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We introduce a class of algorithms that converge to criticality automatically, in a way similar to the invaded
cluster algorithm. Unlike the invaded cluster algorithm which uses global percolation as a test for criticality,
these local algorithms use an average over local observables, specifically the number of satisfied bonds, in a
feedback loop which drives the system toward criticality. Two specific algorithms are introduced, the average
algorithm and the locally converging Wolff algorithm. We apply these algorithms to study the Ising square
lattice and the Ising Bethe lattice. We find reasonable convergence to the critical temperature for both systems
under the locally converging Wolff algorithm. We also re-examine the phase diagram of the dilute two-
dimensional �2D� Ising model and find results supporting our previously reported conclusions regarding the
existence of a local regime of magnetization below the percolations threshold. In addition, the presented
algorithms are computationally more efficient than the invaded cluster algorithm, requiring less CPU time and
memory.
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A useful technique in the computational study of phase
transitions in spin systems is the invaded cluster algorithm
�ICA�.1–5 This algorithm, and others of the same general
approach,6,7 have the property that without prior knowledge
of the critical temperature they evolve a spin system to the
vicinity of the critical temperature. Let us briefly review the
ICA algorithm. Starting in an arbitrary spin state, for ex-
ample the positive aligned state, the ICA forms one by one a
collection of satisfied bonds from the set of all satisfied
bonds associated with the spin state. After each bond is
added to a cluster, the ICA tests whether this cluster spans
the lattice, i.e., has an extent that is of the order of the size of
the system. When such a spanning cluster is found, the ICA
performs the final step of the Swendsen-Wang �SW�
algorithm8 using this set of clusters. This consists of assign-
ing a random spin value to each of the clusters formed—for
the two-state Ising model considered in this paper, this is
equivalent to flipping each cluster’s spin with probability
1/2.

The SW algorithm relies on the relationship p�Tc�=1
−e−2J/kbTc, established by Fortuin and Kasteleyn,9 between
the critical temperature Tc of the Potts spin lattice with ex-
change coupling J and the critical bond probability p of the
associated �multispecies� bond percolation problem. When
the ICA algorithm acts on a spin state typical of T�Tc, be-
cause the state is relatively ordered, the fraction of satisfied
bonds needed to achieve percolation is lower than the frac-
tion needed at a temperature of Tc. Through the Fortuin-
Kastelyn relationship, this small fraction of satisfied bonds
results in the execution of a SW Monte Carlo step at a high
temperature. In a similar way, the ICA generates a large frac-
tion of satisfied bonds when applied to a spin state at T
�Tc, and so executes a SW step at a temperature T�Tc. As
the ICA algorithm is repeated, the temperature of the SW
steps alternates above and below Tc, rapidly approaching
criticality, and finally remains in a narrow range around Tc.

At this temperature the aligned cluster is the smallest that
spans the system, and from its density the critical tempera-
ture can be inferred. Since the ICA considers the minimal
bond density that would globally span the system it can be
referred to as a globally converging algorithm. Here we wish
to introduce locally converging algorithms �LCA�, where the
critical temperature is inferred from local requirements. This
is done for the sake of introducing the local algorithms them-
selves, and also because these algorithms came about from
the study of the magnetization regimes in dilute Ising
squares.10 A principal ingredient of these algorithms is the
feedback loop, in which results from the current iteration are
fed back into the next iteration.

I. INTRODUCTION

Phenomenologically it is known that the ferromagnetic
phase transition is characterized by a transition from a zero
spontaneous magnetization state to a state with a finite spon-
taneous magnetization. If we were to observe the details of
such a system, quenched from high to low temperature, we
would find that after the temperature was lowered, domains
of aligned spins started to form and expand. Through a com-
petition between domains of different orientation, and join-
ing of domains with the same orientation, one orientation
will become dominant. Effectively, for a given configuration
of spins, the ICA selects the highest temperature at which
such a dominant domain has formed.

This consideration leads us to the following question re-
garding the phase transition—when does it become favorable
for such an expanding domain to start forming? For consis-
tency it is required that for a system where a dominant do-
main can form, the answer to the local question above and
the corresponding global answer give almost identical re-
sults. The word almost is used since one can imagine for
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example a dilute Ising square lattice with occupation prob-
ability slightly greater than the critical occupation probabil-
ity. In this case global order is possible, but there is a range
of temperatures where only local ferromagnetic order exists.
We will come back to this system later. The percolation prob-
lem in the Bethe lattice11 provides a playground in which we
can better understand the relationship between local charac-
teristics and global order.

A. Exact percolation examples

The main body of this work, following this section, is
concerned with the Ising model. In this section two exact
examples are given from percolation theory, in order to show
in a clear light the local nature of the percolation problem.
As was shown by the ICA, the Ising phase transition can be
interpreted as a two-species extension of the percolation
problem.

1. Bethe lattice

The Bethe lattice is a subset of the Cayley lattice.11 Since
the number of surface elements of the Cayley lattice is pro-
portional to the number of interior sites, taking the thermo-
dynamic limit is a problem, since surface effects cannot be
ignored. The Bethe lattice with z nearest neighbors remedies
this situation by containing only the interior sites of the cor-
responding Cayley lattice. Thus all sites of the Bethe lattice
are equivalent, sharing z nearest neighbors. Concerns that
may be raised include the fact that some of the nearest neigh-
bors of members of the Bethe lattice are not members of the
lattice themselves. However, many theoretical arguments and
calculations become most clear on this recursive lattice.

Let us see how the percolation problem can be addressed
on the Bethe lattice.11,12 A possible criterion for the percola-
tion threshold is the connectedness of all sites to a border,
moving through nearest-neighbor sites. Traveling along such
a path, one finds that for a given site on the path there are
z−1 possible new sites for the next segment in the path,
where out of the number of nearest neighbors we have to
subtract the direction from which we came. If we denote by
p the probability that a given neighbor of the z−1 neighbors
is occupied, then p�z−1� is the expectation value for the
number of new possible branches for the path. Since this
process repeats recursively and no loops exist in the lattice,
the total number of new branches for a given path would
equal the product of the expectation values at each step.
Hence, we can identify the critical condition �z−1�pc=1, and
the percolation threshold for the Bethe lattice,

pc =
1

z − 1
. �1�

More complexity can be introduced to the percolation
problem by replacing the lattice points with Ising spins. In
this case each site can be empty or occupied, and occupied
sites can be in one of two states. The critical percolation
condition is that almost all spins, of both orientations, are
connected to a border. As was shown by the ICA, the critical
percolation condition in this case corresponds to the critical
point.

2. Square lattice

In percolation theory, it is known that for the case of the
square lattice the bond percolation threshold is 1/2.11,12 In
this subsection we present a heuristic argument for this result
with the aid of unidirectional random walks.

A unidirectional random walk in two dimensions is a ran-
dom walk that is restricted to proceed along two perpendicu-
lar directions. In two dimensions, from any given site of the
lattice we have four equivalent unidirectional walks; i.e., we
can choose to take walks only along the �x̂ , ŷ�, the �−x̂ , ŷ�,
the �−x̂ ,−ŷ�, or the �x̂ ,−ŷ� directions. Since these are walks
to infinity without loops, the percolation threshold is at a
maximum 1/2, because we have at least two independent
directions in which to proceed at each step. Since all walks
have the same starting and end points as these unidirectional
walks, and since paths along different choices of perpendicu-
lar directions are equivalent up to a rotation—i.e., one uni-
directional walk can be obtained by a rotation of the other—
there is no other unique route to infinity, besides the single
path along an axis, which we can ignore. Hence, 1/2 is the
final answer for the percolation threshold.

In three dimensions the problem becomes more difficult.
We can form unidirectional walks in a simple cubic lattice by
taking walks along any three perpendicular axes; for ex-
ample, taking the positive x, y, and z axes. Thus, repeating
our previous arguments, it would seem that the percolation
threshold should be 1/3. However, we must consider that
there are paths to infinity that are restricted to a plane formed
by two perpendicular axes. Unlike the case of a single path
along a single axis, there is an infinite number of such paths
in a plane. Note also that paths that are restricted to the plane
are not a subset of the paths along three axes. This is because
paths along three axes are expected to leave a given plane in
a finite number of random steps, whereas paths restricted to a
plane are bound to this plane. Thus there are additional pos-
sible paths contributing to the bond percolation threshold.

These exact considerations show in a clear light the local
nature of the problem of connectedness in the square lattice.
For a better understanding of the significance of these con-
siderations to the problem of locally converging algorithms,
we add a concept from the study of cluster algo-
rithms8,13,14—the addition probability.

B. Cluster algorithms

As their name implies, cluster algorithms flip clusters of
spins with some probability, instead of the single spins
flipped by single-site Monte Carlo algorithms. In the SW
algorithm8 �SWA�, the entire sample is divided into clusters,
and each of these clusters is flipped with a probability of 1/2.
The temperature of the sample is introduced into the algo-
rithm by the probability of adding spins to a cluster, pa.

Like the SWA, which is at the foundations of the ICA, the
Wolff algorithm14 is a cluster algorithm. Based on the SWA,
it was also designed to overcome the critical slowing down
of the Metropolis algorithm near the critical point. The dif-
ference between the SWA and the Wolff algorithm is that the
Wolff algorithm is a local algorithm—selecting a random
starting point, setting up a cluster from it, and flipping this
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cluster with probability 1. This local property of the Wolff
algorithm is the key feature that makes it a useful starting
point for locally converging algorithms.

The essence of the Wolff algorithm, and the part that re-
lates it to the temperature, is the building of the cluster to be
flipped. This cluster is built by selecting a random seed spin
and adding to the cluster satisfied bonds �bonds between
aligned spins� with the addition probability, pa. In order to
satisfy the condition of detailed balance one finds that a pos-
sibility is to take pa=1−e−2J, with J=J0 /kBT the effective
exchange coupling.13

II. LOCALLY CONVERGING ALGORITHMS

The general idea of LCAs can be understood by consid-
ering that the conditions for the formation of large clusters of
aligned spins are determined by the local characteristics of
the system. Hence, in principle it should be possible to de-
termine the threshold probability for the formation of large
aligned clusters by considering the local characteristics of the
system.

As with the ICA, it is postulated here that for a locally
converging algorithm on an Ising lattice the only modifica-
tion of the condition for percolation is that we consider only
satisfied bonds in the count of nearest neighbors. Thus, fol-
lowing the ICA, we introduce the following general plan for
a local algorithm:

�1� Start with the system in some state.
�2� Determine the probability threshold for domain expan-

sion by taking a statistical sample of a local quantity.
�3� Do � Monte Carlo steps with the information obtained

in step 2.
�4� Go back to step 2 and repeat.
To see why such an algorithm would converge to the criti-

cal point it is enough to repeat the arguments given for the
convergence of the ICA. Let us start with all the spins point-
ing up. In this case step 2 of the above algorithm will give
back a critical value of pa for domain expansion that is less
than pa at criticality, which corresponds to a temperature in
the paramagnetic phase. The reason for this is the same as for
the ICA. In the all up configuration one needs a lower addi-
tion probability to create a large domain �since all bonds are
satisfied� which corresponds to a temperature above the criti-
cal temperature.13

The parameter � will determine the convergence charac-
teristics of the algorithm. To see this, note if we take a small
�, then the system will go through many iterations of step 2
of the above algorithm on essentially the same configuration.
If we pick a � that is too large, then at each step the sample
will converge to the previously chosen temperature, and one
can imagine how stable cycles between two temperatures can
arise. Both these effects were observed in the numerical data.
For the numerical simulation used it was found that taking
�=1 Monte Carlo steps per spin results in good conver-
gence. Note that the ICA uses the determination of the per-
colation threshold part of the algorithm to generate the set of
domains to be flipped, in a way based on the SWA
algorithm.8 In this respect the ICA also performs an equiva-
lent of 1 MCSS between consecutive searches for the perco-
lation thresholds.

As the local algorithm is repeated it seeks the lowest
probability where a percolating cluster has the potential for
growing. Unlike the ICA, which uses a global check for the
lowest addition probability for a percolating cluster, a local
algorithm seeks a local average for the lowest addition prob-
ability where a percolating cluster can potentially form.
Since a percolating cluster would need a lower �than critical�
addition probability to grow in the ferromagnetic phase, and
a higher addition probability to grow in the paramagnetic
phase, the local algorithm goes through a feedback loop that
converges to the vicinity of the critical addition probability.
Note that we use helical boundary conditions for the follow-
ing calculations.

A. Average algorithm

With this general plan we can design a simple local algo-
rithm for the Bethe lattice where any nearest neighbor is
considered to be in an independent direction, orthogonal to
any other direction. For the Bethe lattice, since all sites are
equivalent and no loops exist, to get to infinity from any
given site on the lattice we can repeat the arguments given
above with bonds replaced by satisfied bonds. This will lead
to an equation similar to Eq. �1� with z replaced by zs, the
number of satisfied bonds,

pa
c =

1

�zs − 1�
. �2�

We can perform step 2 in the above plan by taking an
average of Eq. �2� over all possible spins in the Bethe lattice.
The size of the Bethe lattice can be measured in the number
of shells it contains. A shell is a collection of spins added in
the same iteration. If one were to draw a Cayley lattice,
starting from the generator �shell zero�, and creating a tree
structure of spins below it, a shell would correspond to a
horizontal line of spins. Note that the Bethe lattice contains
one less shell than the Cayley lattice by construction. Results
for such a Bethe lattice with z=3 and 17 shells are given in
Fig. 1.

To create a numerical model for the Bethe lattice a struc-
ture definition15 is used. Each member of this structure �a
site� carries information about its current orientation �zero if
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FIG. 1. The average value of Eq. �2� for the Ising Bethe lattice
with 17 shells as a function of program time in MCSS. The x axis is
given in logarithmic scale so that initial relaxation can be observed.
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it is empty�, and the coordinates of its nearest neighbors.
Such a construction is useful also for other lattices because it
allows for direct access to the coordinates of the nearest
neighbors, with a single calculation at the beginning of the
simulation. These calculations for the coordinates of the
nearest neighbors typically consume a considerable amount
of CPU time, especially in the case of periodic boundary
conditions or other boundary conditions that require a check
of the calculated coordinate of a neighbor.

Starting from a lattice with all spins pointing up, Eq. �2� is
averaged over all sites that have a chance to be on a path to
the boundary, i.e., with zs�2, and 1 MCSS of the Metropolis
algorithm is simulated. This process is repeated on the order
of a thousand times. The result for the critical addition prob-
ability as a function of simulation time is given in Fig. 1. We
see the critical addition probability converging to the vicinity
of the known result for this case, pa

c = 2
3 . In Fig. 1 the x axis is

set to the logarithmic scale so that the rapid relaxation of pa
c

can be observed. Figure 2 gives results for the critical addi-
tion probability as a function of 1 /N with N the number of
spins of the lattice. Typically an order of 5% difference is
observed between the exact result of 2/3 and the results pro-
duced from this model. This error is suspected to result
mainly from counting many isolated clusters of spins when
taking the average of Eq. �2� and counting only spins with
zs�2.

B. Locally converging Wolff algorithm

Let us consider the behavior of the Wolff algorithm in the
paramagnetic and ferromagnetic phases. In the paramagnetic
phase, since pa� pa

c and the system is disordered, only small
clusters would form. In the ferromagnetic phase, since pa
� pa

c and the system is ordered, large clusters would form.
We can recognize the critical temperature and the corre-
sponding critical addition probability as those values where
such Wolff clusters would barely grow.

We now have a method for performing the local algo-
rithm. Steps 2 and 3 from the general plan described above
are combined together, and the determination of the critical
addition probability is tied to the Wolff algorithm. Since the

version of the Wolff algorithm used13 flips each spin after its
nearest-neighbor spins have been considered, at each step of
the algorithm where a spin is considered, only bonds to non-
considered spins would appear in the number of satisfied
bonds zs�. Hence, for each spin added to the cluster with zs�
�1, pa=1 /zs� is calculated, and the result is averaged for the
cluster being built. This ensures that the addition probability
will be such that the cluster will barely form. �Note that for
the average algorithm, where considered bonds were not
erased, we had to subtract the excessive bond explicitly.� The
averaged addition probability calculated while the Wolff
cluster is grown, is then fed back as the addition probability
for the next step in the locally converging Wolff algorithm
�LCWA�.

Another way to see why this algorithm works is to con-
sider what will happen in the two phases. In a paramagnetic
configuration, where the system is disordered, on the average
there will be fewer satisfied bonds than at criticality and the
returned pa will be higher than the critical pa. On the other
hand, in a ferromagnetic configuration, where the system is
ordered, there will be more satisfied bonds on the average
and the returned pa will be lower than the critical pa. In such
a way the system will be driven toward criticality.

As mentioned earlier, we would like to take the average
over the largest clusters. In the process of a Wolff simulation,
especially when the system is disordered, some small clus-
ters will form and should not be counted in the average.
Also, we would like to have a statistical sample of such
clusters from which to take an average. This is achieved by
conducting a series of Wolff steps, sorting the clusters in
order of cluster diameter, and performing the average over a
number of the largest clusters. The results depend very little
on the number of clusters over which the average is taken.

Results for the critical addition probability, pa
c, on the Be-

the lattice with three nearest neighbors and 17 shells are
presented in Fig. 3. We see a rapid convergence of the sys-
tem toward the equilibrium point, and small fluctuations
around this value. In Fig. 4 the dependence of pa

c on 1 /N is
given. From these results it is approximated that pa

c �0.68
for the infinite system, in comparison to the exact result, pa

c

=2 /3.
Results for the critical addition probability, pa

c, on the
square lattice with L=200 are presented in Fig. 5. We again
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FIG. 2. The average value of the average of Eq. �2� for the
Bethe lattice as a function of the inverse of the total number of
spins in the lattice. The line at pa

c =2 /3 corresponds to the exact
result for the Bethe lattice.
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FIG. 3. Relaxation of the critical addition probability for the
Bethe lattice with 17 shells produced from the LCWA as a function
of the iteration step.
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see a rapid relaxation of the system toward an equilibrium
point, and small fluctuations around this value. In Fig. 6 the
dependence of pa

c on 1 /L is given. From this data it is ap-
proximated that pa

c �0.595 for the infinite system, in com-
parison to the exact result, pa

c �0.5858.
In both the Bethe lattice and the square lattice the error in

pa
c is less than 2%. In the cases presented here, the last in first

out13 version of the algorithm is used in the creation of the
cluster. One should note that different averaging or different
versions of the Wolff algorithm may result in a more accurate
calculation of the critical point. One should also note that
boundary effects tend to increase pa

c, since at the boundaries
in general there are fewer nearest neighbors.

C. The site-dilute Ising surface

We have also applied the LCWA to the site-dilute Ising
system10,16–19 which is homogeneous only statistically. This
system provides considerable information about the behavior
of ferromagnetic systems in rarefied conditions which are
important for many applications such as magnetic memory.
As pointed out in a previous publication,10 this system ad-
mits a state of ordered local islands of spins below the per-
colation threshold, and such systems exhibit cooperative fer-

romagnetic phenomena, e.g., hysteresis. The LCWA, as a
local search for the critical temperature, is naturally suited
for dilute systems.

In Fig. 7 we reproduce parts of Fig. 8 of Ref. 10 for the
magnetic regimes in the density-temperature plane of the
Ising system. In the figure we also include two calculations
of the critical temperature using the LCWA. IC corresponds
to the invaded cluster algorithm, SM corresponds to the
spontaneous magnetization condition, and HC corresponds to
the maximization of the heat capacity. Please see Ref. 10 for
more information about these calculations. The calculations
of the critical temperature are labeled RARE and FULL, and
they refer to two versions of the LCWA. In the FULL case all
aligned spins are added to the Wolff cluster as in the first in
first out procedure.13 In the RARE case the cluster is diluted
by removing the last addition to it. Three regimes are desig-
nated in the figure: �PM� paramagnetism, �LFM� local ferro-
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FIG. 6. Average critical addition probability for the square lat-
tice produced by the LCWA as a function of the inverse of the
length of the lattice. The error bars give the average standard de-
viation on the tail of a single run.
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FIG. 7. Magnetic phase diagram as a function of the density and
temperature of a 100�100 Ising surface. IC corresponds to the
invaded cluster algorithm, SM corresponds to the spontaneous mag-
netization condition, and HC corresponds to the maximization of
the heat capacity. RARE and FULL refer to two versions of the
LCWA. In the FULL case all aligned spins are added to the Wolff
cluster as in the first in first out procedure �Ref. 13�. In the RARE
case the cluster is diluted by removing the last addition to it. Three
regimes are designated in the figure: paramagnetism, local ferro-
magnetism, and global ferromagnetism.
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FIG. 4. Average critical addition probability for the Bethe lattice
produced by the LCWA as a function of the inverse number of
spins. The error bars give the average standard deviation on the tail
of a single run. Five runs are given in the plot.
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FIG. 5. Relaxation of the critical addition probability for the
square lattice with L=200 produced from the LCWA as a function
of the iteration step.
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magnetism, and �GFM� global ferromagnetism.
We see close agreement between the LCWA and the ICA

for the higher densities. As the density is lowered these two
algorithms give differing results, with the LCW predicting a
higher critical temperature for a given density. This differ-
ence widens as one approaches the percolation threshold,
past which the LCWA gives finite critical temperatures for
the local ferromagnetic regime. This can be understood as
follows. While the ICA requires order across the entire lat-
tice, the LCWA permits local ferromagnetic regions that are
disconnected. Since order in a ferromagnetic system is
monotonically dependent on the temperature, more order re-
quires a lower temperature and hence the widening differ-
ence in the critical temperatures. As one passes the percola-
tion threshold with decreasing density, global order is no
longer possible for any temperature, while local order is pos-
sible at any finite density. Based on previous results10 the
RARE calculation fits better than the FULL one with the
curve for spontaneous magnetization. The best approaches
for building the clusters for the dilute system are under cur-
rent investigation.

III. SUMMARY

Algorithms converging automatically to the vicinity of the
critical point of Ising systems were introduced. These algo-
rithms use only the local characteristics of the system in the
feedback loop that generates convergence. Specifically, two
algorithms were introduced, the average algorithm and the

LCWA. The average algorithm uses the approach of averag-
ing the local critical addition probabilities of the lattice sites
and is appropriate for use when no loops exist in the lattice,
such as for the Bethe lattice. The LCWA employs a similar
strategy, but utilizes the Wolff algorithm cluster building pro-
cess to carry out the average. The LCWA was found to be
consistently better than the average algorithm for the deter-
mination of the critical point. Both algorithms were slightly
less accurate in determining the critical point as compared to
the ICA, probably due to the more effective sampling tech-
nique of the ICA. However, the local algorithms are useful in
investigating the occurrence of locally ordered clusters,
which is an interesting problem in dilute, and more generally,
inhomogeneous systems.
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