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The dynamics of superconductivity phase in thick stack of Josephson junctions with strong inductive cou-
pling, such as the one realized in layered high-Tc cuprates and possibly the recently discovered FeAs-based
superconductors, is investigated under a c-axis bias voltage and in the absence of an external magnetic field.
The kink state found previously by the present authors is extended to three dimensions for both rectangular and
cylindrical geometries. The IV characteristics are calculated and the distributions of electromagnetic field
inside the samples are clarified. The solution for a cylindrical mesa exhibits a higher resonating frequency than
that of a square mesa with the same linear size by a factor of �2.4. More importantly, from the radius
dependence of the resonance frequency for the cylinder geometry it is possible to confirm directly the kink
state and thus to reveal the mechanism of the strong radiation discovered in recent experiments.
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I. INTRODUCTION

Stimulated by the recent progress in radiation of terahertz
�THz� electromagnetic waves using a mesa of
Bi2Sr2CaCu2O8+� �BSCCO� single crystal,1,2 we investigated
the dynamics of superconductivity phase of the intrinsic Jo-
sephson junctions with strong inductive couplings. A new
dynamics state was found in the absence of an external mag-
netic field, in which the gauge-invariant phase difference in
each junction is characterized by static �� phase kinks
stacked periodically along the c axis, in addition to a phase
term evolving linearly with time according to the ac Joseph-
son relation and the plasma term.3,4 The phase kink permits
pumping large dc energy into the plasma oscillation via the
ac Josephson effect and enhances strong radiations of THz
electromagnetic waves. This state is the only one known so
far which counts for the following important features of the
coherent radiations observed in Refs. 1 and 2: �1� the fre-
quency is determined by the cavity mode of the mesa
sample, �2� the frequency and voltage satisfy the ac Joseph-
son relation, and �3� the radiation takes place in a sharp
regime of voltage.

For simplicity, a two-dimensional �2D� solution was
worked out explicitly, presuming a state uniform along the
in-plane direction of the long edge of the mesa.3 This solu-
tion corresponds to the �1,0� cavity mode. In the present
work, we show that the kink state can be extended to three-
dimensional �3D�, where the phase kink runs in the ab planes
and the solution is labeled by the �1,1� cavity mode. The kink
state can also exist in samples of the cylinder geometry.

We first derive a set of equations for the shape of the
phase kink, the amplitude, and the phase shift of plasma
oscillation. An approximate solution can be obtained easily
in the strong inductive-coupling limit where the phase kink
renders a step function. This formalism releases one from a
full computer simulation and can be extended from 2D to 3D
straightforwardly.

The present paper is organized as follows. In Sec. II, we
formulate the kink state for the �1,0� cavity mode �thus 2D�

in a rectangular mesa presented in Ref. 3. The analysis is
then extended to 3D in Sec. III and the �1,1� cavity mode is
analyzed. The current-voltage curve of the kink state is pre-
sented, and the distribution of electromagnetic field is de-
rived. Section IV is devoted to analysis for the cylinder ge-
ometry. Radiation of THz electromagnetic waves is
addressed under a boundary condition of an effective imped-
ance in Sec. V. Discussions are given in Sec. VI before a
brief summary.

II. ONE-DIMENSIONAL KINK IN RECTANGULAR MESA

The coupled sine-Gordon equations for a stack of Joseph-
son junctions5–7 take the following form when the inductive
coupling � is large:

��x
2 + �y

2�Pl = �1 − ���2���sin Pl + ��tPl + �t
2Pl − Jext� , �1�

where Pl is the total gauge-invariant phase difference of the
lth junction, the lateral directions are scaled by �c, time by
the plasma frequency 	p, external current by the critical Jo-
sephson current Jc, ���ab

2 /sD, ��4�
c�c /c��c, and
��2�Ql=Ql+1+Ql−1−2Ql, with �ab and �c the penetration
depths, s �D� the thickness of the superconducting �insulat-
ing� layer, 
c the c-axis conductance due to quasiparticles, �c
the dielectric constant, and c the light velocity in vacuum.3,8

We consider first the system under the boundary condition
�nPl=0 with n the normal to the sample edges.3,4

For the kink solution of the �1,0� cavity mode of a rect-
angular mesa, the phase difference Pl is given by3

Pl�x,t� = 	t + A cos��x

Lx
�sin�	t + �� + f lP

s�x� , �2�

where f lP
s�x� is a kink from 0 to �� with the center at

x=Lx /2. The first linear term is in accordance with the ac
Josephson relation.

In a state characterized by the phase Eq. �2� with
f l= �−1�l or f l= �−1��l/2	, Eq. �1� is decoupled. From the static
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parts, the relation of current conservation is derived3

Jext = �	 − sin �

0

Lx dx

Lx
J−1�Ag10

r �cos Ps, �3�

where g10
r =cos��x /Lx� and J is the Bessel function of the

first kind. The phase kink Ps�x� is governed by the differen-
tial equation

�x
2Ps = q� cos �J−1�Ag10

r �sin Ps, �4�

with q=4 for period-2 and q=2 for period-4 solutions and
the boundary condition �xP

s=0 at the edges. While this dif-
ferential equation has to be solved numerically, to a good
approximation, the phase kink can be described well by
Ps�x�=��x� /2 with the soliton solution ��x�
=4 arctan�exp��x−Lx /2� /w	�. The width of the phase kink is
w�1 /���10−3 for BSCCO, which renders the kink almost
a step function.

From terms associated with sin�	t� and cos�	t� when the
phase in Eq. �2� is subject to Eq. �1�, one obtains

1

2
A�	 = sin �


0

Lx dx

Lx
g10

r �J0�Ag10
r � + J−2�Ag10

r �	cos Ps,

�5�

1

2
A�	2 − ��/Lx�2	

= cos �

0

Lx dx

Lx
g10

r �J0�Ag10
r � − J−2�Ag10

r �	cos Ps. �6�

With the aids of Eq. �5� and the recursion relation of the
Bessel functions zJ−1�z�+zJ+1�z�=2J�z�, Eq. �3� is sim-
plified as

Jext = �	�1 + A2/4� , �7�

where the first term clearly counts for the dc ohmic dissipa-
tion and the second term is caused by the ac voltage gener-
ated by the plasma oscillation, which modifies the otherwise
linear IV curve.

The four equations �4�–�7� describe the kink state speci-
fied by five quantities, namely, Jext, 	 �i.e., voltage�, A, �,
and Ps�x�. Especially, the IV characteristics can be derived
by sweeping the voltage 	.

As the frequency, or equivalently the voltage, approaches
the cavity mode 	=� /Lx, large plasma oscillations are
stimulated and a large external current is shunted by the Jo-
sephson current. Just at the cavity frequency Eq. �6� is re-
duced to

1

Lx



0

Lx

dxg10
r �J0�Ag10

r � − J−2�Ag10
r �	cos Ps = 0. �8�

In the limit of strong inductive coupling, where the phase
kink is well approximated by a step function, Eq. �8� is easily
solved to yield A=2.331, and then sin �=0.4625 and Jext
−�	=0.2133 for �=0.02 and Lx=0.4 in units of �c
=200 �m, typical for the BSCCO single crystal used in re-
cent experiments.

For comparison, simulations gave Jext−�	=0.37.3 There-
fore, the present simplified equations give a semiquantitative
evaluation for the kink state at the cavity modes.

III. 2D KINK IN RECTANGULAR MESA

Now we look for the state of static phase kink of two
lateral dimensions, which corresponds to the �1,1� cavity
mode of a rectangular sample

Pl�x,y,t� = 	t + A cos��x

Lx
�cos��y

Ly
�sin�	t + �� + f lP

s�x,y� .

�9�

The equation for the 2D kink is

��x
2 + �y

2�Ps = q� cos �J−1�Ag11
r �sin Ps, �10�

where g11
r =cos��x /Lx�cos��y /Ly� with �nPs=0 at edges

where n is the normal of the edges. The solution obtained by
numerical integration is depicted in Fig. 1, with Lx=0.4 and
Ly =1.5 as in experiments,1 and all the prefactors are in-
cluded into the width of the kink.

The remaining three equations are given by

1

4
A�	 = sin �


0

Lx 

0

Ly dxdy

LxLy
g11

r �J0�Ag11
r � + J−2�Ag11

r �	cos Ps,

�11�

1

4
A	2 − � �

Lx
�2

− � �

Ly
�2�

= cos �

0

Lx 

0

Ly dxdy

LxLy
g11

r �J0�Ag11
r � − J−2�Ag11

r �	cos Ps,

�12�

Jext = �	�1 + A2/8� . �13�

Approximating cos Ps by the 2D step function �see Fig.
1�, the IV curve is evaluated and displayed in Fig. 2. An

FIG. 1. �Color online� 2D phase kink for the �1,1� cavity mode
of a rectangular mesa obtained by numerical integration on Eq.
�10�.
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enhancement of the input current appears when the voltage
approaches the cavity mode value 	=��� /Lx�2+ �� /Ly�2,
where the extra energy is pumped into plasma oscillation.

The way of the system evolving into the resonance state
from the linear ohmic regime can be seen more transparently
by neglecting A in the right-hand side of Eqs. �11� and �12�.
One then finds

Jext = �	�1 +
2�I11

r �2

�	2 − ��/Lx�2 − ��/Ly�2	2 + ��	�2� ,

�14�

with I11
r = �1 /LxLy��0

Lx�0
Lydxdyg11

r cos Ps. A similar expression
has been derived for the one-dimensional �1D� kink state.4

The development of the resonance is captured analytically by
the above expression, although it becomes invalid around the
resonating regime where A is not small any more. In the
strong inductive-coupling limit where the phase kink takes a
step function, I11

r =4 /�2.
As seen in Fig. 2, the two treatments give the same IV

curves outside the resonance regime where the plasma am-
plitude is small. Usage of Eqs. �11� and �12� improves the
description of the resonating state over Eq. �14�.

The ac electromagnetic fields are given by Ez�x ,y�
=�tP̃�x ,y�, Bx�x ,y�=−�yP̃�x ,y�, and By�x ,y�=�xP̃�x ,y�, with

P̃�x ,y� the plasma term in Eq. �9�.3 As shown in Fig. 3, the
electric field takes the maximal absolute value at the four
corners, whereas the magnetic field is maximal at the centers
of the edges. The magnetic field penetrates into the system
from the two edges along the x direction, flows away from
the two edges along the y direction, and the pattern oscillates
with time by switching x and y. The y component of mag-
netic field is larger in absolute value than the x component
since the system is longer in the y direction. Both the electric
and magnetic fields are shielded in the superconducting
sample and thus the central part of the mesa is free of elec-

tromagnetic fields. As discussed in Ref. 3, in the resonance
state at cavity modes higher harmonics exist and the simple
symmetry in Fig. 3 is modified.

The static phase kink generates static Josephson currents
in junctions as depicted in Fig. 4. The patterns with swapped
upward and downward Josephson currents are stacked peri-
odically along the c axis according to f l= �−1�l or
f l= �−1��l/2	.

IV. KINK STATE IN CYLINDER GEOMETRY

Now we consider a sample of cylindrical shape and radius
a. For the �0,1� mode in the cylinder geometry which is
isotropic azimuthally, the total phase difference is given by

Pl��,t� = 	t + AJ0�v01�

a
�sin�	t + �� + f lP

s��� , �15�

where v01=3.8317 is the first zero of J1.
The equation for the static phase kink in cylinder is

FIG. 2. �Color online� IV curves derived by Eqs. �11�–�13� pre-
suming a step-function phase kink �red symbols� and by Eq. �14�
�blue lines� for the �1,1� mode of a rectangular mesa with Lx=0.4
and Ly =1.5. The cavity frequency is 	=8.128, which corresponds
to 0.62 THz approximately.
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FIG. 3. �Color online� Distribution of �a� ac electric field and �b�
ac magnetic field in for the �1,1� cavity mode of the rectangular
mesa.
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���
2 + �1/����	Ps = q� cos �J−1�Ag01

c �sin Ps, �16�

with g01
c =J0�v01� /a� under the boundary condition ��Ps=0

at the edge. The solution obtained by numerical integration is
displayed in Fig. 5 for a=0.4. The phase crosses � /2 at
�=u01a /v01, where u01=2.4048 is the first zero of J0.

The remaining equations are given by

1

2
A�	J0

2�v01� = sin �

0

a �d�

a2 g01
c �J0�Ag01

c � + J−2�Ag01
c �	cos Ps,

�17�

1

2
A�	2 − �v01/a�2	J0

2�v01�

= cos �

0

a �d�

a2 g01
c �J0�Ag01

c � − J−2�Ag01
c �	cos Ps,

�18�

Jext = �	�1 + A2J0
2�v01�/2	 , �19�

where J0�v01�=−0.4028 and the normalization relation
�0

aJ0
2�v01� /a��d�=a2J0

2�v01� /2 has been used. The frequency
of the �0,1� cavity mode for the cylinder geometry is
	=v01 /a which reaches 1 THz when a=58.5 �m.

The IV curve is displayed in Fig. 6, taking cos Ps as the
step function. For comparison we also show the IV curve
evaluated by the following expression:

Jext = �	�1 +
2�I01

c �2/J0
2�v01�

�	2 − �v01/a�2	2 + ��	�2� , �20�

with I01
c = �1 /a2��0

a�d�g01
c cos Ps obtained in the same way as

Eq. �14�. For the step-function phase kink, I01
c =0.1701. Once

again the two evaluations agree with each other outside the
resonance regime.

The ac electromagnetic fields take the following forms:
Ez=A	J0�v01� /a�, Bx=A�v01y /2�a�J1�v01� /a�, and By =
−A�v01x /2�a�J1�v01� /a�. The distribution of electromagnetic
field is shown in Fig. 7 which oscillates with time. The elec-
tric field takes the maximum at the center of cylinder,
changes its sign at �=u01a /v01=0.6276a, and at the perim-
eter it reaches −0.4028 of the maximum value �Figs. 7�a� and
7�b�	. The magnetic field is circular; the amplitude is zero at
both the center and edge of the cylinder, and presumes its
maximum at �a /2 �Figs. 7�c� and 7�d�	. The distribution of
the static Josephson current generated by the static phase
kink is displayed in Fig. 8. The patterns with swapped up-
ward and downward Josephson currents are stacked periodi-
cally in the c axis.

V. RADIATION OF ENERGY

The boundary condition of a single junction subject to
radiation was discussed in literatures.9–11 There is a signifi-
cant mismatch of the impedance between the junctions and

FIG. 4. �Color online� Distribution of static Josephson current
for the �1,1� cavity mode of a rectangular mesa.

(b)

(a)

FIG. 5. �Color online� �a� Phase kink and �b� radial dependence
of phase in a cylinder sample obtained by numerical integration on
Eq. �16�.

FIG. 6. �Color online� IV curves derived by Eqs. �17�–�19� pre-
suming a step-function phase kink �red symbols� and by Eq. �20�
�blue lines� for the �0,1� mode of a cylinder sample of a=0.4. The
cavity frequency is 	=9.579, which corresponds to 0.73 THz
approximately.
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outside space. As in the previous work,3 we model the space
by an effective impedance Z. The effective impedance should
be very large due to the small thickness of the sample com-
pared with �c.

12 We have confirmed that the cavity resonance
based on the kink state is stable for �Z��50.

The IV characteristics should be modified when the radia-
tion is present. Since the radiation is governed by the at-
tached impedance, the IV characteristics can be evaluated
simply by an effective parallel circuit. With a simple dimen-
sion counting one finds for a real impedance Z �Ref. 13�,

Jext = �	 + �	A2/4 + 	A2/�ZLx� , �21�

Jext = �	 + �	A2/8 + 	A2�1/Lx + 1/Ly�/�2Z� , �22�

Jext = �	 + �	A2J0
2�v01�/2 + 	A2J0

2�v01�/�Za� , �23�

for the �1,0� mode uniform in the direction of long edge and
the �1,1� mode of the rectangular mesa, and for the �0,1�

mode of the cylindrical mesa, respectively. The density of
radiation energy measured by the Poynting vector then reads

P10
r = 	2A2/�2Z� , �24�

P11
r = 	2A2/�4Z� , �25�

P01
c = 	2A2J0

2�v01�/�2Z� , �26�

for the respective modes.
Presuming the same impedance, we evaluate the ratio be-

tween the Poynting vectors at the corresponding cavity
modes when the linear sample size is the same 2a=L�=Lx
=Ly�: P01

c / P10
r =3.125 and P01

c / P11
r =1.898, where the maxi-

mal amplitudes A=2.331 for �1,0� mode and 2.991 for �1,1�
mode of the rectangular mesa, and 4.194 for �0,1� mode of
the cylinder geometry have been used.

There are three factors in determining the Poynting vec-
tor: the maximal plasma amplitude, the factor for the elec-
tromagnetic field at the edge, and the cavity frequency. In
cylinders the electromagnetic fields are isotropic azimuthally
and the system can make a full use of the phase kink in
pumping dc energy into plasma oscillations, which results in
a large plasma amplitude. The �1,1� mode in the rectangular
mesa is also better than the �1,0� mode since the former can
use a 2D phase kink. While the electric field is maximal at
the edges of the rectangular mesa, the edge electric field for
the cylinder geometry is only 40% of its maximum taken at
the center of the cylinder. This suppresses the radiation
power as in Eq. �26�. The cavity frequency in the cylindrical
geometry is superior to the rectangular geometry by a factor
of �2.4 for the same linear system size.

While the cylinder geometry exhibits a large density of
power emission at the sample surface, the energy is radiated
uniformly in the azimuthal direction. In applications one
needs to focus to a small angle. In contrast, the directivity of
the radiation from a rectangular mesa is helpful for gathering
energy efficiently.

As can be seen in Eq. �8� and the counterparts for the
other modes, the plasma amplitude at the cavity resonance
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FIG. 7. �Color online� Distribution of ac electric field ��a� and
�b�	 and magnetic field ��c� and �d�	 in a cylinder sample.
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FIG. 8. �Color online� �a� Distribution and �b� radial dependence
of Josephson current for the �0,1� mode of a cylinder sample.
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does not depend on the system size. Therefore, we can in-
crease the radiation energy by adopting smaller samples with
larger cavity frequency according to Eqs. �24�–�26�.

VI. DISCUSSIONS AND SUMMARY

In the present paper, only the fundamental frequency is
kept for the plasma contribution to the total phase difference.
This treatment is justified when the system is off resonance,
where the amplitude of plasma oscillation is small and higher
harmonics can be neglected safely.

We have checked the validity of this treatment at the cav-
ity resonance for the cavity mode �1,0� of the rectangular
mesa by comparing the estimates thus obtained with those by
accurate simulations which include automatically all orders
of higher harmonics.3 We expect that this approximation also
provides reasonable estimates for the �1,1� cavity modes of
the rectangular mesa and for the cylinder geometry.

In the resonating regime, the plasma part is much en-
hanced and higher harmonics appear.3 The number of equa-
tions governing the kink state is 2m+2 when up to the mth
harmonics are covered. Here we provide equations merely
including the fundamental frequency with m=1. While the
formulas can be extended easily to higher harmonics, the
resultant equations are much more complex and take heavy
numerics to solve. Discussions on this point will be reported
elsewhere.14

In the kink solution, the spatial part of the plasma term is
the eigenfunction of the Laplace operator in the respective
geometry with zero �or in presence of radiation very small�
normal derivative at the edge, proportional to the magnetic
field. In the cylinder geometry, it gives a cavity frequency
v01 /a with a the radius of cylinder and v01=3.3817 the first
zero of J1. For a state presuming zero �or very small� electric
field at the boundary, the typical frequency should be u01 /a,
where u01=2.4048 is the first zero of J0. Therefore, detecting
the size dependence of the cavity frequency in the cylinder
geometry can tell directly what state is realized inside the

system. Since a rectangular mesa will give cavity frequency
of � /L for both of the two cases, the cylinder geometry is
unique in determining the state realized in the junctions and
thus the mechanism of the strong radiation observed recently
in experiments.

The present analysis reveals the way how the stack of
Josephson junctions convert the dc energy to ac electromag-
netic radiation by formulating out explicitly the oscillation
amplitude and the frequency. The far-field radiation pattern is
determined merely by the spatial part of the plasma term and
is the same as a thin capacitor subject to an ac driving volt-
age. Analyses on far-field radiation patterns for various
modes are available in literature,15 and the results can be
compared with those observed for the THz radiations from
mesas of BSCCO single crystal. A detailed discussion will
also be given in Ref. 14.

To summarize, we have worked out explicitly the kink
state in Josephson junctions of strong inductive coupling in
3D for both rectangular and cylindrical geometries. A set of
equations are provided which permits one to understand the
kink state without heavy numerics. The IV characteristics are
revealed to be very nonlinear due to the cavity resonance
where the plasma oscillation is much enhanced. The solution
for a cylindrical mesa provides a higher resonating frequency
than that of a square mesa with the same linear size by a
factor of �2.4. Investigation on the size dependence of the
resonating frequency in the cylinder geometry can give a
direct evidence for the state realized in the stack of Joseph-
son junctions and thus can reveal the mechanism of the
strong radiation discovered recently. Experiments using cy-
lindrical mesas are highly anticipated.
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