing instabilities are determined by the same interband
pair hopping which transforms two fermions near the hole
Fermi surface �FS� into two fermions near the electron Fermi

surface �and vice versa�. This interaction may be weak at
high energies �of order bandwidth�, but it flows under
renorm-group �RG� and ultimately determines the couplings
in both SDW and Cooper channels at low energies. When
electron and hole pockets are nearly identical, SDW instabil-
ity occurs at a higher T. When the near identity is broken by
either hole or electron doping, the Cooper instability comes
first. This pairing interaction sets the gaps in hole and elec-
tron pockets to be of equal magnitude �, but of opposite
signs �an extended s-wave symmetry, s+�. The ratio 2� /Tc
=3.53 is, however, the same as in BCS theory, as there are no
angular variations in the gap along the FS.

A fingerprint of s+ gap symmetry and near-equal electron
and hole pockets is the existence of a magnetic collective
mode inside the gap for momenta near Q �a spin resonance�,
whose dispersion ��0

2+ �vF
2 /2��q−Q�2�1/2, where vF is the

Fermi velocity, closely resembles Anderson-Bogolyubov
mode in uncharged superconductors. Another fingerprint is a
strong reduction in the nuclear magnetic resonance �NMR�
relaxation rate 1 /T1 in the clean limit, due to vanishing of the
coherence factor for ���q ,�� /� for q=Q. We argue that in
this situation, 1 /T1 is predominantly due to impurities, which
are partly pair breaking even when nonmagnetic. We show
that, in the presence of impurity scattering, 1 /T1 is exponen-
tial in T only for very low temperatures, and over a wide
range of T�Tc is well described by 1 /T1	T3, as if the gap
had nodes. Over the same range of T, the uniform suscepti-
bility is near linear in T.

Our results partly agree and partly disagree with some
earlier works on Fe pnictides. Mazin et al.18 and Gorkov and
Barzykin22 conjectured that the pairing symmetry should be
s+. Our results agree with theirs and also with Eremin and
Korshunov,23 who analyzed numerically the magnetic re-
sponse at Q within random-phase approximation �RPA� for
an s+ superconductor and found the resonance peak below
2�. Cvetkovic and Tesanovic24 noticed that for identical
electron and hole pockets, Cooper and particle-hole channels
become indistinguishable and should be treated equally—the
notion we share. Wang et al.25,26 performed numerical RG
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study of the pairing symmetry and found an s+ gap symmetry
for two-band model and a conventional s-wave symmetry for
five-band model. We can only compare the results for the
two-band model, for which we also found an attraction in s+

channel. There is, however, an important difference between
our results and those of Wang et al. In our case, the bare
interaction in s+ channel is repulsive, and attraction emerges
only below some energy scale, due to RG flow of the cou-
pling. In their analysis, the bare interaction is zero, and at-
traction emerges already after an infinitesimal RG transfor-
mation. Lorenziana et al.27 used unrestricted Hartree-Fock
approximation and studied possible phases that may compete
with superconductivity in FeAs layers. We found that SDW
is the main competitor, but CDW with complex order param-
eter is a close second.

On the experimental side, ARPES �Refs. 28 and 29� and
Andreev spectroscopy30 measurements have been interpreted
as evidence for a nodeless gap, while NMR data were argued
to follow 1 /T1	T3 and were interpreted as evidence for a
d-wave gap31,32 or multiple gaps.33 Our results show that the
T dependence of 1 /T1 in a dirty s+ superconductor mimics T3

over a wide range of T and become exponential only at very
low temperatures.

II. MODEL

We model iron pnictides by an itinerant electron system
with two electronic orbitals, and we assume that the hybrid-
ization between the orbitals leads to small hole and electron
pockets located near �0,0� and �� ,��, respectively, in the
folded BZ �two Fe atoms per unit cell� �Fig. 1�. The exten-
sion to a more realistic case of four �or even five� orbitals

and two hole and two electron pockets is straightforward,
and does not lead to new physics except for a magnetically
ordered state, where four-pocket structure is essential for
proper identification of relative magnetic ordering of spins of
the two Fe atoms from the unit cell in folded BZ.26,34,35

We assume that electron-electron interaction is short-
range �Hubbard-type� and involves two couplings—between
fermionic densities from the same orbital and from different
orbitals.36 The Hamiltonian has the form H=H2+H4, where

H2 = �
p,


�1,p�1,p,

† �1,p,
 + �2,p�2,p,


† �2,p,


+ �p��1,p,

† �2,p,
 + �2,p,


† �1,p,
� ,

H4 =
U11

2 �
pi,
�
�

��1,p1,

† �1,p2,
�1,p3,
�

† �1,p4,
�

+ �2,p1,

† �2,p2,
�2,p3,
�

† �2,p4,
��

+ U12 �
pi,
,
�

�1,p1,

† �2,p2,
�2,p3,
�

† �2,p4,
�, �1�

where p1+p2=p3+p4, and U11 is intraorbital, and U12 inter-
orbital interactions which we approximate by momentum-
independent �on-site� values.

The quadratic form can be easily diagonalized by

�1,p,
 = cos pcp,
 + sin pfp,
,

�2,p,
 = cos pfp,
 − sin pcp,
, �2�

with tan 2p=2�p / ��2,p−�1,p�. This yields

H2 = �
p,


�p
ccp,


† cp,
 + �p
f fp,


† fp,
, �3�

where

�p
c,f =

�1,p + �2,p

2
�

1

2
���1,p − �2,p�2 + 4�p

2 . �4�

Under some conditions on the original dispersions �1,p and
�2,p, and on the hybridization term �p, the two bands of
fermionic excitations form small hole and electron pockets
near �0,0� and Q= �� ,��, with roughly equal size, as in
the iron pnictides. This happens if, e.g., �1,p and �2,p change
sign under p→p+Q, �1,0+�2,0�0, �p+Q= ��p, and
���1,p−�2,p�2+4�p

2 � ��1,p+�2,p�. Under these conditions, �p
c

=−�p+Q
f , and �p

c describes a hole band with the maximum of
energy at �0,0�, while �p

f describes an equivalent electron
band with the minimum of energy at Q. Upon doping,
chemical potential shifts, one Fermi surface gets larger while
the other gets smaller; see Fig. 1.

In itinerant systems, the interactions are expected to be
small compared to the fermionic bandwidth, and the physics
is dominated by fermions near the FS. The projection of the
Hubbard interaction term H4 onto c and f fermions leads to
five different interactions:

+∆

−∆

−∆ −∆

−∆

Q

0

0

π

π

−π
−π

FIG. 1. �Color online� A simplified FS geometry of doped Fe-
based superconductors, used in the present work. At zero doping,
the Fermi surface consists of an electron pocket around �� ,�� �blue
dashed curve�, and a hole pocket of roughly equal size around �0,0�
�blue solid curve�. We neglect in this work the fact that there are
two hole and two electron pockets. In this system, there is a near-
perfect nesting between hole and electron pockets �moving a hole
FS by �� ,�� one obtains a near-perfect match with an electron FS�.
Upon electron doping, the size of the electron pocket increases
�dashed blue→solid black�, and this breaks the nesting. +� and −�
are the values of the superconducting gaps on the two FS for s+

superconducting state.
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H4 = U1
�0� � cp3


† fp4
�
† fp2
�cp1
 + U2

�0� � fp3

† cp4
�

† fp2
�cp1


+
U3

�0�

2 � �fp3

† fp4
�

† cp2
�cp1
 + H.c.�

+
U4

�0�

2 � fp3

† fp4
�

† fp2
�fp1


+
U5

�0�

2 � cp3

† cp4
�

† cp2
�cp1
, �5�

where the momenta of c fermions are near �0,0�, the mo-
menta of f fermions are near �� ,��, and the momentum
conservation is assumed. We present these interactions
graphically in Fig. 2.

We label the couplings with subindex “0” to emphasize
that these are the bare couplings. The terms with U4

�0� and
U5

�0� are intraband interactions, the terms with U1
�0� and U2

�0�

are interband interactions with momentum transfer 0 and Q,
respectively, and the term with U3

�0� is interband pair hop-
ping.

Note that in our Fermi-liquid description, all vertices in
Eq. �5� are �-functions in spin indices, i.e., all interactions
are in the charge channel,37 and there are no direct spin-spin
interaction terms with spin matrices in the vertices. However,
if the original Hubbard interaction is on-site, one can use
another equivalent description in which Pauli principle is
built into the Hamiltonian, and the intraorbital terms with
equal spin projections are eliminated from the Hamiltonian.
In this description, U1

�0�, U4
�0�, and U5

�0� terms appear as effec-
tive Hubbard interactions, while U2

�0� and U3
�0� appear as a

magnetic, Hund term.25

In explicit form, Ui
�0� are

U1
�0� =

1

2
��U11 + U12� − cos 20 cos 2Q�U11 − U12�� ,

U2,3
�0� =

U11

2
�1 − cos 20 cos 2Q� −

U12

2
sin 20 sin 2Q,

U4
�0� =

U11 + U12

2
+

U11 − U12

2
cos2 20,

U5
�0� =

U11 + U12

2
+

U11 − U12

2
cos2 2Q. �6�

For the case that we considered above ��1,p=−�1,p+Q ,
�2,p=−�2,p+Q , �p+Q= ��p�, we have Q=� /2�0, and

U1
�0� = U4

�0� = U5
�0� =

U11 + U12

2
+

U11 − U12

2
cos2 20,

U2
�0� = U3

�0� =
U11

2
�1 + cos2 20� �

U12

2
sin2 20. �7�

We assume that the intra- and interorbital Hubbard-type in-
teractions U11 and U12 are positive �repulsive�. We see from
Eq. �7� that density-density couplings U1

�0� , U4
�0�, and U5

�0�

are positive and the largest. The couplings U2
�0� and U3

�0� are
smaller for the case when the hybridization term is even
under p→p+Q, i.e., �p=�p+Q, and are the same as
U1

�0� , U4
�0�, and U5

�0� when �p=−�p+Q. The first case corre-
sponds to on-site hybridization and is more realistic that the
second one, which requires hybridization to involve pre-
dominantly nearest neighbors. Below we will consider only
the first case �p=�p+Q. Note that in this situation, the sign of
U2

�0�=U3
�0� depends on 0 and on the relative strength of the

intraorbital and interorbital Hubbard terms. If U11
�U12 sin2 20 / �1+cos2 20�, these couplings are positive; if
U11�U12 sin2 20 / �1+cos 220�, they are negative. A more
likely situation is when the intraorbital Hubbard term U11 is
larger than interorbital U12, in which case U2

�0� and U3
�0� are

positive.
For convenience, below we will be using dimensionless

interactions

ui = UiN0, �8�

where N0 is the fermionic density of states �DOS� which we
approximate by a constant. For itinerant systems, �ui

0��1 and
can be treated within Fermi-liquid theory. We will also count
the momenta of f fermions as deviations from Q �fp
→ fp+Q� in which case all running momenta in the vertices
are small.

A. Density wave and pairing instabilities

We searched for possible density-wave and Cooper-
pairing instabilities for our model, and found that the ones
which may potentially occur are SDW and charge-density
wave �CDW� instabilities with momentum Q and with either
real or imaginary order parameter, and SC instability either
in pure s channel �the gaps �c and � f have the same sign�, or
in s+ channel �the gaps �c and � f have opposite sign�.
Density-wave instabilities with q=0 and pairing instabilities
with q=Q do not occur within our model because the corre-
sponding kernels vanish for a constant DOS. The instabilities
with momentum-dependent order parameter, like a nematic
instability,34 also do not occur simply because we set all
interactions to be momentum independent and weak, and
will neglect regular �nonlogarithmic� corrections which give
rise to the momentum dependence of the scattering ampli-
tude in a Fermi liquid.37

The temperatures of potential density-wave and pairing
instabilities are obtained by conventional means, by intro-
ducing infinitesimal couplings

p2 p4

p
1

p3

2

p2 p4

p
1

p3

3

p2 p4

p
1

p3

4

p2 p4

p
1

p3

5

u
1

p2 p4

p
1

p3

u u

u u

FIG. 2. Five relevant bare vertices. Solid and dashed lines rep-
resent fermions from c band �near k=0� and f band �near k
= �� ,���.
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�SDW�
k

ck,�
† 
��

z fk+Q,�,

�CDW�
k

ck,�
† ���fk+Q,�,

�SC
c �

k

ck,�
��
y c−k,� + �SC

f �
k

fk+Q,�
��
y f−k−Q,�, �9�

with complex �SDW, �CDW, and real �SC
c,f , and analyzing

when the response functions diverge. We label the corre-

sponding instability temperatures as TSDW
�r,i� , TCDW

�r,i� , and TSC
�s,s+�,

where r , i mean real or imaginary density-wave order param-
eter, and s ,s+ mean s-wave or extended s-wave, respectively.
The linearized equations for the order parameters are pre-
sented graphically in Fig. 3. They have nonzero solutions
when

1 = − TSDW
�r,i� �

�m

�SDW
�r,i� � d�kGk�m

c Gk+Q,�m

f ,

1 = − TCDW
�r,i� �

�m

�CDW
�r,i� � d�kGk�m

c Gk+Q,�m

f ,

1 = − TSC
�s,s+��

�m

�SC
�s,s+�� d�kGk�m

c G−k,−�m

c . �10�

Here,

�SDW
�r,i� = u1 � u3, �CDW

�r,i� = u1 � u3 − 2u2,

�SC
�s� = u4 + u3, �SC

�s+� = u4 − u3 �11�

are the full interactions in the SDW, CDW, and SC channels.
Equation �10� is only valid for the largest instability tempera-
ture. Below such T, the ordering in one channel affects sus-
ceptibilities in the other channels.

For the bare parameters as in Eq. �7�,

�SDW
�r� = u1

0 + u3
0 	 u11�1 + cos2 20� ,

�SDW
�i� = u1

0 − u3
0 	 u12 sin2 20,

�CDW
�r� = u1

0 − u3
0 − 2u2

0 	 2u12 sin2 20 − u11�1 + cos2 20� ,

�CDW
�i� = u1

0 + u3
0 − 2u2

0 	 u12 sin2 20,

�SC
�s� = u4

0 + u3
0 	 u11�1 + cos2 20� ,

�SC
�s+� = u4

0 − u3
0 	 u12 sin2 20, �12�

where u11=U11N0, u12=U12N0 are dimensionless intraorbital
and interorbital couplings. The Stoner-type SDW and CDW
instabilities require �SDW,�CDW�0. At the bare level, �SDW

�r�

is the largest positive interaction when u11�1+cos2 20�
�u12 sin2 20 and �CDW

�r� is the largest positive interaction
when u11�1+cos2 20��u12 sin2 20; i.e., the system under-
goes a conventional SDW or CDW instability. The SC insta-

bilities requires an attraction �a negative �SC
�s,s+�� and do not

occur at this level because both �SC
�s� and �SC

�s+� are positive.

III. RG FLOW

Beyond mean field, the potential SDW and SC instabili-
ties are determined by ui at energies below the Fermi energy
EF, and generally differ from bare ui

0 defined at energies
comparable to the bandwidth, W. For small size of the FS,
W�EF, and the intermediate range is quite large. At ui

0�1
the renormalization can be considered in one-loop approxi-
mation. The one-loop diagrams, shown in Fig. 4, contain
particle-particle and particle-hole bubbles. The external mo-
menta in these diagrams are of order running E�EF, while
internal momenta are generally of order W, i.e., much larger.
In this situation, the dependence on the directions of the
external momenta is lost, i.e., a SC vertex with zero total
momentum and a SDW vertex with transferred momentum
Q are renormalized in the same way. The crucial element of
our analysis is the observation that, for �p

c =−�p+q
f , particle-

hole channel is undistinguishable from particle-particle chan-
nel, such that the renormalization in both channels are loga-
rithmical and interfere with each other. The presence of the
logarithms in both channels implies that the one-loop pertur-
bation theory must be extended to one-loop RG analysis for
the running ui �in the diagrammatic language, one needs to
sum up series of logarithmically divergent parquet dia-
grams�. The derivation of the RG equations is straightfor-
ward �see Fig. 4�. Collecting combinatoric prefactors for the
diagrams, we obtain

u̇1 = u1
2 + u3

2,

∆sc
f ∆sc

u

c

3

∆
CDW
* ∆

CDW
*

∆
CDW

u3

= +

=

∆sc
f

u4

+

α

∆
SDW

β

u

*

3

α

∆
β

CDW = +

u3 +

δαβ

α

∆
SDW

β

α

∆
SDW

β

u1αβ
iσ αβ

iσ σ i
αβ

∆
u1

CDW
δαβ

δαβ

δαβ

u2

δαβ

FIG. 3. Diagrammatic representation of the equations for SDW,
CDW, and SC instability temperatures. The equations for density-
wave TSDW

�r,i� and TCDW
�r,i� are obtained by adding and subtracting equa-

tions for �SDW and �SDW
� , and for �CDW and �CDW

� , respectively.

The equations for TSC
�s� and TSC

�s+� obtained by adding and subtracting
equations for �c and � f.
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u̇2 = 2u2�u1 − u2� ,

u̇3 = 2u3�2u1 − u2 − u4� ,

u̇4 = − u3
2 − u4

2, �13�

where the derivatives are with respect to log W /E, and E is
the running energy scale. Similar though not identical equa-
tions have been obtained in the weak-coupling studies of the
cuprates with the “t-only” dispersion.38

We see from Eq. �13� that the pair hopping term u3 is not
generated by other interactions; i.e., u3=0 if u3

0=0. In the

absence of u3, �SDW and �SC
s,s+

−�SDW=u1 increases and

drives TSDW up, while �SC
s,s+

=u4 logarithmically decreases, as
it is expected for a repulsive interaction.39 However, once u3

0

is finite, the system moves into the basin of attraction of
another fixed point, at which

u3 	
u

1 − �u�ln
W

E

, u1 = − u4 =
�u3�
�5

, u2 	 �u3�1/3, �14�

where u depends on the bare values of the couplings. In Figs.
5 and 6 we show the RG flow obtained by the numerical
solution of Eq. �13�.

The two key features of the new fixed point are �i� �u3�
rapidly increases and eventually becomes larger than u1 by a

factor �5, and �ii� u4 decreases, passes through zero, changes
sign, and then increases by magnitude and approaches
−�u3� /�5 �see Fig. 5�. For positive u3

0	u2
0, these results im-

ply that �SDW
r =u1+u3 remains positive and the largest out of

density-wave vertices, i.e., the highest density-wave instabil-
ity, is a conventional SDW instability �see Fig. 6�a��. Note,
however, that �CDW

�i� is a close second as it only differs by u2
which under renormalization becomes relatively small com-
pared to u1 and u3 �u2	 �u3�1/3�. The interaction in the s+ SC
channel, �SC

�s+�=u4−u3, becomes negative �attractive� below
some scale �Fig. 6�a��, while �SC

�s� remains repulsive. We em-
phasize that the density-density vertex u4 changes sign under
renormalization, becomes attractive and also supports SC.

p
4

u3

p
3

p
2

p
1

3u

1

p

p
1

4

u u1

p
3

p
2

=

p p

p
1

p3

4

δu1

2

+

(a)

=

p
1

p3

u
3

p4 p 2

u2

−2

p p
1 3

p
4 2

pu

u

3

2

p
1

p
3

p
24

p

−u4u3

1

p

p
1

4

u

p
2

p
3

3
u

p p
1 3

p
4 2

pu1

u 3

x2

x2

x 2

x2

x2

++

+ +

p p

p
1

p3

4 2

u3δ

(b)

FIG. 4. Diagrams for one-loop vertex renormalizations. The
renormalizations of u1 and u3 are shown; others are obtained in a
similar way.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
u1/u3

−1

−0.5

0

0.5

1

u 4/
u 3

FIG. 5. �Color online� The RG flow of Eq. �13� in variables
u4 /u3 and u1 /u3. The fixed point is u4 /u3=−1 /�5, u1 /u3=1 /�5.
The fourth variable, u2, becomes small near the fixed point com-
pared to the other ui. We used boundary conditions u1

0=u4
0, u3

0

=0.1u1
0, and for simplicity set u0

2=0.

(b)

(a)

FIG. 6. �Color online� The RG flow of the effective couplings in
various density-wave and superconducting channels vs L
=u0 log W /E. The boundary conditions are u1

0=u4
0=u0 and u2

0=u3
0

= �0.1u0. The running couplings are in units of u0. �a� The RG
flow for u3

0�0. The extended s-wave �s+� superconducting channel
becomes attractive above some L. The strongest density-wave in-
stability is in SDW channel, for real order parameter. �b� The same
for u3

0�0. The conventional s-wave superconducting channel be-
comes attractive above some L. The strongest density-wave insta-
bility is in CDW channel, again for real order parameter.
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Moreover, the interactions in the SDW and the s+ SC channel
�SDW

�r� =u1+u3 and �SC
�s+�=u3−u4 become comparable to each

other and eventually flow to the same value u3�1+1 /�5�.
The implication is that the SDW order and s+ superconduc-
tivity are competing orders, determined by effective interac-
tions of comparable strength.

For negative u3
0 ,u2

0, �CDW
�r� =u1+ �u3�+2�u2� is the strongest,

positive, density-wave vertex, and �SDW
�i� =u1+ �u3� is a close

second �see Fig. 6�b��. �SC
�s+�=u4+ �u3� is now positive �repul-

sive�, but �SC
�s� =u4− �u3�, changes sign under the renormaliza-

tion and becomes negative �attractive�; see Fig. 6�b�. This
implies that CDW now competes with a conventional s-wave
SC. Near the fixed point, the interaction in the s-channel
�SC

�s� 	−�u3��1+1 /�5� is now larger than �CDW
�r� 	�u3��1

−1 /�5� which implies that in this case s-wave SC likely
wins over CDW. The generalization of this analysis to four-
band model �or even five� is straightforward and yields quali-
tatively similar behavior.

A. Competing orders

We next analyze in more detail Eq. �10� for u3
0�0. By

construction, the upper limit of the integration over internal
energies there is O�EF� as the contributions from higher en-
ergies are already absorbed into the renormalized vertices.
When hole and electron Fermi surfaces are near-identical,
i.e., �k

c =−�k+Q
f holds down to the lowest energies, both SDW

and SC susceptibilities are logarithmic in T,

− T�
�
� d�kGk�m

c Gk+Q,�m

f = T�
�
� d�kGk�m

c G−k,−�m

c

= �
0

EF

tanh
 �

2T
�d�

�
= log

EF

T
,

�15�

and from Eq. �10� the largest instability temperature is either

TSDW
�r� � EFe−1/�SDW

�r�
or TSC

�s+� � EFe−1/��SC
�s+��. �16�

As �SDW
�r� is still larger than �SC

�s+�, the SDW instability comes
first. This is what, we believe, happens at zero doping.
Whether SC emerges as an extra order at a smaller T requires
a separate analysis as the pairing susceptibility changes in
the presence of the SDW order. At a finite doping, all evi-
dence is that the two FS become unequal; i.e., the condition
�k

c =−�k+Q
f breaks down. In this situation, the log 1 /T behav-

ior of the SDW polarization is cut, and TSDW
�r� decreases and

eventually becomes smaller than Tc
�s+�. At larger dopings,

Tc
�s+� remains roughly doping independent, while magnetic

correlations decrease.
A remark about the SDW state; in the coordinate frame

associated with folded BZ, Fe ions are located at r1
= �nx ,ny�, where nx ,ny are integers �we recall that we set
interatomic spacing to one�, but also at r2= �nx+1 /2,ny
+1 /2�. SDW instability with Q= �� ,�� order antiferromag-
netically spins within the sublattice where r=r1, and within
the sublattice where r=r2, but do not fix relative orientation
between the spins in the two sublattices. To obtain full spin

structure, we would need to analyze spin ordering within full
four-band structure �two electron and two hole orbitals�, or
go back into unfolded Brillouin zone. For localized spins,
this type of order is described by J1−J2 model for J2
�0.5J1. In the classical model, the angle between r1 and r2
sublattices is arbitrary, but quantum fluctuations select �0,��
or �� ,0� state.40,41 There is then an extra Ising degree of
freedom, which was argued34,41 to remain broken even at T
�TSDW, when SU�2� spin symmetry is restored.

IV. SUPERCONDUCTING STATE

The SC s+ state that we found has two features similar to
a conventional isotropic s-wave state. First, the supercon-
ducting gaps on the hole and electron FS are opposite in
sign, but equal in magnitude. They, however, become un-
equal when EF on the two FS become different, which hap-
pens once the doping increases �or when intraband density-
density interactions u4 and u5 become unequal�. Second,
solving the nonlinear gap equation, we immediately find that
the gap �0 obeys the same BCS relation 2�0=3.53Tc as for
an isotropic s-wave state simply because the pairing kernel
contains either two c fermions or two f fermions, but no cf
pairs.

The s+ and s SC states, however, differ qualitatively in the
presence of nonmagnetic impurities. For s state, nonmagnetic
impurities do not affect Tc and nonlinear gap equation.42 For
s+ state, the impurity potential Ui�q� has intra- and interband
components Ui�0� and Ui���, respectively. The Ui��� com-
ponents scatter fermions with +� and −� and acts as a “mag-
netic impurity.”43,44 Specifically, for the s+ state, normal and
anomalous Green’s functions in the presence of impurities
are

Gk,�m

c,f =
Z�m

�m � �k

Z�m

2 ��m
2 + �̄�m

2 � + �k
2

,

Fk,�m

c,f = �
Z�m

�̄�m

Z�m

2 ��m
2 + �̄�m

2 � + �k
2

, �17�

and the fermionic Z=1+���m� /�m and the renormalized gap

�̄�m
in the Born approximation are given by

Z = 1 +
Ui�0� + Ui���
��̄2 + �m

2
,

�̄�m

�
− 1 = −

bT�̄�m

��̄�m

2 + �m
2

, �18�

where �=��T� is the frequency-independent order param-
eter, and bT=2Ui��� /��T�. Below we use bT=0=b as a mea-
sure of the strength of impurity scattering. Note that b is a
complex function of the impurity strength as the order pa-
rameter is also affected by impurities �see below�.

For Ui���=0, �̄=�; i.e., superconductivity is not influ-

enced by impurities. For Ui����0, �̄�m
becomes frequency
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dependent, as if the impurities were magnetic. At T=0, and
b�1, the system displays gapless superconductivity:45 in

real frequencies �̄�m
	−i� at small �, and the DOS at zero

energy acquires a finite value N��=0�= �1− �1 /b�2�1/2. Su-
perconductivity at T=0 eventually disappears when � van-
ishes, i.e., when b tends to infinity.

The parameter � can be re-expressed in terms of �0�T�,
which is the BCS gap in the absence of impurities, and b0
=2Ui��� /�0�T�, which linearly depends on the impurity
strength. The relation between �=� /�0 and b0 �and between
b=b0 /� and b0� is obtained from the self-consistent condi-
tion on the order parameter

� = ueff�
0

�max �̄�m

��̄�m

2 + �m
2

,

�0 = ueff�
0

�max �0

��0
2 + �m

2
, �19�

where ueff is the normalized interaction in the s+ channel.
Solving these equations, we obtain after some algebra the
relations which express b0 in terms of b. They are

b0 = b exp
−
�b

4
�, b � 1,

b0 = b exp
1

2
�1 −

1

b2 −
b

2
sin−11

b
− cosh−1 b�, b � 1.

�20�

The first regime corresponds to �=b0 /b�b0, and holds for
b0�e−�/4	0.465. The second regime corresponds to b�1

and describes a gapless superconductivity ��̄�m=0=0�. When
the order parameter � tends to zero, and b tends to infinity,
b0 approaches 0.5. We plot b0 vs b in Fig. 7�b�.

The vanishing of superconductivity at T=0 when b0 ap-
proaches 1/2 also follows from the generic dependence of Tc
on the impurity strength. The calculation parallels the one for
an s-wave superconductor with magnetic impurities45 and
yields

ln
Tc

0

Tc
= �
1

2
+

3.53b0

4�

Tc
0

Tc
� − �
1

2
� , �21�

where ��x� is the digamma function. One can easily check
that Tc vanishes when b0 approaches 1/2. We plot Tc�b� and
Tc�b0� in Fig. 7�a�.

A. Spin response of an s+ superconductor

The dynamical spin susceptibility of a superconductor is
given by an RPA-type formula

�s�q,�� =
�s

0�q,��
1 − �SDW

�r� �s
0�q,��

, �22�

where �s
0�q ,�� is the �dimensionless� susceptibility of an

ideal s+ SC �the sum of GG and FF terms with spin matrices
in the vertices�. In our case, when �k

c 	−�k+Q
f , and the gap

changes sign between hole and electron FS, one can easily
verify that �s

0�q	Q ,�� coincides with the particle-particle
susceptibility for either c or f fermions. This leads to several
consequences.

�1� In the normal state, �s
0�Q ,��=log EF / �−i��, that is

Im �s�Q ,�� only weakly �logarithmically� depends on fre-
quency. This could be verified in INS experiments.

�2� In a superconducting state, �s�Q ,�� has a resonance
below 2�. Indeed, at T=0, in the clean limit and at small �
and q−Q,

�s
0�q,�� = log

EF

E0
+

1

4�2 ��2 − v2�q − Q�2� , �23�

where v=vF /�2 is the velocity of the Anderson-Bogolyubov
mode in two dimensions �2D�, and E0 is the largest of �
and the cutoff energy associated with nonequivalence of
the two FS. Substituting this into �s�q ,��, and assum-
ing �SDW

�r� log EF /E0�1, i.e., no SDW instability, we find the
resonance at �=�v2�q−Q�2+�0

2, where �0=2��1 /�SDW
�r�

−log EF /E0�1/2. This resonance has been earlier obtained in
the numerical analysis in Refs. 23 and 46. It bears both simi-
larities and differences with the spin resonance in dx2−y2 SC.
On one hand, both are excitonic resonances, and both occur
because the gap changes sign between the FS points k and
k+Q. On the other hand, the resonance frequency in a dx2−y2

SC disperses downward because of the nodes, while for a
nodeless s+ SC, the resonance disperses upward, with large
velocity. Indeed, this is only valid if ��2�, otherwise the
dispersion becomes more complex.

Note in passing that, because the two gaps have opposite
signs, there should also exist a resonance mode in the
particle-particle channel, at momentum k=Q, similar to the
Leggett mode in a two-band superconductor.47

�3� An s+ superconductor has a rather peculiar low-
frequency behavior of Im �s�q�Q ,�→0�. In the clean
limit,

 Im �s
0�q,��
�


�=0

	 �
k

Ck,q
�nF�Ek�

�Ek
, �24�

where Ek=��2+�k
2, nF�E� is Fermi function, and Ck,q=1

+ ��k
c�k+q

f +�c� f� / �Ek
cEk+q

f � is the coherence factor. We see

FIG. 7. �Color online� Tc �a� and b0=2Ui��� /�0 �b� as functions
of b=2Ui��� /�, where � is the order parameter, and �0 is the gap
in the absence of impurities. The inset of �a� shows the dependence
of Tc on b0.
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that the coherence factor vanishes identically for q=Q such
that Im �s

0�q ,�� /���=0	 �q−Q�2.

1. NMR spin-lattice relaxation rate

The spin-lattice relaxation rate measured by NMR is
given by

1

T1
	 T�

q
Im �s�q,��

�


�=0

	 T�
q

�s
2�q,0�� Im �s

0�q,��
�

�
�=0

. �25�

Because �s�q ,�=0� is enhanced near Q, this region contrib-
utes most to the momentum sum. The smallness of
Im �s

0�q ,�� /���=0 for q�Q then implies that 1 /T1 has ex-
tra smallness in a clean s+ SC �by the same reason, there is
no Hebel-Slichter peak in 1 /T1 near Tc�.

In the presence of impurities, Im �s
0�Q ,�� /���=0 remains

nonzero, and 1 /T1	T Im �s�Q ,�� /���=0�d2q�s
2�q ,�=0�.

The full expression for 1 /T1 is rather involved as one has to
include the full G and F, and the full vertex. It simplifies
considerably if we neglect vertex corrections and assume that
intraband scattering Ui�0� �harmless for superconductivity�
well exceeds �. In this case, we obtained analytically, at a
finite T,

1

T1
= 1T1


Tc

�
0

� dx

4 cosh2 x

2T


1 −
��̄�2 − x2

����̄�2 − x2�2 + 4x2��̄��2
� ,

�26�

where �̄ is given by Eq. �18� with BCS T-dependent ��T�.
We verified numerically that lowest order vertex corrections
do not change the result in any significant way.

In Fig. 8 we plot the normalized temperature dependence
of 1 /T1�T� for several values of b=2Ui��� /��T=0�. Stron-
ger impurity scattering corresponds to larger b �it does not
make a difference whether to parametrize the impurity
strength in terms of b, which depends on impurity strength in
a complex way, or b0, which scales linearly with the impurity
strength, because of one-to-one correspondence between b
and b0; see Eq. �20��.

For b�1, the low-T behavior is exponential, as is ex-
pected for a superconductor without nodes. However, we see
that for b�0.3, there is a wide intermediate T range where
the behavior of 1 /T1 closely resembles a power law T�. The
exponent � decreases as b increases from �	3 for b=0.3 to
�	2.3 for b=0.7. The T3 behavior was suggested based on
experimental fits and was presented as evidence for d-wave
superconductivity in Fe pnictides. Our results show that
1 /T1�T� in a dirty s+ superconductor mimics a power law
over a wide T range even when the DOS still vanishes at
�=0, and Tc is only slightly affected by impurities. Further-
more, we argue, based on Fig. 8�a� that the experimental T
dependence of 1 /T1 can only approximately be fitted by a
particular power of T. We believe that the reported power-

law form reflects intermediate asymptotics of a complex T
behavior of 1 /T1, and one should reduce temperature further
to be able to distinguish between a true power-law and ex-
ponential behavior.48

Note in passing that the theoretical behavior is exponen-
tial at the lowest T only if b�1. For b=1, which is the
critical b for a gapless s+ SC, 1 /T1	T5/3 at the lowest T, and
for larger b, 1 /T1�T�	T.

2. Uniform susceptibility

Finally, we also computed uniform spin susceptibility
�s�T�	�s

0�q=�=0�, measured by Knight shift. It is obtained
by standard means,49 and for a superconductor with s+ gap
symmetry is given by

(a)

(b)

FIG. 8. �Color online� �a� Calculated temperature dependence
of 1 /T1 for an s+ superconductor with nonmagnetic impurities. The
normalization is chosen such that 1 /T1=1 at T=Tc. The theoretical
curves are for various values of the parameter b=2Ui��� /��T=0�
which measures the strength of the pair-breaking component of
nonmagnetic impurities. Gapless superconductivity occurs for b
�1. The experimental data are taken from Refs. 31 and 33. �b�
Theoretical 1 /T1 for different b vs power-law forms. All theoretical
dependencies are exponential in T at very low T, but are described
by power laws T� over a wide T range below Tc. The exponent �
decreases as b increases from �	3 for b=0.3 to �	2.3 for b
=0.7.
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�s�T� = �s�Tc��1 − �
0

�

tanh
x

2T
Im

�̄2

��̄2 − x2�3/2 − 2Ui���x2
�

= �s�Tc��1 − �
0

�

tanh
x

2T

1

��T�
Im

1

�1 − ux
2�3/2 − bT

� ,

�27�

where ux=x / �̄ and �̄ depends on x and is given by Eq. �18�.
We emphasize that ladder series of vertex corrections

must be included in the calculation of �s�T� to recover SU�2�
spin symmetry. Observe that Ui�0� drops from the expression
for �s�T�, because impurity scattering of electron within ei-
ther hole or electron FS does not differentiate between a
conventional s-wave and s+ gap symmetry.

Equation �27� is similar but not identical to the expression
for �s�T� in an ordinary s-wave superconductor with mag-
netic impurities.49 In both cases, �s�T� differs from free-
fermion value. However, for magnetic impurities, �s�T=0�
becomes finite for any nonzero strength of the impurity scat-
tering, while in our case, the impurities are actually nonmag-
netic, and �s�T� still vanishes at T=0 for all b�1, for which
the DOS still vanishes at zero frequency.

We plot Eq. �27� in Fig. 9 for the same b as 1 /T1. We see
the same trend as in Fig. 8: the theoretical T dependence of
�s�T� is exponential in � /T at the lowest T, but rapidly de-
viates from exponent already at small T, and is roughly a
power law in T in the same T range where 1 /T1�T� can be
fitted by a power law. This is another indication that one
should perform Knight shift and 1 /T1 measurements down
very low T to be able to distinguish between the nodeless s+

state and a SC state with gap nodes. Note also that the same
b=0.7 which fits 1 /T1 data by Matano et al.33 also fits rea-
sonably well their data on the Knight shift.

V. CONCLUSIONS

To conclude, in this paper we presented Fermi-liquid
analysis of SDW magnetism and superconductivity in Fe
pnictides. We considered a two-band model with small hole
and electron pockets located near �0,0� and Q= �� ,�� in the
folded BZ. We argued that for such geometry, particle-hole
and particle-particle channels are nearly identical, and the
interactions logarithmically increase at low energies. We
found that the interactions in the SDW and extended s-wave
channels ��k=−�k+Q� become comparable in strength due to
the increase in the intraband pair hopping term and the re-
duction in the Hubbard-type intraband repulsive interaction.
We argued that at zero doping, SDW instability comes first,
but at a finite doping, s+ superconducting instability occurs at
a higher T.

This s+ pairing bears similarity to magnetically mediated
dx2−y2 pairing in systems with large FS with hot spots in the
sense that in both cases the pairing comes from repulsive
interaction, peaked at Q, and requires the gap to change its
sign under k→k+Q. The difference is that for small pock-
ets, the gap changes sign away from the FS and remains
constant along the FS.

We analyzed spin response of a clean and dirty s+ super-
conductor and found that �i� it possesses a resonance mode
which disperses with the same velocity as Anderson-
Bogolyubov mode, �ii� intraband scattering by nonmagnetic
impurities is harmless, but interband scattering affects the
system in the same way as magnetic impurities in an s-wave
SC, �iii� 1 /T1 has an extra smallness in the clean limit due to
vanishing of the coherence factor, �iv� in the presence of
impurities, there exists a wide range of T where the T depen-
dencies of 1 /T1 and the uniform susceptibility for an s+ SC
resemble the ones for a SC with nodes.

Note added. While completing this work we became
aware that similar results for spin-lattice relaxation rate,
1 /T1, in the superconducting state have been obtained in
Ref. 50.
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