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Numerical study of geometrical frustration in a planar soft-hard magnetic system
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We computationally study the frustrated macroscopic magnetic configurations of a thin soft-magnetic layer
on top of a hard magnet geometrically patterned as three equidistant disks. The interplay between competing
exchange, magnetostatic, and Zeeman interactions, enhanced by the geometric constraints, results in rich
magnetization configurations when an external magnetic field is rotated around the sample. We identify four
successive ranges of the external field magnitude in each of which the system exhibits unique energetics and
chooses different sets of energy minima during the rotation of the external magnetic field. The system can be
used as a ternary logic storage device, with read and write operations achieved by utilizing the unique behavior

of the system in each of the four regimes.
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INTRODUCTION

Magnetic systems with artificial geometrical frustration
have attracted considerable attention for the presence of mul-
tiple ground states and intricate magnetic properties.'? Soft-
hard magnetic structures have recently been intensively in-
vestigated for their high coercivity and saturation
magnetization properties.> Exchange-coupled planar soft-
hard magnetic layers®'” have been the model systems of
study in exploring the dependency of effective exchange
coupling between the hard and soft-magnetic materials on
the micromagnetic parameters. These systems show a rich
variety of magnetic configurations when magnetic frustration
is induced geometrically. This is particularly the case when
the characteristic length of magnetization configuration is
comparable to the size of the device features.!' The interac-
tion between the macroscopic geometry of the system and
the magnetic configurations exhibited by the system is more
pronounced at the nanometer length scale since the
exchange-correlation length of most magnetic materials falls
in the nanometer range.

Previous works on soft-hard magnetic systems'>!> have
mostly focused on magnetization configurations between
layers of soft-hard magnets. In this paper, we study two-
dimensional geometry-induced multiple magnetic configura-
tions and external magnetic-field-induced transitions be-
tween these configurations. We concentrate on the
magnetization configurations in the plane of the soft magnet,
determined by the magnetization directions of the constrain-
ing hard magnets and an external field.

The combined effect of changing energy landscape due to
external field magnitude variation and the multiple energy
minima arising out of geometric frustration results in the
system exhibiting distinct behaviors at different external field
strengths. We identify four distinct regimes of behavior of
the system, parametrized by the magnitude of the external
field. By changing the external field magnitude, the system
can be switched between these regimes. In contrast, by ro-
tating an external magnetic field of constant magnitude and
thereby staying within a regime, the system can be made to
switch between the originally degenerate energy minima due
to geometrical frustration (see Fig. 1). The goals of this paper
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are to study the interaction of the effects of variation in di-
rection and magnitude of the external field on the magneti-
zation of the geometrically frustrated system and to compu-
tationally demonstrate the feasibility of constructing a
ternary logic device using the system, which would be useful
in applications where ambiguity, irrelevant data, or error

needs an additional representation.!-!8
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FIG. 1. (Color online) (a) Two-dimensional soft-hard magnetic
composite system. The magnetic structure in the soft-magnetic re-
gion is determined by the boundary condition fixed by the hard
magnetic disks and external field H. One of the many possible
energy minima, with two magnetic influx and one outflux between
the disks, is shown. The length scale of the system, L, defined as the
distance between the two hard magnetic disks, is shown. (b) Side
view of the device.
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SYSTEM DESCRIPTION

The two-dimensional soft-hard magnetic system under
study consists of three hard magnetic disks placed under-
neath a thin soft-magnetic layer (see Fig. 1). The three hard
magnets, placed on vertices of an equilateral triangle, are
chosen to have their magnetizations pointing toward the cen-
ter of the triangle. The roles of the hard magnets are to fix the
direction of magnetization of the soft magnet as the same as
that of the underlying hard magnet at the interface and to
introduce frustration in the system. We assume that the mag-
netization of the soft-magnetic layer is in plane and that the
soft-magnetic layer is thin enough (5 nm) that its magnetiza-
tion direction varies little across the width of the layer. This
assumption is justified by experiments which show that the
strong exchange coupling between the hard and soft-
magnetic layers results in a single-domain-like behavior of
the bilayer for the geometrical parameters and the external
magnetic-field range relevant for this study.® Figure 1 shows
one of the possible energy minimum configurations of the
soft-hard magnetic system. This and the following figures
show coarsely sampled magnetization vectors from denser
data for better visual clarity.

The experimental realization of the system described
above, though challenging with current state-of-the-art tech-
nologies, is possible in the very near future with the im-
provements in electron-beam lithographic, deep UV interfer-
ence, and self-assembly techniques, propelled by the demand
from the high-density magnetic memory market. As an ex-
ample of the advancement of lithographic techniques, Cow-
burn et al.'® demonstrated fabrication of single-domain cir-
cular nanomagnets of 6 nm thickness and 55 nm diameter,
which is close to the size of the hard disks used in the system
described above. Assembling the three hard magnetic disks
with their crystallographic easy axes pointed as shown in
Fig. 1(a) requires technologies that are still in the nascent
stage. We believe that it can be achieved in near future.?9-2%
A preliminary analysis indicates that the system’s behavior is
nearly the same when the hard magnetic disks are replaced
by hard magnetic rods at appropriate positions. The shape
anisotropy of the rods makes it easier to pin the direction of
the magnetization of the rods along the directions required in
our system.

MODEL

The Hamiltonian density of the system is

1
H=A[Vm|* - EM(Z)m -h' = M2m - h + VoMi(lm[> - 1)2

(1)

in cgs units. Here, m is the magnetization vector normalized
to the saturation magnetization M, A is the exchange stiff-
ness, h is the applied magnetic field normalized to M, and
h’, the dipole field normalized to M, is given by
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where 1 is the unit vector along r—r’. The role of the last
term in Eq. (1) is to impose the condition of |m|=1.!" The
system is discretized as a two-dimensional rectangular mesh
of magnetization vectors.

The first term in Eq. (1) is the exchange term, approxi-
mated for a continuous dipole distribution.”’” The second
term is the dipole-dipole interaction term. The third term is
the Zeeman energy of a dipole in an external magnetic field
h. The last term with a large value of V|, is concocted to
preserve |m|?>=1 condition during numerical energy minimi-
zation. Inclusion of the condition |m|?=1 in the energy func-
tional had better numerical behaviors than a direct imposi-
tion of the constraint. The resulting energy minima satisfied
the condition |m|?=1 accurately.

We assign the values of bulk nickel, a typical ferromag-
net, for A and M,, V,=100."" We let the external magnetic
field, , of varying magnitudes rotate around the
system to drive the transitions and evaluate the minimum-
energy configurations for all external field directions. Typical
values of radius of hard magnets, distance between hard
magnetic centers, and the radius of the soft-magnetic circle
are 20, 75, and 150 nm, respectively. The soft magnet is
taken to be circular to preserve the threefold symmetry of the
system, although the symmetry need not be exact. The mag-
netocrystalline anisotropy is assumed to be absent in the soft
magnet and very high in the hard magnetic disks, so that the
magnetizations of the disks are frozen in the direction of the
least anisotropy energy.

The system was simulated on a rectangular lattice of size
128 X 128. For energy minimization, we used the conjugate
gradient method.?® Polak-Ribiere method was used in updat-
ing the search directions for minimization.?’ The demagneti-
zation energy calculation was simplified by writing m-h’ as
2, m;-D(r;—r;)-m;, where the components of the 33 de-
magnetization tensor D(r;—r;) are given by

[D(e— )] = f & f e ‘|’5 3)

Here the integrations are over the volume elements V;, Vj of
uniform magnetization located at the mesh points i and j and
1i; and 1i; are the unit vectors in the direction of the uniform
magnetization at the mesh points i and j. The demagnetiza-
tion tensor D(r;—r;) is independent of magnetization and is
dependent only on the geometry of the system. Hence it was
calculated once and the values were stored for the entire run.
The calculations were done using the results in Ref. 30. The
calculation time of the dipole interaction energy was reduced
significantly using fast Fourier transform, using the fact that
the convolution of the demagnetization tensor and the mag-
netization vectors transform into a direct multiplication in
the Fourier space.” The energies of the magnetization con-
figurations generated by our program agreed well with the
energies calculated using OOMMF software,3! which inte-
grates Landau-Lifshitz micromagnetic equation to arrive at
equilibrium configurations.

134410-2



NUMERICAL STUDY OF GEOMETRICAL FRUSTRATION IN...

>

O) T T

£ L(b) regime IT

£ oo H=5000 1
s o ]
2 Geo

%)

[0) T T

£ 0H(c) regime IIT I I

5 H'= 1000 Oe - o

- -50+ e )
S -100 1
c

L

Angle of applied magnetic field in = radians

FIG. 2. Variation in energy of the system at different regimes
with respect to the angle of externally applied field, starting from
the initial configuration shown in Fig. 1. Plot (a) shows the varia-
tion in energy in the first regime. No transitions are seen. The ex-
ternal field is not strong enough to dislodge the system from the
energy minimum that it stays in. (b) shows the behavior of the
system in the second regime. One transition occurs in an interval of
27 radian rotation of external field. A static domain-wall shield
forms and vanishes during transition. (c) shows the energy variation
in third regime. The energy never drops to the initial low-energy
state the system started in. The system stays in metastable states and
all the transitions are between three equivalent metastable states
characterized by switching of the domain-wall shield from one pair
of hard disks to another. (d) shows the variation in energy in the last
regime. High external field aids the system to escape from one
minimum to another easily. Three transitions happen in a 27 radian
rotation of external field.

SYSTEM IN AN EXTERNAL ROTATING MAGNETIC
FIELD

When the magnitudes of exchange, magnetostatic, and
Zeeman energies are of the same order, energy minimization
leads to apportioning of the geometrically induced strain to
the different energies variously. This leads to interesting
magnetic configurations, which we classify as regimes. The
energy landscape changes considerably across the regimes,
as the external field magnitude changes, and the system ac-
cesses different local energy minima at different regimes. In
the following description of the four regimes, the initial con-
figuration of the system is chosen, among other equally good
options, to be the one in which the magnetization flows
through the neck between top left and the right disk when the
external field angle is zero radian. This initial configuration
is shown in Fig. 1.

In the first regime (I), characterized by the applied field
magnitude less than approximately 150 Oe, the exchange and
magnetostatic energies are stronger than the Zeeman energy
due to the applied field, and the system hardly responds to
the field. Figure 1(a) shows the system’s magnetization con-
figuration in one of the minimum-energy states. Figure 2(a),
plotted between the angle of external magnetic field and the
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FIG. 3. Magnetization configurations of the system at different
regimes. (a) shows the domain-wall formation in the second regime
at an external field of 500 Oe. This domain wall does not switch to
another pair of hard magnetic disks as the external field is rotated.
(b) and (c) show domain-wall shields in the third regime at an
external field of 1000 Oe. In this regime, the domain-wall shield
switches to the next pair of hard magnetic disks as the external field
is rotated. The system stays in these metastable states and never
drops down to the ground state. (d) shows the system in the fourth
regime at an external field of 2500 Oe. The magnetization follows
the external field faithfully. The arrows to the top left of the figures
show the direction of the external field. The appearance of domain-
wall shield is enhanced by a dotted line to aid visualization.

energy of the system in eV, shows no major transitions. The
system nearly retraces its old path in the phase space when
the external field is rotated in the other direction.

In the second regime (IT), characterized by applied field
magnitudes in the range of 150-700 Oe, we start from the
initial configuration and rotate the magnetic field from zero
radian, counterclockwise. The system forms a domain wall
that shields the magnetization near the three disks from ro-
tating away from the direction of that of the hard disks and
separates it from the periphery where the magnetization
roughly follows the external field [Fig. 3(a)]. The domain
wall shields the magnetization near two disks on the left, and
the magnetization escapes through the neck between top left
and the right hard magnetic disks, as it did in the initial
configuration, and does so for one full rotation of the exter-
nal field of constant magnitude. When the external field com-
pletes one full rotation, the system makes a transition to the
initial configuration, shown in Fig. 1, without the domain
wall. The plot of energy (eV) versus applied field angle
shown in Fig. 2(b) shows the 2 periodicity.

As the external field magnitude is increased from 700 Oe,
the system enters the third regime (III) where the geometrical
constraint yields to Zeeman energy and the hysteresis curve
starts exhibiting the degeneracy introduced by the geometry.
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Initially, the system takes approximately 2.57 radians to
reach the high-energy-density configuration, following the
same path as that of the second regime before switching to
the typical third regime behavior. The domain-wall shield
that straddled the two hard magnetic disks for the whole of
21 rotation of the external field in the previous regime now
switches with the field from shielding one neck to shielding
the neighboring neck and covers all three necks successively
during one full rotation of external field of constant magni-
tude. Figures 3(b) and 3(c) show the domain-wall shield cov-
ering two different necks for two different angles of external
field. Figure 2(c) shows the variation in energy (eV) with
respect to the applied field angle. The system can be said to
be oscillating between three metastable states which are con-
figurationally different from the ground state depicted in Fig.
1. The system never reaches the ground state during this
regime because of the lack of a monotonically decreasing
energy pathway from the metastable configuration to the
ground-state configuration in the presence of an external
magnetic field.

From 2500 Oe onward, the Zeeman energy dominates all
other energies of the system, and the system starts following
the external field and is in regime (IV). As the field rotates,
the magnetization switches from its initial configuration to
flow through the neck in the direction of the field. There are
three transitions and the system switches between three
equivalent minimum-energy states. Figure 3(d) shows one of
the three minimum-energy states. Figure 2(d) shows the
variation in energy of the system (in eV) with respect to the
angle of the applied field for a field strength of 2500 Oe. The
plot exhibits a periodicity of %ﬁ radians, and the three tran-
sitions corresponding to the switching of the system between
three minimum-energy states can be seen. This plot has to be
contrasted with Fig. 2(b) of the second regime, where the
periodicity is 27 radians.

The transition between these four regimes is not sharp. At
the intermediate external field magnitudes, the system is un-
stable to small external perturbations and fluctuates between
the regimes on either side. Also, these rich magnetization
configurations occur only in a restricted regime of geometri-
cal parameters of the system, where the increase in energy of
the system due to frustration is comparable to that of other
energies of the system. Quantitatively, our regime of interest
lies where the exchange length of the system is of the order
of the characteristic length scale L introduced by the geom-
etry, which in our case is the size of the neck between any
two disks. The exchange length of nickel is ﬁ% ~17 nm,
whereas L is 35 nm. When L is increased to 70 nm, the
system neutralizes geometric frustration by forming domains
around the hard magnets with the magnetization direction of
the domains pegged along that of the hard magnets. An ex-
ample of such domain formation is shown in Fig. 4. The
figure shows a system in which the radius of hard magnets,
distance between hard magnetic centers, radius of the soft-
magnetic circle, and thickness of the sample are assigned
values 40, 150, 300, and 20 nm, respectively.

HARD-SOFT MAGNETIC SYSTEM AS A TERNARY
LOGIC DEVICE

The above discussion elucidates the fact that simple geo-
metrical frustration results in rich magnetization patterns
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FIG. 4. Domain formation in the three-disk system. The figure
shows the three-disk system with its length scale double that of
previous figures, with radius of hard magnets, distance between
hard magnetic centers, radius of the soft-magnetic circle, and thick-
ness of the sample taking the values 40, 150, 300, and 20 nm,
respectively. The length scale L has to be compared with that of Fig.
1. Domain-wall formation becomes energetically favorable and
frustration in the system is neutralized by domains which shield the
influence of one hard disk on soft magnet from that of another.

which vary according to the magnitude of the applied field.
In all the four regimes mentioned above, the magnitude of
the applied field was fixed at that of a particular regime and
the field rotated to create the corresponding magnetization
pattern and the system behavior. It is possible to use the
system as a ternary logic device, whose logic states can be
manipulated by controlling both the magnitude and the angle
of the applied field. In the first regime, the system resides in
one of the three equivalent minimum-energy states (see Fig.
1), and it can be thought of as being locked in one of the
three available logic states and can be read out, without
changing it. Since the first regime also includes zero applied
field magnitude, the logic state of the system is preserved
even without any external field and the memory is nonvola-
tile. To write, we increase the field to that of the third regime,
rotate the field to switch the domain-wall shield to cover
another pair of hard magnetic disks, and reduce the field to
that of the first regime. This changes the logic state of the
system predictably. Thus we can read and write the logic
states of the system by manipulating the external magnetic
field.

The writing scheme is depicted in Fig. 5. The figure
shows the three phases of the writing operation. In the first
phase, denoted by points between A and B in Fig. 5, the
external field strength is gradually increased from 0 to 1000
Oe and the system stays close to the initial configuration,
with the angle of average magnetization staying close to its
initial value. This can be seen from section AB of the plot of
average magnetization angle versus field strength. Energeti-
cally, the system now corresponds to the leftmost point of
Fig. 2(c). In the second phase of operation, denoted by sec-
tion BD, the external field strength is held constant and the
angle is rotated by about 2.5 radians, until the first transition,
as seen in Fig. 2(c), corresponding to the system jumping
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FIG. 5. An illustration of the three successive operations needed
to change the logic state of the system. In the first phase, denoted by
section AB of the figure, the system is taken from first to third
regime by fixing the field direction at ;—T radians and increasing the
magnitude from 0 to 1000 Oe. The average magnetization angle in
the first phase is denoted as 6,. The initial state of the system is
shown as an inset in the leftmost part of the figure. In the second
phase, denoted by section BD, the system is in the third regime, and
the magnetic field is rotated through 27+ 27" . The logic state of the
system changes as shown in the inset, with hardly noticeable
change in the average magnetization near point C. The rightmost
part shows the third phase, denoted by section DG, in which the
magnetic-field magnitude is reduced from 1000 to 0 Oe, with its
direction fixed. The abrupt transition from the third to first regime
can be seen in the average magnetization plot, denoted by section
EF. The average magnetization angle in the third phase is 6y+27
+23—77. The system’s changed logic state is shown as an inset of the
rightmost part.

from one metastable state to another, happens. The magneti-
zation now switches from escaping through one neck, the
region between two hard magnetic disks, to another. The
signature of this transition on the average magnetization
angle is weak and is barely visible near C in the plot of Fig.
5. In the third phase, denoted by section DG, the external
field strength is reduced from 1000 to O Oe again. The sys-
tem makes an abrupt transition from its metastable state to
the closest of the three energy minima of the first regime.
Section EF of the plot in Fig. 5 corresponds to the transition.
Thus the logic state of the system is changed predictably by
controlling the magnitude and direction of the external mag-
netic field.

This system can be incorporated into magnetic random
access memory by replacing the free ferromagnetic layer of
the magnetic tunnel junction with the system under consid-
eration. Current pulses through a single horizontal and a ver-
tical wire choose a specific dot (dot A in Fig. 6) to write a
logic state. The pulses are designed such that they create the
magnetic-field behavior in time and strength as required by
the writing scheme mentioned above at the location of dot A,
for instance. The neighbors of dot A would be unaffected as
the magnetic-field strength at their locations is less than the
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FIG. 6. (Color online) Schematic of a magnetic random access
memory using the three-disk system. The dots are the magnetic
tunnel junctions with the top soft-magnetic layer replaced by the
three-disk system. Appropriately designed current pulses sent
through horizontal and vertical wires create a rotating magnetic
field at the position of dot A, changing its logic state. Judicious
choice of geometrical parameters of the memory device and the
absence of x, y, or both components of the write field at neighboring
dots B, C, and D would lead to a field strength below the transition
field to the third regime at these dots, thereby leaving their logic
states unchanged. The side view shows the modified magnetic tun-
nel junction. The middle and the lower sections are the tunnel bar-
rier and the fixed ferromagnetic layer, respectively. The magnetiza-
tion direction of the fixed ferromagnetic layer is chosen such that
the resistance of the tunnel junction is different for the three differ-
ent logic states of the system. Leads for reading logic states are not
shown.

critical field of transition into the third regime because of the
lack of the x, y, or both components of the current-generated
magnetic field at dots B, C, and D. The fixed ferromagnetic
layer’s magnetization direction is aligned such that the com-
ponents of the magnetization of the three states of the system
along the direction of the fixed layer’s magnetization are
unequal in magnitude. This condition ensures that the resis-
tance of the magnetic tunnel junction is different for the three
different logic states of the system, thus ensuring a reliable
reading mechanism.
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This ternary system would find use in applications where
an additional logic state is needed to denote ambiguity, irrel-
evant information, and lack of data or error. The applications
include hardwired embedded systems for queries which need
real-time response, fault-tolerant circuits, digital logic de-
sign, expert systems, tristate cellular automata, etc. The ad-
vantage of this system over other existing ternary logic sys-
tems comes from the fact that this storage system is similar
to the binary logic storage device using magnetic tunnel
junctions and can be mass produced using the same tools.

CONCLUSIONS

We have investigated a soft-hard magnetic system with an
interesting planar geometry and its transitions between frus-
trated local energy minima. Interplay between exchange,

PHYSICAL REVIEW B 78, 134410 (2008)

magnetostatic, and Zeeman interactions and the geometrical
constraint imposed by hard magnets results in the display of
complex magnetic patterns. We have identified four regimes
of system behavior, parametrized by the external field mag-
nitude, where the system exhibits different hysteretic proper-
ties, depending upon the dominant interactions in those re-
gimes. This analysis illustrates the use of frustration in
bringing out the rich physics resulting from competition be-
tween various interactions in the system. We have also
pointed to an application of the system as a ternary logic
device and outlined the operating mechanism of the device.
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