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The phase diagram of the attractive Hubbard model with spatially inhomogeneous interactions is obtained
using a single-site dynamical mean-field theory-like approach. The model is characterized by three parameters:
the interaction strength, the active fraction �fraction of sites with the attractive interaction�, and electron filling.
The calculations indicate that in a parameter regime with intermediate values of interaction strength �compared
to the bare bandwidth of the electrons�, and intermediate values of the active fraction, unconventional super-
conductivity is obtained. The results of this work are likely to be relevant to many systems with spatially
inhomogeneous superconductivity such as strongly correlated oxides, systems with negative U centers, and, in
future, cold atom optical lattices.
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I. INTRODUCTION

There is a growing body of experimental evidence that
strongly correlated oxides such as cuprates,1–9

manganites10–15 etc., are electronically inhomogeneous. The
term “electronically inhomogeneous” is used to describe
states with spatially inhomogeneous electronic orders, i.e., of
orders of charge, spin, superconducting gap etc. There are
suggestions that such inhomogeneous electronic states are
one of the characteristic features intrinsic to strongly corre-
lated materials16 arising out of their “electronic softness.”17

A clear understanding of this phenomenon could, for ex-
ample, suggests possibilities of controlling the nature and
size of the electronic inhomogeneities, and can lead to, in-
teralia, possible device applications of these materials. Ef-
forts directed toward uncovering the physics of the origin
and nature of electronically inhomogeneous electronic states,
therefore, have emerged as a very active research area.

Of particular interest to this work is electronically inho-
mogeneous superconducting state which is found in many
systems of current interest. High temperature superconduct-
ing cuprates are prominent examples of systems showing
inhomogeneous superconductivity. The past five or so years
have witnessed fascinating experimental work based on
scanning probes that have revealed a wealth of information
regarding the nature of the inhomogeneous superconducting
state in cuprates.2–9 In particular the experimental work re-
ported in Refs. 8 and 9 has clearly demonstrated a distribu-
tion of gaps, and even regions with gaps above the supercon-
ducting transition temperatures. There could be several
physical origins to this phenomenon, such as one body dis-
order due to the dopant ions, inhomogeneous pairing inter-
actions etc. Superconductivity arising out of inhomogeneous
pairing interactions is also found in many other systems.
Anderson18 suggested the possibility of negative-U centers in
semiconductors. There are reports of existence of supercon-
ductivity in silicon based nanostructures with negative-U
centers.19 Negative-U models have been used to describe the
physics of doped bismuthates.20 A material of more recent
interest, Tl-doped PbTe, is believed to have a distribution of
negative-U centers.21,22

As indicated briefly above, there are two factors that lead
to an inhomogeneous superconducting state. The first one is

one body disorder; when one body disorder is large, it tends
to localize electrons, and in this sense “competes” with
superconductivity.23 Effect of one body disorder on super-
conductivity has been extensively studied using models and
methods of different sophistication.24–26 The second factor
that contributes to inhomogeneous superconductivity arises
in situations where the pairing interaction �such as
negative-U centers� responsible for superconductivity is it-
self spatially inhomogeneous. Systems with a distribution of
negative-U centers are known to give rise to the “charge
Kondo effect,”27 the material Tl-doped PbTe is believed to be
one such.28 Models with inhomogeneous pairing interactions
have been investigated before.29–36 The model usually stud-
ied is the attractive Hubbard model with inhomogeneous in-
teractions �AHII� is described by the Hamiltonian:

H = − t �
�ij��

�ci�
† cj� + h.c.� − �

i

Uini↑ni↓ − ��
i�

ni�, �1�

where i , j are site indices of a lattice, t is the hopping ampli-
tude, � is the spin index, ci�

† is the electron operator which
creates an electron of spin � at site i, ni�=ci�

† ci� is the num-
ber operator at site i of spin �, and � is the chemical poten-
tial. The interaction Ui�0 is site dependent; a fraction p
�here called the active fraction� of sites have Ui=U�0,
while Ui=0 for the other fraction �1− p� of sites. These sites
with Ui�0 can be arranged periodically or randomly. It is
known that for a given U, there is a critical value pc of p
below which superconductivity is killed.29–31

More recently the above model �1�, motivated by the elec-
tronic inhomogeneities in correlated materials, has been sub-
jected to extensive numerical simulations.34–36 A
Bogoliubov-de Gennes mean-field �BdGMF� approach is
used to obtain the ground state and finite temperature prop-
erties; these calculations involve averaging over several dif-
ferent U-disorder realizations. Quantum Monte Carlo
calculations37 have also been performed on a two-
dimensional square lattice. Such calculations are numerically
intensive, and attention has been focused on particular values
of electron fillings and interaction parameters U, and the ac-
tive fraction p. It is useful to have a “phase diagram” of the
AHII, particularly to compare and contrast different experi-
mental systems, and to obtain regions in the parameter space
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where interesting physics may be expected. Calculation of
the phase diagram within the BdGMF approach can be quite
time consuming; it is therefore desirable to generate the
phase diagram by means of a simple approach to understand
its overall structure.

Motivated by the above discussion, the phase diagram of
the AHII model is obtained in this paper using a dynamical
mean-field theory-like approach.38 Effects of interaction
strength, active fraction, and electron filling are investigated
systematically. It is found that there are regions of the phase
diagram where “unconventional” superconductivity is sup-
ported.

The paper is organized as follows. In Sec. II, we discuss
the single-site formulation of the problem. Results of the
calculations are presented in Sec. III. In Sec. IV the results
are discussed, and aspects of the phase diagram not captured
by the present treatment, including a more speculative phase
diagram, are discussed.

II. FORMULATION

The AHII Hamiltonian given in Eq. �1� is treated here
within a dynamical mean-field theory-like approach. A dy-
namical mean-field theory treatment of Hubbard-type Hamil-
tonians with one body disorder is treated by Jani˘s and
Vollhardt;39 the present work deals with the case where the
interaction term is disordered. A single site, that hybridizes
with an electron bath38 described by a bath Green’s function
G �this is a matrix in the present formulation, see below�,
represents a typical site of the lattice. The imaginary time
action for this site is written as

S���,�,V� = − �
0

� �
0

�

d�d�������G−1�� − ��������

− �
0

�

d�V	↑
����	↓

����	↓���	↑��� , �2�

where �=1 /T �T is the temperature�, 	� are the Grassmann
variables of the site electrons,

� = 		↑

	↓
� 
, �� = �	↑

� 	↓ �

are the Nambu matrices, G is the matrix Green’s function
�which incorporates the chemical potential ��, and V is the
attractive interaction. The Grassmann variables satisfy the
Fermionic condition 	����=−	��0�. The interaction V is a
random variable which here is distributed according to the
probability distribution

P�V� = �1 − p�
�V� + p
�V − U� , �3�

where p is the active fraction, 
�·� is the Dirac delta function,
and U is the attractive interaction strength at the active sites.
The disorder averaged partition function can now be written
as a disorder averaged path integral

Z =� dVP�V�� D�	�
�,	��e−S���,�,V�. �4�

The site Green’s function �expressed in terms of Matsubara
frequencies i�n� is obtained as

G�i�n� = �1 − p�G�i�n� + p�G−1�i�n� − �U�i�n��−1, �5�

where �U is the self-energy obtained from the solution of the
quantum impurity problem with the bath Green’s function G
and an attractive Hubbard interaction U at the site. The
Green’s function �5� represents the lattice Green’s function as
seen from the single-site formulation. The site self-energy is
now given by

��i�n� = G−1�i�n� − G−1�i�n� . �6�

Using the dynamical mean-field theory ansatz38 that the
self-energy is “momentum �energy� independent,” we obtain
the lattice Green’s function G as

G�i�n� =� d
g�
��i�n1 − ��z − ��i�n��−1, �7�

where 1 is a 2�2 unit matrix, �z is the Pauli z matrix, �
=
−�, and g�
� is the bare density of states of the lattice.
The dynamical mean-field theory self-consistency condition
is now obtained by insisting that

G−1�i�n� = G−1�i�n� + ��i�n� . �8�

This condition is obtained by demanding that the site Green’s
function as calculated from the quantum impurity formula-
tion �Eq. �5�� is same as the lattice Green’s function calcu-
lated via Eq. �7�.

The following paragraphs contain a description of the ap-
proximate solution, based on the saddle-point method, of the
quantum impurity problem that is used in this work. A
Hubbard-Stratanovich field ���� is introduced to decouple
the interaction term in the particle-particle channel. The par-
tition function becomes

Z =� dVP�V�� D���,��e−�0
�d�������2

�� D�	�
�,	��e−S���,�,V,��, �9�

where

S���,�,V,�� = − �
0

� �
0

�

d�d�������

��G−1�� − ��� + 
V��� − ��������� ,

�10�

with � defined as

��� − ��� = 	 0 ����
����� 0



�� − ��� . �11�

The Fermionic path integral is easily evaluated, and the par-
tition function becomes
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� dVP�V�� D���,��e−��0
�d�������2−ln det�−�G−1+
V����.

�12�

The averaging over the probability distribution can be per-
formed exactly to obtain

Z =� D���,��e−S�, �13�

where

S� = �
0

�

d�������2 − ln��1 − p�det�− G−1�

+ p det�− �G−1 + 
U���� . �14�

The partition function is now evaluated by the introduc-
tion of the saddle-point approximation which amounts to
treating � as independent of the imaginary time;40 in the
present context this approximation is equivalent to the
Bardeen-Cooper-Schrieffer �BCS� mean-field decoupling of
the interaction term. With the assumption that � is real
�equivalent to picking a particular phase of the resulting su-
perconductor�, the value of � is obtained by minimizing S�

leading to the equation

� =
peln det�−�G−1+
U���

�1 − p�eln det�−G−1� + peln det�−�G−1+
U���

��
U

2

1

�
�
i�n

�G12
� �i�n� + G21

� �i�n��� �15�

where G�= ��G−1+
U��−1�.
Within this approximation the self-energy �U in Eq. �5� is

equal to 
U�, where the � obtained from the solution of Eq.
�15� is used in Eq. �11�.

In present formulation within a dynamical mean-field
theory framework, the saddle-point approximation is the
simplest possible “impurity solver.” The formulation based
on the Hubbard-Stratanovich fields is amenable to more so-
phisticated, and obviously more computationally intensive,
treatments such as the Hrisch-Fye quantum Monte Carlo
method.41 The saddle-point approximation for the impurity
solver is similar to the coherent-potential approximation.42

In the framework developed here, 
U� has the natural
interpretation of the disorder averaged pairing gap. It should
also be noted that there is a possibility of introducing a sec-
ond Hubbard-Stratanovich field in the particle-hole channel,
which in effect is equivalent to introducing an additional
Hartree potential in the saddle-point approximation. This ex-
tra Hartree potential can now be absorbed into the definition
of the chemical potential �.

For a given value of U and p, the value of � is calculated
as follows. A typical calculation starts with an assumed value
of �, and a new value of � is calculated using Eq. �15�. The
site Green’s function �Eq. �5�� and the self-energy �Eq. �6��
are calculated using the new value of �. The site self-energy
is used in Eq. �7� to obtain the new lattice Green’s function,
and a new bath Green’s function is generated using Eq. �8�.

This process is carried out until the values of �, self-energy
� are within a specified tolerance of each other in two suc-
cessive iterations. All self-consistency calculations are done
at fixed chemical potential � and the number of electrons n
is obtained after convergence is obtained. The chemical po-
tential is then adjusted to that the number electrons is ob-
tained to be the desired value. The calculations reported here
are performed by evaluating all Matsubara sums as integrals
along the real frequency axis, and the self-consistency con-
dition also enforced on the real frequency axis.

III. RESULTS

In the single-site formulation presented in Sec. II, the in-
formation regarding the lattice enters the formulation only
via the density of states g�
�. Since the goal of this paper is
to understand the generic features of the phase diagram of
the AHII model, densities of states with simple analytical
forms that capture some features of the real lattice systems
are adopted. Two cases are considered. The semicircular den-
sity of states corresponding to a Bethé lattice43 with

g�
� =
2

�

1 − 
2, − 1 � 
 � 1 �16�

and the flat band density of states

U

p

0.50 1.00 1.500

0.2

0.4

0.6

0.8 Φ
0.383
0.340
0.298
0.255
0.213
0.171
0.128
0.086
0.043
0.001

UcL

Bethe
n = 0.44

No SC

pc

UcH

0.00
(a)

U

p

0.50 1.00 1.50

0.2

0.4

0.6

0.8 Φ
0.282
0.251
0.220
0.189
0.157
0.126
0.095
0.064
0.032
0.001

pc

Flat band
n=0.125

No SC

0.000
(b)

FIG. 1. �Color online� T=0 phase diagram in the p-U plane.
Plots show contours of constant pairing �. The pairing amplitude
vanishes on the “left” side of the curve marked as pc. �a� Bethe
lattice with filling n=0.44 �b� Flat band with filling n=0.125.
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g�
� =
1

2
, − 1 � 
 � 1. �17�

Energy is measured in the units of half bandwidth of the
systems, and hence the condition −1�
�1 in both cases.
Other parameter values of quantities such as U, �, and T are
all henceforth dimensionless ratios of these quantities and
the half bandwidth.

Superconductivity is monitored by computing the pairing
amplitude �:

� = �	↑
�	↓

�� = −
1

�
�

−�

�

d�IG12��� . �18�

Vanishing of � implies absence of pairing and superconduc-
tivity. Clearly, existence of a nonzero value of � automati-
cally does not imply global superconductivity. This point is
discussed in more detail later in the paper when the Bose-
Einstein condensation-like phenomenon in such systems is
discussed.

Results at zero temperature are presented first followed by
results at T�0.

A. Results: T=0

For a given density of states, the phase diagram is deter-
mined by three parameters: the interaction strength U, the
active fraction p, and the filling n. Figure 1 shows the phase
diagram of the system in the p-U plane for different fillings.
For a given filling n we see that there is a range of interaction
strength U for which there is a critical value of the active
fraction pc that is required to produce a nonzero pairing am-
plitude �. In the case of the Bethe lattice the value of pc
decreases with increasing filling n, while for the flat band
case, pc is essentially insensitive to filling. This result is a
reflection of the fact that pc is affected by the bare density of
states �at the chemical potential�; the bare density of states
increases with increase in filling �up to n�0.5� for the Bethe
lattice, and hence the decrease of pc. The critical active frac-
tion pc is insensitive to filling in the flat band case since the
density of states is constant. This is more clearly illustrated
in Fig. 2 which shows the phase diagram in the p-n plane for
two values of U. It is evident that pc increases with decreas-
ing n, and this increase is related to the decrease in the bare
density of states �see Fig. 2�a��. Interestingly, the sensitivity
of pc on n decreases with increasing interaction strength U.
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FIG. 2. �Color online� T=0 phase diagram in the p-� plane.
Plots show contours of constant pairing �. The pairing amplitude
vanishes below the curve marked as pc. �a� Bethe lattice with U
=0.6 �b� Flat band with U=1.0.
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FIG. 3. �Color online� Spectral function for the Bethe lattice
with U=0.8, n=0.44. The four panels show the spectral function for
increasing values of the active fraction p.
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The present calculation reveals an interesting result. For val-
ues of U larger than a critical value UcH �this value depends
on the filling, i.e., bare density of state at the chemical po-
tential�, the critical value of the active fraction pc becomes
vanishingly small �see Fig. 1�. Thus if U�UcH, even a small
concentration of impurities can produce a nonzero pairing
amplitude. In the same vein, there is another critical value of
the interaction UcL. If the interaction strength is below UcL
�which, again, depends on the bare density of states at the
chemical potential� even a small dilution of the active frac-
tion from unity kills the pairing amplitude!

The spectral function,

N��� = −
1

�
IG11��� , �19�

also provides interesting information regarding the nature of
the electronic state. Figure 3 shows spectral functions for the
Bethe lattice with U=0.8, n=0.44 �results for the case of the
flat band qualitatively similar�, for various values of the ac-
tive fraction p. The spectral function at p=1 has a gap with a
characteristic BCS singularity44 in the spectral function near
the gap edges. On the other hand for p�1 it is seen that the
singularity is “smeared out” by appearance of “midgap
states.” The calculation suggests a possible spatial distribu-

tion of gaps in the system with different regions of the lattice
developing different gaps. It is, of course, not possible within
the present framework to study the gap distribution, but fur-
ther detailed simulations could throw more light on the na-
ture of the inhomogeneous state.

B. Results at TÅ0

Figure 4 shows the phase diagram of the AHII model in
the p-T plane. Several interesting features can be seen. For
all active fractions with a nonvanishing pairing amplitude at
zero temperature, there is a temperature Tc at which the pair-
ing amplitude �and �� vanishes. There are three regimes of
active fraction that give rise to very different finite tempera-
ture phenomenon. For active fractions just above the critical
value �marked pc in the panels in Fig. 4�, the transition to a
regime of vanishing pairing amplitude takes place by an
abrupt �first order� transition �see, for example, region 0.2
� p�0.6 in Fig. 4�a��. On increase of the active fraction, a
second regime appears �see, for example, region 0.6� p
�0.75 in Fig. 4� where there are two transitions. In this
regime, with increase of temperature from zero, there is a
first-order transition where � �and �� undergoes a sudden
jump and obtains a smaller nonzero value. With further in-
crease of temperature the pairing amplitude vanishes con-
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FIG. 4. �Color online� Phase diagram in the p-T plane. Plots show contours of constant pairing �. The nearly straight line marked Tc

represents a continuous transition. The attractive interaction U=0.8 in all cases. �a� Bethe lattice with n=0.072, �b� Bethe lattice with n
=0.44, �c� flat band with n=0.125, and �d� flat band with n=0.45.
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tinuously to zero. Interestingly, the first-order line in the p-T
plane appears to end at a “critical point” �such as that marked
by C in Fig. 4�a��. With further increase of the active frac-
tion, a third regime is attained �p�0.75 in Fig. 4�a�, for
example�, where Tc depends essentially linearly on p, and the
transition is continuous. These observations can be clearly
seen by a study of Fig. 5 which shows a plot ��T� /��0� as a
function of T /Tc, where the three types of behavior are
shown. Indeed, the features are generic and do not appear to
depend on the shape of the bare density of states; they are
clearly seen in both the Bethe lattice and flat band cases. The
“sizes” of the three regimes are, however, strongly affected
by the electron filling n. This is most clearly seen in the flat
band case where the critical value of pc is insensitive to
electron filling. However, the finite temperature behavior
strongly depends on electron filling, compare Figs. 4�c� and
4�d�, in the latter case the second regime of active fraction
with two finite temperature transitions is strongly sup-
pressed.

IV. DISCUSSION AND CONCLUSION

This section contains a summary of the results obtained in
this paper, and a discussion of the full phase diagram of the
AHII model. The present calculation of the phase diagram is

based on a single-site dynamical mean-field theory-like ap-
proach. The calculation shows for a certain range of the
strength of the interaction parameter U which depends on the
bare band structure and electron filling, there is a critical
active fraction pc below which there is no pairing amplitude.
However, for large enough values of the interaction param-
eter, even an infinitesimal value of the active fraction is suf-
ficient to produce a nonvanishing pairing amplitude. For ac-
tive fraction p greater than pc the electron spectral function
shows a feature with “midgap states,” and the BCS singular-
ity of the spectral function is smeared out.

For cases which show a nonvanishing pairing amplitude
�, three types of finite temperature behavior are found. For p
close to pc, there is a discontinuous transition at a finite
temperature, and for p close to unity, there is continuous
transition �BCS-like behavior� to a state without pairing am-
plitude. There is a intermediate range of active fractions,
where the transition to a nonpaired state takes place in two
steps—“non-BCS behavior.” As the temperature is increased,
there is a first-order transition to a state with smaller �.
Further increase of temperature causes a continuous transi-
tion to a state with no pairing amplitude. It is tempting to
speculate that the state attained up on the first-order transi-
tion has a pairing amplitude, but no superconductivity. The
physical picture of such a state is that of “puddles of elec-
trons” with nonzero pairing amplitude without a global phase
necessary for superconductivity. Such a state is likely to
show “psuedogaplike” features, for example, a reduced spin
susceptibility. Clearly, this finding of the present calculation
needs more attention, and the region of the phase diagram
where this phenomenon is found needs further detailed in-
vestigation. It is interesting to note that calculations based on
BdGMF �Ref. 35� also show a regime of U and p which
show anomalous behavior of � as a function of T.

The present formulation is based on a single-site formu-
lation and averages over all the spatial correlations. How-
ever, as noted above, a very interesting region in the phase
diagram is revealed, and suggests possibility for further in-
vestigation. Further, the approximate treatment based on the
saddle-point approximation does not include quantum fluc-
tuations. It is believed that the inclusion of these quantum
fluctuation effects are not likely to change the qualitative
features of the present single-site calculation; this is sug-
gested by the iterated perturbation theory based dynamical
mean-field theory of the attractive Hubbard model.45 It must
be noted that most of the previous work cited above are
based on two-dimensional systems, mostly square lattices.
Long wavelength fluctuations, crucial in two-dimensional
systems, cannot be treated within the present framework. The
present work, therefore, is more applicable to higher dimen-
sional systems such as negative-U center systems etc.

The paper is concluded with a discussion of the complete
phase diagram of the AHII model. Based on the calculations
presented here and on published results quoted earlier, the
nature of the electronic state in different regions of the pa-
rameter states can be inferred. In the regions with nonzero
pairing amplitude �as obtained from the present calculation�,
different types of electronic states may be found as indicated
in Fig. 6. For intermediate U �compared to the bare band-
width� and large p a BCS superconductor is obtained. On the
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FIG. 5. �Color online� Variation of � with temperature T for the
flat band U=0.7, n=0.45. The four panels show the behavior of �
for increasing values of the active fraction p. The critical value of
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other hand for smaller value of the active faction p, a “non-
BCS” superconductor is obtained �as discussed above�, with
the possibility of a high-temperature pseudogap phase. For
larger values of the interaction strength there is a crossover
from BCS-like to Bose-Einstein condensation �BEC�-like be-
havior where the electrons form pairs and Bose condense.46

In the present calculation, this behavior is inferred by the
calculation of an estimate �based on the kinetic energy� of
the superfluid density.45 As shown in Fig. 7, the superfluid
density �s falls with increasing U indicating a crossover from
BCS to BEC behavior. The effect of the random attractive

interaction in this BEC regime needs a more careful investi-
gation than that given here. For low values of the active
fraction and intermediate values of the interaction strength,
the most likely ground state is a heavy Fermi liquid27 engen-
dered by the charge Kondo effect. It is also possible that for
small fillings, large interaction strengths, one could obtain a
pair glass, where electrons are localized at the negative U
centers. Clearly, the “boundaries” of the regions indicated in
the phase diagram will be determined by the third factor in
the problem, namely electron filling. The nature of the elec-
tronic states in different parameter regimes of the AHII
model does resemble various systems discussed in Sec. I. It
will be interesting also to explore the possibility of a direct
experimental realization of the AHII model in cold atom op-
tical lattices.47–49
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