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The magnetic exchange interactions in the Gd-pnictide series are analyzed from various points of view. First,
a Heisenberg Hamiltonian between the 4f induced local moments on the Gd only is used and the corresponding
exchange interactions between first and second-nearest neighbors are derived from total-energy differences
between the ferromagnetic �FM� and antiferromagnetic AFM-I and AFM-II configurations, as calculated from
a full-potential-linearized muffin-tin orbital method in the local-density approximation with Hubbard-U cor-
rections �LSDA+U�. The induced magnetic moments on Gd d and N in the different configurations are found
to differ and to favor the AFM-II for the P-Bi compounds while the FM configurations is favored for GdN. The
extracted J2 parameter determines the Néel temperature of the AFM-II compounds in good agreement with
experimental values. The Curie-Weiss temperature involves both J1 and J2 in this model and is also in good
agreement with experiment. The FM state of GdN can be viewed as an antiferromagnetic arrangement of the
small moments induced on Gd d and N on the rocksalt lattice, which in this case happen to cancel each other
exactly because of the semiconducting nature of GdN. This locks the Gd 4f moments into a FM arrangement
through the on-site f-d coupling. Linear response calculations in the atomic sphere approximation, including
empty sphere sites, provide an alternative decomposition of the magnetic ordering energy in Gd-Gd, Gd-N, and
Gd-empty sphere exchange interactions. The latter can be viewed as representing the tails of the t2g orbitals on
Gd. This analysis shows that the magnetic ordering arises from the small induced moments on the Gd d, N, and
empty sphere sites rather than from direct interactions between 4f moments. The Curie temperature for GdN is
found to be significantly smaller than previous calculations estimated and than experimental values and may
indicate that the latter are influenced by defects. For GdP, GdAs, GdSb, and GdBi, the linear-response calcu-
lations around the AFM-II ground state give results in good agreement with the full-potential linearized
muffin-tin orbital calculations. The linear-response approach also gives a reasonable value for the Curie
temperature of metallic Gd.
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I. INTRODUCTION

Recently, there were several studies of the magnetic ex-
change interactions in the Gd pnictides: Gd X, with X=N, P,
As, Sb, and Bi.1–6 These materials all share the rocksalt
structure. Except for GdN, they are all semimetallic and an-
tiferromagnetic �AFM� with the AFM-II structure as ground
state, i.e., ferromagnetically ordered �111� planes alter in spin
orientation from layer to layer. We will denote this as �111�1.
GdN however is ferromagnetic �FM� and
semiconducting.7–10 Although most of the recent computa-
tional studies used local-spin-density approximation with
Hubbard-U correction �LSDA+U�, there is still no conver-
gence on the magnitude of the exchange interactions or their
interpretation in terms of simple models. Usually, a Heisen-
berg Hamiltonian is postulated for the interaction between
the localized moments resulting from the half-filled 4f shell,

H = − �
ij

JijSi · S j . �1�

While Li et al.1 and Larson and Lambrecht3 used S=7 /2,
some authors use a classical Heisenberg model, in which S
becomes a unit vector. The only difference between both
formulations is that Jij of the former are smaller by a factor
S�S+1�=63 /4. Another slight difference between formula-
tions is that some authors1,3 take the sum in Eq. �1� to run
over all i and j while others4,5 sum each pair only once and
hence differ by a factor 2. Here we will use the classical

Heisenberg Hamiltonian and the convention of counting each
pair only once, the same as that in Duan et al.5 Even when
renormalizing for these trivial changes in convention, the
exchange interactions of Duan et al.5 were smaller than those
reported by Larson and Lambrecht3 by about a factor 2.

In this paper, we first of all recalculate the energy differ-
ences between the AFM-I ��001�1�, AFM-II, and �FM� states
using the full-potential linearized muffin-tin orbital �FP-
LMTO� method,11 from which we can then fit J1 and J2 using

�EI = E�AFM-I� − E�FM� = 8J1,

�EII = E�AFM-II� − E�FM� = 6J1 + 6J2. �2�

We find much better agreement for J2 with the calculations
of Duan et al.5 which determine directly the Néel tempera-
ture. We also find better agreement with the experimental
Curie-Weiss temperatures1 extracted from susceptibility as a
function of temperature than either of the two previous cal-
culations.

Next, we discuss the nature of the magnetism in these
systems. Duan et al.5 already pointed out that J2 correspond
essentially to antiferromagnetic superexchange between
Gd d via the intervening anion-p orbitals. Indeed, they
showed it to be given approximately by
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J2
super = − nd

tpd
2

�2� 1

�
+

1

U
� , �3�

originally derived by Zaanen and Sawatzky,12 in which tpd is
the p-d hopping integral, � is the charge-transfer energy be-
tween anion-p and cation-d levels, the on-site Coulomb en-
ergy U is implicitly assumed by Duan et al.5 to be large
relative to � and thus 1 /U is neglected, and nd is the d
contribution to the magnetic moment. Without the first term
this would correspond to Anderson’s equation for superex-
change with tpd

2 /� as the effective hopping between d orbit-
als via the intervening anion p’s. Whether this limit is correct
is somewhat questionable but in any case it only is meant to
provide an insight into the results of the actual first-
principles calculations in terms of well-known models of ex-
change interaction. This interaction increases in magnitude
with the size of the group-V element. The magnetic moments
on Gd d are induced by the f-d coupling. The nearest-
neighbor interaction is interpreted by Duan et al.5 as a carrier
mediated �Ruderman-Kittel-Kasuya-Yosida �RKKY�� �Refs.
13–15� coupling of the local 4f moments in the conduction-
electron gas. However, in pure semiconducting GdN, this
interpretation does not hold; so where does the ferromag-
netism in GdN come from? We will show that a detailed
examination of the small induced magnetic moments on the
N and Gd d holds clues. It allows us to describe the FM state
of GdN as an “antiferromagnetic state in disguise” because
opposite moments are found on Gd d and N and form a
perfectly interlocking system.

Next, we use the linear-response approach of Liechten-
stein et al.16 in the atomic sphere approximation �ASA� to
gain further insight in the nature of the exchange interac-
tions. Although the latter is found to be not quite as accurate,
it will be shown to provide an alternative description of the
nature of the magnetic exchange interactions.

Finally, the net result of our study is that while good
agreement is obtained with the Néel temperatures for Gd X
with X=P, AS, Sb, and Bi, it gives a severe underestimate of
the Curie temperature in GdN. This indicates that the experi-
mental Curie temperatures in that system may be influenced
by defects or other extrinsic causes.

II. COMPUTATIONAL METHODS

The basic approach of all our calculations is the density-
functional theory17,18 in the local-spin-density approximation
�LSDA� �Ref. 19� but with orbital-dependent Coulomb and
exchange integrals added, the so-called LSDA+U
approach.20,21 In this approach, the screened on-site Coulomb
interaction Uf and the corresponding exchange interactions
described in terms of the unscreened atomic parameter Jf of
the localized f electrons are added at the unrestricted
Hartree-Fock level and their orbital-independent average is
subtracted to avoid double counting the terms already
present in LSDA. We here also use the LSDA+U treatment
for the Gd d electrons. Although the latter form a fairly wide
band, they give rise to the conduction-band minimum. The
usual LSDA underestimate of the gap in semiconductors and
even semimetals can be corrected by slightly shifting up the

d levels, which can be done by adding Ud because for empty
states the LSDA+U method essentially shifts up the
d-orbital energy by Ud /2. This approach was recently shown
to work well for Gd pnictides3 and other rare-earth nitrides.22

The parameters used for Uf is the same as in Ref. 3 and
chosen so as to reproduce the splitting between occupied and
empty 4f states in the Gd pnictides as determined by x-ray
photoelectron spectroscopy �XPS� and bremsstrahlung isoch-
romat spectroscopy �BIS�.23 The parameter Ud is slightly dif-
ferent from that in Ref. 22, so as to accommodate the more
recent information on the band gap in GdN.8

The calculations are carried out using the linearized
muffin-tin orbital �LMTO� method,24 both in the ASA �Refs.
25 and 26� and in a full-potential �FP� version.11 The latter is
more accurate in treating the potential because it makes no
shape approximations. The former has the advantage that it is
more closely connected to multiple-scattering theory and
thus can be implemented in terms of the Green’s
functions.25–27 In particular, this is useful to describe the ex-
change interactions in terms of linear response.16,28 Conver-
gence issues of the FP-LMTO in terms of k points, etc., are
mentioned below as part of our discussion of the results.

III. RESULTS

A. Full-potential results

We begin by revisiting our FP-LMTO calculations in
more detail. We use the FP-LMTO method11 in the LSDA
+U approach with Uf =8 eV and Jf =1.2 eV and an addi-
tional Ud=3.4 eV, Jd=0 exactly as in Larson and
Lambrecht.3 The relevant parameter for a half-filled shell is
Uf −Jf =6.8 eV is slightly larger than the one used by Duan
et al.,5 Uf =6.7 eV, Jf =0.7 eV, and Uf −Jf =6.0 eV, who
used the full-potential linearized augmented plane-wave
�FLAPW� approach. Those authors did not use a Ud and
hence obtain a semimetallic band structure for GdN, while
we obtain a gap in agreement with recent experimental
studies.7,8 The only difference in our calculation with that of
Larson and Lambrecht3 is that we use a larger basis set,
�spdfg ,spdf� on Gd, meaning two sets of � and smoothing
radius for the smoothed Hankel functions for all l up to f and
one for g orbitals, �spdf ,sp� for the anion, and including
Gd 5p as local orbitals,29 larger augmentation angular-
momentum cutoff lmax=5. With such a large basis set the
FP-LMTO method results are converged to be better than
meV precision level required here and comparable to LAPW
calculations as done by Duan et al.5 A major difference from
the previous work of Larson and Lambrecht3 is that we use
differently chosen supercells from which to extract the en-
ergy differences. We here used a doubled cell with lattice
vectors �−1 /2,1 /2,0�, �1/2,1/2,0�, and �0,0,1� in units of the
cubic lattice constant a for �001�1 and �1/2,1/2,0�, �0,1/2,1/2�,
and �1,0,1� for �111�2 and each time evaluates both the AFM
and FM configurations of spins on each of those to calculate
the relevant AFM-FM energy difference. This has the advan-
tage that exactly the same k-point mesh and real-space mesh
�for the smooth part of the charge density and potential� are
used for the AFM and FM cases so that some cancellation of
errors takes place. We also checked that by using a high
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enough k-point convergence the two structures give the same
FM energy to the required precision. To obtain absolute con-
vergence of the FM energy, i.e., the same in both structures
to 1 �eV, we needed a 16�16�16 division. However, a
k-point meshes of 6�6�6 was found adequate to obtain the
relevant AFM-FM energy differences converged to 0.1 meV.

The resulting energy differences and the extracted J1, J2,
Néel, and Curie-Weiss temperatures are given in Table I.
These were calculated at the experimental equilibrium lattice
constant. For comparison we also calculated the same results
at the theoretical equilibrium lattice constants obtained with
our current basis set. The experimental and theoretical lattice
constants and the corresponding J1 and J2 values are com-
pared in Table II. The calculated equilibrium lattice constants
are about 2% larger when using Gd 5p as local orbital. We
can see that J2 changes moderately by using the theoretical
equilibrium lattice constant but J1 becomes smaller and even
changes sign. This would result in more negative Curie-
Weiss temperatures.

In the mean-field approximation, the Néel temperature for
the AFM-II configuration is given by

TN�MF� = − 2J2/kB, �4�

with kB as Boltzmann’s constant. Typically, the mean-field
theory overestimates the actual Néel temperature by about
30%, as we can deduce by comparing the Monte Carlo re-
sults of Duan et al.5 with the mean-field TN�MF� deduced
from their J2. We thus use TN=0.7TN�MF� as our best esti-
mate. The Curie-Weiss temperature TCW on the other hand,
given by the high-temperature form of the susceptibility, �
=A / �T−TCW�, is better described by mean-field theory and is
given by

TCW = �4J1 + 2J2�/kB. �5�

For the ferromagnetic case, TCW=TCurie�MF�. For the antifer-
romagnetic case, TCW�0.

Comparing with the results of Duan et al.,5 we find
slightly lower values for ��EII� but a different sign for �EI
for P-Bi. We obtain good agreement for J2 but positive J1 for
Gd�P-Bi�. Their values for J1 are 0.86, −0.17, −0.22, −0.51,
and −0.66 meV for the series from N to Bi. For J2, their
values are −0.14, −0.74, −0.91, −1.13, and −1.37 meV. This
results in our estimates of Néel temperatures in excellent
agreement with theirs and about 10%–20% below the experi-
mental value. Our values for the Curie-Weiss temperatures
are closer to the experiment than the values which we can
extract from their parameters: 37, −25, −31, −50, and
−62 K, respectively, for Gd�N-Bi�. Li et al.1 extracted J1 and
J2 values from the mean-field equations for the Curie or Néel
temperature and the Curie-Weiss temperatures. Their J2 and
J1 values are −0.92, −0.95, −1.63, and −1.71 meV and 0.60,
0.22, 0.14, and −0.11 for Gd�P-Bi� after conversion to our
present conventions of the classical Heisenberg Hamiltonian.
For GdN, they only extract J1=1.74 meV. The values from
Larson and Lambrecht3 are −0.87, −1.35, −1.52, −1.95, and
−2.45 meV for J2 and 1.89, 1.13, 0.98, 0.80, and 0.69 meV
for J1. They are almost a factor 2 larger in absolute value for
J2 and hence significantly overestimating the Néel tempera-
tures. They are almost an order of magnitude larger for J1
than obtained here. We find that including Gd 5p is crucial to
our results. Without it we would find GdN to prefer AFM-II
structure. We think however that the main differences from
our results with those of Larson and Lambrecht3 result from
their different procedure. Their results for �111�1 were not
obtained in the same geometry as the FM state and hence this
energy difference was possibly less well converged.

What all calculations and experiment clearly agree on is
an increase in �J2� from P to Bi, directly corresponding to an
increase in Néel temperature. Although there is less consen-
sus on the J1 values, clearly it is a smaller interaction than J2
and is decreasing from N to Bi. As discussed by Duan et al.5

the effective J2 interaction can be interpreted as arising from
superexchange between Gd d moments induced by the f-d
interaction via the intervening anion p states with which they
increasingly overlap, the larger the anion size.

The origin of the J1 interaction however is less clear, and
even its sign is not very clear. They interpreted it as RKKY
in origin. We examine this proposal in some more detail

TABLE I. Magnetic energy differences �in meV/pair�, Heisenberg exchange parameters �in meV�, and
Néel and Curie-Weiss temperatures �in kelvins�.

�EI �EII J1 J2 TN �MF� 0.7TN �MF� TN �expt.�a TCW TCW �expt.�

GdN 3.4 0.4 0.42 −0.36 58 11 81.0

GdP 2.7 −2.9 0.34 −0.82 19 13 15.9 −3 4.0

GdAs 0.95 −5.5 0.12 −1.03 24 17 18.7 −18 −11.8

GdSb 1.2 −6.5 0.15 −1.22 28 20 23.4 −22 −31.3

GdBi 0.1 −8.4 0.01 −1.40 32 23 25.8 −32 −45.0

aTC for GdN, the experimental values in this column and TCW are from Li et al. �Ref. 1�.

TABLE II. Exchange parameters with the experimental and the-
oretical lattice constants.

ath

�Å�
aex

�Å� J1 �theor.� J1 �expt.� J2 �theor.� J2 �expt.�

GdN 5.07 4.98 0.40 0.42 −0.34 −0.36

GdP 5.84 5.71 0.13 0.34 −0.82 −0.82

GdAs 6.00 5.86 −0.02 0.12 −0.96 −1.03

GdSb 6.39 6.22 −0.02 0.15 −1.28 −1.22

GdBi 6.43 6.3 −0.01 0.01 −1.99 −1.40
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here. Based on the band structures, one expects an increasing
overlap of the valence and conduction bands with an increas-
ing carrier concentration in the electron pocket. This will
lead to an increase in kF and hence shorter period for the
RKKY oscillations. Assuming a plausible concentration of
n=3�1020 e /cm−3 and 2kF=4.1�107 cm−1. The first mini-
mum of the cos 2kFr RKKY factor then occurs at about
7.6 Å and the sign change at 3.8 Å. We can see that indeed
the nearest-neighbor distance between Gd atoms �4.0–4.5 in
GdP-GdBi� is then already in the first negative lobe of the
RKKY oscillation and increasingly strongly negative for the
heavier anion both because the lattice constant increases and
because the overlap of the bands and hence carrier concen-
tration increases. This agrees with the results of Duan et al.5

For GdN, the nearest-neighbor distance is 3.5 Å, and the
nearest-neighbor exchange would still be positive, perhaps
even second-nearest-neighbor RKKY could still be positive
if the carrier density is somewhat lower �for example, 1
�1020 cm−3 would give the first zero in cos 2kFr at 5.4 Å�.
If the band structure is semimetallic there is also a compen-
sating hole pocket. Both electron and hole gases could give
rise to RKKY-like interactions and reinforce each other. In
our band structures, the band overlap in Gd�P-Bi� can be
expected to be reduced compared to that in Duan et al.5

because of our Ud shift, and hence smaller carrier concentra-
tions will result. This will shift the point where exchange
interactions become negative to larger distances. Possibly
this is the reason why we obtain a small positive J1 except
for Bi. Thus overall, the RKKY model seems plausible as
origin for J1. On the other hand, we would then expect a
long-range 1 /r3 decay while the exchange interactions cal-
culated from first principles are found to fall rather fast.
Also, in pure semiconducting GdN, this explanation does not
hold because there are no free electrons.

To gain further insight, we inspect the magnetic moments.
In Table III, we show our calculated magnetic moment for
the three configurations and for each of the materials. These
are extracted by integrating the spin density beyond the
muffin-tin sphere radius to estimate the true moment per
atom. In Gd, we find a magnetic moment slightly larger than
the 4f value of 7�B, indicating a Gd 5d moment parallel with
the 4f moment. This arises clearly from the induced spin
splitting of the valence bands. This is however a rather subtle
effect. Although in GdN both majority and minority-spin
bands are completely filled since we have a semiconductor, it
must indicate that the valence bands, which have N p-Gd d
bonding character must have slightly larger hybridization

with the Gd d for the majority spin than for the minority
spin. The spins of the top valence and lowest conduction
bands are reversed, so indeed the Gd d of majority spin are
somewhat closer in energy to the N majority-spin band and
hence are expected to have slightly stronger hybridization. In
the other pnictides, we have a semimetallic band structure
and hence the mainly Gd d bands are partially occupied but
only very slightly near the X point of the Brillouin zone.
Since the Gd d bands of majority spin are slightly lower than
the minority spin, it is somewhat easier to understand a slight
positive Gd d moment parallel to the f moment. Since the
total moment per Gd in the ferromagnetic state is almost
exactly 7 for all cases, it means that a positive Gd d moment
must be compensated by an opposite moment on the N. In
fact, we are then missing electrons from the majority-spin
N-like valence band and hence expect an opposite moment
on N. On the other hand, in the AFM-II case, the anion has
exactly three nearest-neighbor Gd of one spin on one side
and of opposite spin on the other side. In that case, we see
that the moment is zero on the anion. In the AFM-I case, we
find an intermediate situation with four of its Gd neighbors
in the same �001� plane having opposite spin and the two
above and below it of parallel spin.

From Table III we see furthermore that the size of the
Gd d moment is larger in the AFM-II case than in the FM
case for P-Bi and increases in the series from P to Bi. This is
consistent with an increasingly favorable AFM-II ground
state. On the other hand in GdN, the moment is actually
slightly larger in the FM case but is then compensated by an
opposite N magnetic moment. The two are exactly opposite
in this case which is related to the semiconducting nature of
the band structure. Viewed in this way, we can think of GdN
as an antiferromagnetic ordering on a rocksalt lattice be-
tween N and Gd d magnetic moments. Each Gd is sur-
rounded by six N and vice versa with opposite spins. Be-
cause of the f-d coupling to the Gd 4f , however, this locks
all the Gd into a ferromagnetic configuration relative to each
other. We could thus say that GdN is an antiferromagnet in
disguise. The fact that the stabilization of this peculiar AFM
arrangement of spins on N and Gd is preferred in GdN but
not in Gd�P-Bi�, however, appears to be related to the size of
the magnetic moments, in other words due to longitudinal
fluctuations of the moments for different arrangements of the
spin orientations. This is clearly physics beyond the Heisen-
berg Hamiltonian, which assumes fixed moments. The
Heisenberg Hamiltonian captures the net result for the Gd 4f
fixed size localized spins but not for the small moments in-
duced on the N and Gd d. The latter in effect represent the
induced moments equivalent to the ones induced in the elec-
tron gas in RKKY theory. Ultimately, the preference for a
FM alignment for GdN is related to the formation of a mag-
netic moment on the N, whereas the AFM-II state is pre-
ferred for the other group-V anions because in that case no
magnetic moment forms on the anion. The propensity of N p
orbitals to allow for a magnetic moment is well known and
has recently been discussed in connection with defect medi-
ated magnetism in magnetic semiconductors.30 The picture
we obtain here for the origin of magnetism is somewhat
similar to that proposed by Fang et al.31 for Sr2FeMO6
double perovskites with M standing for Mo, Re, or W. In

TABLE III. Magnetic moments in �B.

FM AFM-I AFM-II

Gd d Anion Gd d Anion Gd d Anion

GdN 0.08 −0.08 0.04 −0.03 0.07 0

GdP 0.06 −0.08 0.07 −0.03 0.11 0

GdAs 0.06 −0.07 0.07 −0.02 0.13 0

GdSb 0.07 −0.08 0.09 −0.03 0.18 0

GdBi 0.07 −0.09 0.11 −0.02 0.20 0
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these materials there is a similar competition between FM
and AFM-II configurations and the moments induced on the
nominally nonmagnetic element M play a key role.

B. Linear response results

The linear-response theory of Liechtenstein et al.16 pro-
vides an attractive alternative approach to studying exchange
interactions. In this approach, exchange interactions are cal-
culated as the response to small-angle fluctuations of the spin
orientation. The method is formulated in multiple-scattering
theory and expresses the exchange interactions in closed
form as an integral up to the Fermi energy,

Jij =
2

�
	

0

�F

d� Im Tr
	Pigij
↑	Pjgij

↓ � , �6�

where 	Pi= �Pi
↑− Pi

↓� /2, Pi are the LMTO potential func-
tions, corresponding to the cotangent of the phase shift or
inverse t-matrix element in multiple-scattering theory, and
g���= �P���	ij −S�−1 is the Green’s function, with S as the
structure constants and boldface indicates the matrix struc-
ture in the atomic sites, angular momenta, and spin. To use
this close relation to multiple-scattering theory in LMTO we
need to use the ASA. We thus first need to examine how well
this approach reproduces the small energy differences we are
here interested in as well as the band structure. In fact, the
linear-response approach is based on the magnetic force
theorem16 and thus only uses the changes in occupied one-
electron energies, calculated non-self-consistently for frozen
changes in potential when rotating the spins. Thus, a correct
band structure appears to be crucial.

We find that the latter is sensitive to the choice of sphere
radii and when applied directly to self-consistent total-energy
differences it is not sufficiently accurate to agree with FP-
LMTO. For example, it finds AFM-II to be the ground state
for GdN in disagreement with experiment. In order to obtain
the correct band splittings, it is necessary to keep the Gd
sphere ratio to the anion somewhat smaller than expected on
the basis of their atomic radii.32 We here use s /w values of
1.159, 1.159, and 0.762 for Gd, anion, and empty sphere,
respectively, with s as the sphere radius of each species and
w as the average Wigner-Seitz sphere radius. Otherwise, we
find that the interaction between Gd f and N p is suppressed
and the splitting of the valence bands reverses. We also use a
slightly larger Uf −Jf value of 8 eV, chosen so as to repro-
duce the FP-LMTO band structures as faithful as possible. In
spite of these careful adjustments, the direct self-consistent
total-energy differences were not in agreement with the FP-
LMTO. However, when we apply the magnetic force theo-
rem, most of the terms in the Kohn-Sham total energy cancel
and we only need the one-electron band structure to be ac-
curate.

In Fig. 1 we show the energy difference obtained in a
�001�1 cell upon rotating the spin on the second layer by an
angle 
 relative to the spin on the first layer, calculated with
rigid potentials and using Gd 5p orbitals. We can see that the
energy cost of rotating the spin by � corresponding to the
energy difference between AFM-I and FM is 5.5 meV/pair.
This is only slightly larger than the FP-LMTO result �3.4

meV/pair� and slightly lower than Duan et al.5 �6.7 meV/
pair�. We can see that the �1−cos 
� behavior of the Heisen-
berg Hamiltonian is well obeyed.

Next, we use the Green’s function linear-response ap-
proach to decompose this energy difference into its indi-
vidual atom exchange interactions. For GdN, we treat the
Gd 5p as bands because of the smaller lattice constant while
for the other pnictides, we treat Gd 5p as core and Gd 6p as
band. Also for the other materials, we perform the linear-
response calculation around the antiferromagnetic AFM-II
ground state. We find the exchange interactions given in
Table IV.

Longer-range interactions are essentially zero. We focus
first on GdN. We note that the exchange interactions with
empty sphere and N are actually comparable in magnitude
with those between Gd directly. Inspecting the magnetic mo-
ments, we find that with these sphere sizes, the net magnetic
moment per Gd sphere is 6.97=7−0.03�B, −0.005�B on N,
and 0.0175�B on empty spheres. What this means is that the
empty spheres in some sense represent the tails of the Gd d
orbitals. Restoring their moment to Gd, we would arrive at a
net Gd d moment of 0.005�B. More particularly because of
their location relative to the Gd sphere, the empty spheres
can be thought of as representing the tail of the t2g orbitals.
Viewed in this way, the structure looks like a bcc lattice with
empty spheres in the center surrounded by four Gd and four

TABLE IV. Exchange interactions in Gd-pnictides �in meV� cal-
culated in linear response using FM ground state for GdN and
Gd 5p as band, and AFM-II as ground state and Gd 6p as band for
the other cases.

J1�Gd-Gd� J2�Gd-Gd� J1�Gd-N� J1�Gd-E�

GdN 0.272 0.190 0.136 0.218

GdP 0.163 −0.707 0 0.081

GdAs 0.136 −0.843 0 0.082

GdSb 0.218 −1.143 0 0.054

GdBi 0.789 −1.714 0 0.082

FIG. 1. Energy change in �001�1 cell upon rotating spins of layer
2 relative to that in layer 1.
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N spheres. If we ignore the large 4f moment on the Gd, we
find again an antiferromagnetic or rather ferrimagnetic ar-
rangement of the moments on empty spheres surrounded by
opposite moments on the Gd and N spheres.

We can see that if we add up all the exchange interactions
connecting to the Gd atom, a total J0=�iJ0i of 6.96 meV is
obtained. This is twice the energy difference �EI and is close
to the result of the noncollinear calculation and even closer
to the FP-LMTO result. It gives a mean field Tc�MF�
=J0 /3kB of 27 K. But of course, we now have also to con-
sider the net J0 connected to N and empty spheres. They
have smaller J0 of 0.8 and 0.9 meV leading to a net average
Tc of about 10 K. This is in good agreement with the FP-
LMTO calculation.

We can further examine how J0 on each site is distributed
over angular momentum. This shows that on Gd, the f orbit-
als contribute only 0.4 meV, d�eg� contribute 3.2 meV, d�t2g�
3.5 meV, Gd 5p −0.4 meV, N p 0.9 meV, the empty sphere
s 0.8, and p 0.2 meV. These numbers agree with the decom-
position in individual atom pairs to �0.1 meV. The slight
deviations are because of rounding. It confirms that the f
electrons play a rather unimportant role in establishing the
magnetic ordering. Their magnetic moments are just too lo-
calized to give any direct interactions with neighbors. Rather,
their role is to induce a moment on Gd d via f-d coupling,
which then for the eg orbitals couple to the neighbors via tpd
hopping to N p and for the t2g orbitals directly between Gd
nearest neighbors via tdd hopping or in the present scheme
via empty spheres. The indirect coupling of Gd second-
nearest neighbors via N p is what gives rise to the superex-
change. If we lump the empty sphere contribution together
with the t2g orbitals, we see that the latter give a sizable net
nearest-neighbor interaction of about 5.5 meV or 0.46 meV/
neighbor. This is close to what the FP-LMTO tells us the net
Heisenberg interaction is between nearest-neighbor Gd at-
oms.

It corresponds to a rather different view on how the in-
duced spin density is distributed in space and hence how
their net interactions are accounted for in a corresponding
Heisenberg-type Hamiltonian, which would now include
spins on all sites, not just the Gd sites. Nonetheless, it ulti-
mately arrives at the same mean-field Curie temperature. It
shows us that the exchange interactions as written between
Gd 4f spins are just some renormalized effective interaction
arising from the multiple type of exchange interactions be-
tween N p, Gd d, and spin density located in the empty
spheres. This is actually not too unlike the physical picture of
the RKKY model. In the latter, moments are induced in the
electron gas and provide indirect interactions between Gd f .
Here moments are induced on the Gd d and neighboring sites
which then have exchange interactions with each other. The
advantage of the present point of view is that it does not
require a net free-carrier concentration. We should rather
think about it as some type of itinerant interactions between
the d and N orbitals. Importantly, we see that for GdN, this
leads to what is in effect an antiferromagnetic arrangement
between the induced moments on N and on Gd d as is ex-
pected for a semiconductor.

For GdP, GdAs, GdSb, and GdBi, the linear-response cal-
culations show negligible contribution from Gd-anion and

Gd-empty sphere exchange interactions. J1 and J2 are com-
parable to those obtained in the FP-LMTO calculation. When
considering only the Gd atoms, we obtain a TN�MF� of 16.4
K for GdP, i.e., 14% lower than the FP-LMTO calculation
but this is not surprising given the additional approximations
in the band-structure calculation and the totally different ap-
proach. If we calculate exchange interactions as linear re-
sponse around the FM state, we obtain J1=0.082 meV and
J2=−0.626 meV, which qualitatively is still consistent with
the calculation around the actual ground state but obviously
less accurate. Similar results apply for GdAs, GdSb, and
GdBi. From the J2 values in Table IV we obtain as mean-
field Néel temperatures 16.4, 19.6, 26.5, and 39.8 K for GdP,
GdAs, GdSb, and GdBi, respectively, or 11.5, 13.7, 18.5, and
27.9 as best estimates using 0.7TN�MF�. These are in fair
agreement with the FP-LMTO results and reproduce the cor-
rect trend.

C. Further discussion of GdN

While for Gd�P-Bi� we obtained good agreement with ex-
perimental values for the Néel temperature, the estimates we
obtain for the Curie temperature for GdN of about 10 K are
much smaller than estimated before and significantly lower
than the experimental values �58–70 K�. This raises the ques-
tion to what extent carrier mediated and/or defect mediated
magnetism may play a role in GdN. Within the linear-
response approach, we can test the effect of carriers directly
by simply changing the Fermi level. This assumes a rigid-
band picture. We find that by shifting the Fermi level inside
the conduction band with carrier concentrations up to about
4�1020 cm−3, corresponding to a Fermi level of 0.6 above
the conduction-band minimum, the exchange interactions did
not change appreciably and Tc stayed the same. For higher
concentrations, say, EF 1.4 eV above the conduction-band
minimum and carrier concentration 5.6�1021 cm−3, we find
J2 to decrease to zero and longer range negative contribu-
tions start to come in, leading to a lower Tc of only 3.9 K.
For even higher concentrations, the antiferromagnetic inter-
actions become dominant. On the other hand, a 3�1021

p-type doping corresponding to EF of 81 meV below the
valence-band maximum �VBM� gave an increased Tc of 23.8
K. In practice p-type doping seems unlikely in GdN and such
high carrier concentrations that lead to the AFM lobe of the
RKKY-like coupling also seem implausible. Thus, it seems
that the relatively high experimental Curie temperature of
GdN cannot be explained simply in terms of carrier mediated
coupling in a rigid-band picture. We need to include the de-
fect induced changes in the band structure explicitly. As the
nature of these defects is presently not clear and large cell
simulations are required, we reserve this for a future study.
We only remark that for metallic Gd in the hcp structure
using the same ASA linear-response approach and including
all Jij �0.02 mRyd, we obtain a mean field Tc�MF� of 406
K. Using our usual rule of thumb that the real critical tem-
perature is 30% lower, we obtain 285 K, rather close to the
experimental value of about 297 K. Thus the method seems
to be capable of describing the exchange interactions of Gd
systems from Gd X with X=P, As, Sb, and Bi to pure Gd but
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nevertheless fails to give the experimental values for GdN by
almost an order of magnitude.

IV. CONCLUSIONS

In this paper we revisited the calculation of exchange in-
teractions in Gd pnictides. We used both FP-LMTO and ASA
Green’s function linear-response calculations. LSDA+U is
used with both Uf and Ud. Uf is introduced to obtain a split-
ting of empty and filled f states in agreement with experi-
ment and Ud is introduced to obtain a gap in GdN, in agree-
ment with recent experimental data.8

For GdP, GdAs, GdSb, and GdBi, the Heisenberg Hamil-
tonian with only first- and second-nearest-neighbor interac-
tions between Gd atoms gives an accurate description of the
magnetic properties. Our large basis set FP-LMTO results
agree better with the results of Duan et al.5 than with Larson
and Lambrecht.3 They predict Néel temperatures to within
about 20% of experimental values and also obtain negative
Curie-Weiss temperatures in good agreement with experi-
mental data by Li et al.1 Linear response calculations within
ASA around the AFM-II ground state get these same inter-
actions to within a few percent. The trend in this series of
antiferromagnets clearly arises from the increasing overlap
of the anion p orbitals with the Gd d and as previously
shown by Duan et al.5 can be understood as superexchange
between the magnetic moments induced on the Gd d orbitals.
We find the nearest-neighbor interaction to be somewhat
smaller in absolute value and positive. This can be under-
stood qualitatively from an RKKY point of view as resulting
from our smaller band overlap in these semimetals. Alterna-
tively, however, we can view these nearest-neighbor interac-
tions as simply arising from the direct exchange interactions
between induced Gd d orbital moments. We also find that in
the AFM-II structure, the magnetic moment on the anion is
exactly zero, whereas in a FM configuration, the magnetic
moment on Gd d is slightly smaller and opposed by an op-
posite N induced moment. Ultimately, the preference for the
AFM-II structure is related to its slightly larger Gd d mo-
ments which hence provide a stronger coupling.

In GdN, on the other hand, we find the FM structure to be
preferred because it has slightly larger magnetic moments on

the Gd d than in the AFM-II structure. This FM structure can
be alternatively viewed as an AFM ordering of the Gd d and
N magnetic moments of opposite sign on the rocksalt lattice.
It pins the Gd f local moments in a ferromagnetic configu-
ration through the on-site f-d exchange. The resulting net
exchange interactions between Gd atoms are positive for
both nearest and second-nearest neighbors but significantly
smaller than previous calculations indicated, leading to a
mean-field Curie temperature of only about 10 K. Linear
response calculations show that in GdN, exchange interac-
tions between the moments induced on N and on empty
sphere sites are of comparable magnitude as the ones be-
tween Gd d atoms. The empty sphere may be viewed as rep-
resenting the tails of the Gd t2g orbitals. The decomposition
of the total exchange interaction in angular components re-
veals directly that f electrons give only a small contribution.
Their role is only to induce the moments on Gd d and the
neighbors and the magnetism arises from direct interactions
between those induced moments. Importantly, this picture
does not require a net free-carrier concentration to mediate
interactions between Gd atoms and is thus consistent with
the semiconducting nature of GdN. The very small Curie
temperature obtained here for pure GdN disagrees with ex-
perimental findings of a Curie temperature of about 58–70
K.1,7–10 This suggests extrinsic origins for this observed Cu-
rie temperature. Linear response calculations show that car-
rier mediated coupling via conduction electrons n-type dop-
ing does not change the Curie temperature much and in fact
would start decreasing the Curie temperature even further for
large enough n-type doping. This suggests that defect states,
such as possibly N vacancies, play a more direct role than
simply providing mobile carriers. Further evidence for this is
found in the fact that the approach gives a reasonable value
for the Curie temperature of metallic Gd.
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