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Birth and decay of coherent optical phonons in femtosecond-laser-excited bismuth
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The transient reflectivity of bismuth crystal excited by a 45 fs laser pulse in the near-infrared range has been
recovered with an accuracy of 107>, at initial sample temperatures ranging from 50 to 510 K, and at pump
fluences from 2 mJ/cm? to 21 mJ/cm?. The coherent phonon excitation and decay processes were imprinted
into the time-dependent reflectivity and this allows us to uncover the temporal phonon history preceding the
structural transformation of solid Bi. Analysis showed that the first coherent atomic displacement was produced
by the polarization force and the electron pressure force during the laser pulse, and that manifests itself by a
negative change in the reflectivity. The frequency of the subsequent reflectivity oscillations was chirped,
redshifted from the initial value due to the lattice heating. The amplitude decreased gradually while electrons
transferred their energy to the lattice. Heating and thermal expansion of the lattice transformed the initially
coherent harmonic vibrations of atoms into strongly nonlinear chaotic motion that signifies the onset of
disordering of the solid. This process was identified through measurement of the damping rate of the reflec-
tivity oscillations and interpretation of this rate as the decay rate of an optical phonon into two acoustic
phonons. The analysis of the reflectivity oscillations provides evidence that the overheated solid experiences
only the onset of the solid-liquid phase transition but did not proceed into the liquid phase. General relations
between the laser-exerted forces, the atomic motion, and the optical parameters were established. The proposed
theory reproduces well the measured transient reflectivity across a wide range of crystal temperatures and laser

excitation fluences.
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I. INTRODUCTION

With the advent of femtosecond lasers in the early 1980s,
time-resolved experiments on a great variety of ultrafast phe-
nomena have become possible.'”>> One major focus of this
field of research is the excitation and detection of coherent
lattice vibrations, which has been realized in many transpar-
ent and opaque materials, among which are semi-
metals,>>31* transition metals,?? cuprates,? insulators,?® and
semiconductors.'~*1%2! The generation of coherent optical
phonons allows deep insight into the microscopic nature of
laser-controlled atomic motion. The ability to drive and con-
trol coherent lattice vibration via an external photon flux
opens a number of interesting applications such as the pos-
sibility to induce particular phase transitions (nonthermal
melting,! paraelectric-to-ferroelectric'® or insulator-to-metal
transitions'®), the selective opening of the “caps” of nano-
tubes in nonequilibrium conditions'” or providing a basis for
SASER (sound amplification by stimulated emission of
radiation)'® experiments.

In order to explain the generation of coherent phonons, a
number of physical mechanisms have been proposed, for ex-
ample, displacive excitation of coherent phonons (DECP),>3
which was originally introduced to describe reflectivity os-
cillations induced by fully symmetric coherent phonons in
opaque media, and transient stimulated Raman scattering
(TSRS),** which is applicable to both opaque and transpar-
ent media. Despite the popularity of these theories and their
ability to account for certain experimental findings, a theory
which can explain the entirety of experimental results con-
cerning the generation of coherent phonons in transparent
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and opaque media and their connection to transient reflectiv-
ity changes is, to the best of our knowledge, still absent. In
particular, novel effects, like a sharp drop in reflectivity?* at
time scales of less than 40 fs and a negative change in re-
flectivity after electron-lattice equilibration in bismuth, have
remained obscure.

In what follows, we present a detailed experimental and
theoretical study of reflectivity oscillations recorded in opti-
cally excited bismuth over a time span of 30 ps with a reso-
lution of 35 fs taking into account the dependence on initial
sample temperature over the range from 50 to 510 K, and
excitation fluence from 2 to 21 mJ/cm?. From the measure-
ments, the subtleties of ultrafast atomic motion have been
recovered. These include first a rapid atomic displacement
followed by excitation and decay of vibrational modes,
whose life is compared with times for nonlinear phonon-
phonon interactions, the disappearance of harmonic vibra-
tions, and finally the onset of thermal expansion and insta-
bility resulting in a transient state described neither by a
solid nor a liquid phase. The interconnected processes of
electron heating by laser absorption, the interaction within
and between the electronic and lattice subsystems, the forces
driving the atomic motion as well as the changes in optical
properties induced by these effects have been considered in
succession.

The paper is structured as follows: In Sec. II the details of
the experiments are outlined and the experimental results are
presented. In Sec. III, the elements of our theoretical ap-
proach are described. The time scales for electron-electron,
electron-phonon, and phonon-phonon interaction are com-
pared and the expressions for the excitation of electrons and
the laser-exerted forces on the material are derived. The fast
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atomic displacement observed before the onset of coherent
vibrations and the coherent vibrational atomic displacements
have been considered. Nonlinear phenomena that appeared
in the process of energy transfer from the electrons to the
lattice have been taken into account in calculations of tran-
sient reflectivity. In Sec. IV, the results are discussed and
Sec. V presents a summary and a conclusion to our results.

II. EXPERIMENT
A. Experimental technique and setup

Time-resolved reflectivity measurements have been car-
ried out using a single crystal of bismuth cut with (111)
orientation with respect to the trigonal axis representation;
standard x-ray diffraction analysis has shown a good crystal-
line quality of the sample. Laser pulses with a duration of
40-45 fs delivered by a Ti:sapphire laser system pumped by
the second harmonic of a Nd: YAG laser at a repetition rate of
1 KHz were applied in standard pump-probe geometry. The
s-polarized probe pulses were focused to a 40 um spot and
carefully superposed with the center of the p-polarized pump
pulses with a diameter of 125 um in order to ensure probing
of a preferably homogenously excited region of the sample.
The spatial overlap and the beam dimensions were moni-
tored using a charge coupled device (CCD) camera with a
microscope imaging system. Crossed polarizations for pump
and probe were used in order to reduce the influence of scat-
tered pump light with the help of a polarizer placed before
the photodiode detecting the transient reflectivity signal. The
angle of incidence of the probe beam was approximately 10°
to the normal angle, while the pump was normal to the target
surface.

To allow lock-in detection, the pump beam was chopped
at 500 Hz using a phase-locked system ensuring perfect syn-
chronization of the chopper and the laser pulse by real-time
control of rotation speed and phase. By using a reference
beam, intensity fluctuations of the laser were taken into ac-
count. With an integration time of 1 s the detection of reflec-
tivity changes with an accuracy of AR/Ry,~107 was
achieved, R, denoting unperturbed reflectivity before the ar-
rival of the pump pulse.

The sample was heated with a resistance cartridge heater
for measurements between the room temperature and 510 K,
and cooled in a closed-cycle cryostat for measurements be-
tween the room temperature and 50 K; the sample tempera-
ture was measured using a thermocouple. The equivalence of
the different series of experiments was ensured by precise
agreement between the measurements at room temperature
for each series.

B. Temperature and fluence dependencies
of transient reflectivity

The reflectivity signal for an excitation with pump fluence
of 6.9 mJ/cm? for five different temperatures is shown in
Fig. 1. The behavior of the time-dependent reflectivity can be
described by a superposition of an oscillatory and a nonoscil-
latory component. Due to the excitation by the pump pulse,
the reflectivity increases to a maximum reached at about 200
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FIG. 1. Transient reflectivity signals AR/R|, for different crystal
temperatures at a constant pump fluence of 6.9 mJ/cm?. The curves
at temperatures higher than 50 K are offset for better readability; the
horizontal lines indicate the zero level for each depicted time-
domain signal.

fs and then starts to oscillate with a temperature-dependent
frequency while the amplitude of oscillation decays nearly
exponentially with time. The oscillations phase out with a
temperature-dependent delay ranging from a few ps for 510
K to 35 ps for 50 K. The reflectivity drops below the unper-
turbed value and reaches a minimum before slowly returning
to the unperturbed value after ~4 ns. The time at which the
sign change of AR/R, occurred, the time when the minimum
was reached, and the absolute value of AR/R at the mini-
mum were all temperature dependent. In our previous experi-
ments, a sharp initial drop of reflectivity was observed.?*
Here this feature was less pronounced due to the slightly
longer pulse duration used in the current experiments. At 50
K, the reflectivity signal showed a superposition of two os-
cillations at different frequencies. A Fourier analysis showed
that a frequency component corresponding to the nonsym-
metric £, mode of 2.12 THz had appeared in addition to the
Aj, mode. The observation of this mode as well as its ab-
sence at higher temperatures is in agreement with earlier
findings.’

Figure 2 shows the frequency of the A, mode as a func-
tion of crystal temperature. Since the frequency also varies
with delay between the pump and the probe pulse, we deter-
mined the initial frequency by fitting a damped harmonic
oscillation superimposed to an exponential decay to the first
two oscillations. The error bars in the plot result from the fit.
As the temperature increases, the frequency is shifted to
lower values. Figure 3 depicts the temperature dependence of
the damping of the oscillations, estimated by supposing an
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FIG. 2. Initial frequency of the A} ,—phonon mode as a function
of the crystal temperature at a constant pump fluence of
6.9 mJ/cm?; the line corresponds to a fit performed with Eq.
(39)—see Sec. IV in the text below.

exponential decay of the oscillation amplitude.

At room temperature, excitation-fluence-dependent mea-
surements have been carried out and the corresponding re-
flectivity changes are depicted in Fig. 4. The characteristics
of the time-domain signals have changed dramatically with
the fluence. Concerning the oscillatory component, the red-
shift of the frequency increased linearly with pump fluence
(see Fig. 5), which has been shown to be valid for the flu-
ences up to 8 mJ/cm?? The damping rate of the phonon
linearly increased with fluence, as shown in Fig. 6.

III. THEORY

The experimental results on time-dependent reflectivity
measurements with high accuracy contain many subtle fea-
tures. Our goal here is to trace the atomic motion and the
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FIG. 3. Damping constant of the A;, mode as a function of
crystal temperature at a constant fluency of 6.9 mJ/cm?. The
dashed line corresponds to a fit with Eq. (38), and the solid line to
a fit with Eq. (38) where the exponent was a fitting parameter—see
Sec. IV in the text below.
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FIG. 4. Transient reflectivity signals AR/R for various pump
fluences at room temperature. The horizontal lines correspond to the
zero level for each depicted time-domain signal.

subsequent phase changes by the time-dependent dielectric
properties of laser-affected material. In the following theo-
retical analysis we established the general relations between
the laser excitation and the laser-exerted forces, which cause
the atomic vibrations with the phonon frequency at the initial
crystal temperature. We next demonstrate how the atomic
vibrations affect the optical properties through the electron-
phonon interactions. The nonlinear multiphonon processes
are responsible for the gradual decay of phonon oscillations
and for the onset of the material transformation, which are
imprinted into the time-dependent reflectivity. This analysis
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FIG. 5. Initial frequency of the A;, mode as a function of the
pump fluence at room temperature; the dashed line corresponds to
frequencies calculated with Eq. (40)—see Sec. IV in the text below.
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FIG. 6. Damping constant of the A;, mode as a function of
pump fluence at room temperature; the line corresponds to a linear
fit to the data points.

allowed us to uncover, through the temporal phonon history,
the structural transformation of solid Bi under fs-laser exci-
tation.

A. Transient properties of a laser-excited solid

1. Relaxation times: quasiequilibrium electron and lattice
temperatures

Electron-electron collisions quickly lead to the establish-
ment of a local equilibrium energy distribution. The electron-
electron collision rate for a strongly correlated degenerate
electron gas has a form:* v,, < w,e,/&r (g, is the electron
energy in excess over the Fermi level, e, and w, is plasma
frequency). For the conditions of the experiment, &,
=0.02e, and w,,=1.3X10'% 57! (w,,, and &, are extracted
from the optical data).?’-?° Thus an equ111br1um distribution
for electrons is established in a period, 7,, =~ ;e ~4 fs.

Similarly phonon-phonon interactions lead to the estab-
lishment of an equilibrium in the phonon subsystem (lattice
temperature). The effective phonon-phonon collision rate
reads*3" v, v = wpT;/Tp (wp, Tp, and Ty, are, respectively,
the Debye frequency, the Debye temperature, and lattice tem-
perature). The phonon-phonon relaxation time in our case
(wp=1.56x10" s7!; Tp=119 K) lies in the range fy,
= (nph—ph)_l ~ 8—80 fS.

The transfer of energy from the electrons to phonons heats
the lattice. The heating time is determined by the electron-
phonon energy transfer rate:*03031 £y = (3000 1eY) !
m~ (ﬁwDTZ/ Tf)s 7). In the conditions of our experlments
foon varies in the range 5-20 ps.

Heat diffusion appears to be less important compared with
other relaxation processes and hence it is neglected in the
following. In fact, the time for cooling the skin depth of [
=29.8 nm iS f,,,= l /D=119 ps (the diffusion coefficient
in Bi D=0.067 cm?/ s)28 and this should be compared to the
observation period (~25 ps) in our experiments. Thus the
main nonequilibrium process is electron-phonon temperature
equilibration while electron-electron and phonon-phonon
equilibration adiabatically follow to the slower evolution of
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the lattice heating. The above relation between relaxation
times is the rationale for using the 2-temperature approxima-
tion [7,(z), T;(7)] to describe the nonequilibrium laser-matter
interaction.?6-32

2. Electron and lattice temperature in 2 T approximation

We obtained T,(t), T,(r) from numerical solutions of
coupled electron and lattice energy equations?®3? with mate-
rial data taken from Refs. 27-29. The maximum electron
temperature at the end of the pulse is found to be T, .«
=[4e;AF(t,)/ 7n,l,]"% here A=1-R=0.26 is the absorption
coefficient, F (tp) is the laser fluence, 7, is the laser pulse
duration, and n, is the electron density. The maximum lattice
temperature is reached after equilibration of electron and lat-
tice temperatures after ~20 ps, and is, for example, 701.5 K
and 1273 K for the fluences 2.7 mJ/cm? and 6.7 mJ/cm?
correspondingly. Note that in both cases the lattice tempera-
ture is higher than the equilibrium melting point (544.6 K)
for Bi: 1.29 and 2.34 times, respectively. From such consid-
erations we can obtain the time dependence of the electron
number density, and electron and lattice temperatures, which
allow calculation of the transient dielectric function.

3. Electron excitation from valence to conduction band

The number density of electrons excited to the conduction
band by an avalanche-like process is proportional to the elec-

tron energy density: n,(,) = /Zl;(;) (here AE is the energy
required for a transition from the valence to the conduction
band, which is ~0.1 eV). The electron number density at the
end of the pulse is proportional to the electron temperature.
After the end of the pulse the number of excited electrons
decreases due to recombination. Because the recombination
rate for Bi is unknown to the best of our knowledge, we
assume that in the cooling stage after the pulse the above
proportionality also holds, An,/n,<T,(t)/T, ., Where
T, max 1 the maximum electron temperature at the end of the
pump pulse.

4. Absorbed energy density and stress tensor

The laser pulse is shorter than the electron-phonon energy
transfer time. Therefore only electrons are heated during the
pulse. The electron energy density absorbed in the skin layer,
E,=C.n,T,=2AF(t,)/l; reaches a maximum at the end of
the pulse; here C, is heat capacity, T, is the electron tempera-
ture, and /,=2.984X107% cm is the skin depth.>* For ex-
ample, the absorbed energy density for 2.7 mJ/cm? and
6.7 mJ/cm®> equals to 0.48x10% J/cm® and 1.19
X 10° J/cm? correspondingly, and it should be compared to
the enthalpy of melting in equilibrium of 0.5 kJ/cm?3.?

Accordingly, after the electron-electron and phonon-
phonon equilibration one can use the equilibrium concept of
the stress tensor in a laser-affected solid in the same form as
in equilibrium conditions. For an initially isotropic medium
the stress tensor reads>*

F’¢-8, E* de; ED

e zk+_|:na<_81_k) }5“ D

8w 8w an, ) r 4
(1)

where the electric field displacement vector has the form

Dy=¢;E;. We assume that the dielectric tensor modified by

op=—P- 6 —
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the laser effect consists of two terms, the Drude-type term,
ep, and the polarization term, sj(-‘z):

(i’)~ (2)

Ejx=¢€p- Oy te;

J
The difference between the equilibrium state and the tran-
sient state is that in equilibrium 7, is constant and the elec-
tron temperature is equal to the lattice temperature, while in
the transient sate n, is changing and the electron temperature
is much higher than that of the lattice. The pressure in the
transient state is the sum of the contributions from the laser-
affected electron and lattice subsystems, P=P,+P;, and the
dielectric function is modified by the laser action.

B. Forces imposed by the laser pulse on a solid
1. Laser-exerted forces driving atomic motion

The action of an external electric field on a solid (liquid)
at moderate intensity leads to the internal deformations
(atomic motion) while the total volume remains constant.
These deformations are accompanied by a change in the ini-
tially homogeneous dielectric function. The volume force in-
duced by the laser field is expressed through the stress tensor,
gy, and modified by the field action, were found as the
following: 3

; doy P Y E* (ep—1)OE>
i=_=___ e R

oxy, ax;  dx, 8w 8m  Ix;

el AR A (3)

Here we took into account that for the Drude-type function
the following relation holds: n,(dep/ dn,)r=ep—1. The first
term in Eq. (3) is the thermal force. During the pulse when
only the electrons are excited while the lattice is cold, the
gradient of electronic pressure is a manifestation of the elec-
trostatic interaction between the electrons and the ions. The
second term is the polarization force when the polarizability
depends on the atomic displacement (the Placzek effect),®
and the third term is the ponderomotive force. Note that po-
larization and ponderomotive forces are effective only during
the pulse, while the thermal force drives atomic motion until
the spatial smoothing of temperature gradients. It is also
worth noting that the polarization force in Eq. (3) is similar
but not identical to the force driving phonon excitation in the
Raman effect.>> With a laser pulse duration much shorter
than the phonon period there is no time for this force to
oscillate with the phonon’s frequency.

Let us compare the laser-exerted forces to each other. We
take the polarizability (and dielectric) tensor in the Placzek

form, x;= Xo,ik+(%k)0'xz-35 Then the polarization term in
Eq. (2) reads

v
ng) =1+4mxgp+4m- (f) - Xp (4)
1/0

where x; is the atomic displacement in / direction. Then the
polarization force in Eq. (3) reduces to the following:
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)

i

) ‘9855) E_z_(ﬁ)(ik> E_2
0

- ox, 87 \ dx, 27

We assume that (dx;/ dx;)o= xo/d, d being the interatomic
distance. We calculate the unperturbed polarizability with the
Lorentz-Lorenz formula, x,=3(g—1)/4m(e+2).3¢ The con-
tribution of all terms in Eq. (3) to the end of the laser pulse
can be estimated as follows:

fthz"eTe #)2477-)(0! fpondx(SD_1)£'
L’ d ¢ I, ¢

Here, the average laser intensity during the pulse, [
=cE?/8, was introduced. For example, in bismuth (g
=22.39 at 800 nm; d=3.3X107% cm; n,=2.82X 10?2 cm™3
n,=5.34 X 10> cm™3) one obtains for x=0.2; y,/d=6.34
X 10° ecm~!. In the conditions of the experiments (tp=40 fs;
1,=29.8 nm; fluence 6.9 mJ/cm? I=1.75X10"" W/cm?;
1/¢=0.58 X 10% erg/cm’; T,=0.43 eV) these forces at the
end of the pulse are the following:

fh=13x%10"° erg/cm* > f¥
~4.61 X 10" erg/cm* > fpond
~4.38 X 10" erg/cm®.

Thus, the thermal force dominates at the end of the pulse.
However, one has to take into account that the thermal force
goes up almost linearly in time during the pulse. For ex-
ample, for the top-hat temporal intensity distribution the po-
larization and ponderomotive forces dominate during the first
10% of the pulse. Then the thermal force becomes larger and
finally it is 2 orders of magnitude larger than the other forces.
The forces above are the volume forces. One has to convert
them into the forces acting on a single atom by dividing the
above results by the atomic number density. Finally,

Fyp=/"n,~46 X 107 erg/cm > F)
~16.33 X 107 erg/cm > fPond
~1.55 X 107 erg/cm.

2. Equation of atomic motion in laser-excited solid

We are going to consider the swift excitation of atomic
vibrations by the force acting during a time much shorter
than the phonon period in an elemental solid with identical
atoms of mass M. For a description of strong excitation the
spatial dispersion can be neglected and the excited phonon
can be considered as a standing wave. The phonon frequency
is expressed through the first (quadratic) perturbation term in
the interatomic potential, which has the form

AU, = l<a2—L2]) ¢ = e,q*2d* = Cq* = Mawyqg*2, (6)
2\dq° /¢
where ¢ is the cold phonon amplitude and ¢, is the binding
(cohesive) energy. One can see that the cold phonon fre-
quency derived from Eq. (6) reads wj=g,/Md>. The elastic
force driving atomic vibrations can be expressed through the
perturbation of the potential and through the cold phonon
amplitude as follows:
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JAU,
F,= T ~ g,qld® = Mawjq. (7)

The magnitude of the cold phonon amplitude (at a tempera-
ture lower than the Debye temperature) can be estimated on
the basis of the adiabaticity principle®! as the following:

ﬁ 1/2
90~ (M_wo> . (8)

In the unexcited Bi the longitudinal A,, optical mode (vibra-
tion in ¢ direction) has a frequency 3 X 10'? s!. An estima-
tion of the phonon frequency via the perturbation in the in-
teratomic potential taking the corresponding values for
bismuth (Mg;=3.47 X 1072? g, interatomic distance in ¢ di-
rection d=3.3 A, and &,=2.16 eV) gives the correct value
for the phonon frequency. Calculating the amplitude of the
cold phonon one obtains go=10"° cm; the elastic force
equals Fe,=MBiw%qo=3.123 X107 erg/cm.

The equation for atomic motion in a solid perturbed by
the laser reads

Wog=""- 9)

Here, the phenomenological damping coefficient vy is intro-
duced; we discuss its physical meaning later in the paper.
FE=Fy+FP+fP is the sum of the laser-exerted forces.

C. Laser-induced atomic motion
1. Fast atomic displacement

The relative influence of the elastic force and the laser-
exerted forces is different on short-time scales << wal and on
long-time scales 7> wy'. The slow elastic force is not effec-
tive during the period much shorter than that of the atomic
vibration. Correspondingly, the first term on the left-hand
side of Eq. (9) dominates and it reduces to the simplest form
of the Newton equation:

Fa_ PO

— = 10
ar M (10)
The solution of this equation is straightforward:
t ' Flas l2
(1) =M‘1f dt’f FE(dt" ~ —222 - (11)
t' 0 M

Thus, on a short-time scale the laser-imposed forces pro-
duce a coherent displacement of atoms. It is instructive to
compare the fast atomic displacement to the amplitude of
cold phonons [Eq. (8)]. Taking the above parameters for the
experiments with Bi one obtains that during ~100 fs bis-
muth atoms are displaced on the distance less than 107! cm
which is approximately one tenth of the cold phonon’s am-
plitude.

2. Quasiharmonic vibrations under the action of thermal forces

One can see that the maximum value of the sum of the
laser-imposed forces equals to approximately one tenth of
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the elastic force driving cold phonons, w’gy> Fi*/ M. Thus
on a long-time scale 1> w(_)l the laser-imposed forces act as a
small perturbation slightly affecting the cold atomic vibra-
tions. Therefore, one can search for a solution of Eq. (9) in
the form

qx(1) = qro(t) + Agy(1), (12)
where ¢ is the unperturbed solution
1= qroexp{- i(wy — )1} (13)

Now the equation for the perturbation can be expressed as
follows:

dAg) 5. F®
2 Ag=——. 14
Y teda= (14)

d*(Aqy)
5+
dt

We assume that the perturbation oscillates with the same
frequency as the unperturbed vibration and therefore that the
perturbation affects only the vibration amplitude. Thus, one
obtains the change in the vibrational amplitude at > wal in
the form

Agi = {Fy /209 yMlexp{- yt + (g — V)"t - i}
(15)

Note that only the thermal force is effective after the end of
the pulse. The phase and some pre-exponential constant
should be introduced in order to stitch the above solution to
the initial atomic displacement.

3. Nonlinear phenomena arising in the process of electron-to-
lattice energy transfer and lattice heating

a. Anharmonicity of atomic vibrations due to lattice heat-
ing: thermal expansion shift in equilibrium position. Above
we considered damped harmonic oscillations of atoms where
the electron and lattice temperature entered only into the
thermal force. However, after the pulse the initially excited
cold harmonic phonon modes are gradually transformed be-
cause the lattice temperature increases due to energy transfer
from the electrons. Thus, after establishment of the lattice
temperature, the phonon modes are distributed over the en-
ergy in accord with the Boltzmann distribution with tempera-
ture T, ¢,n(q)=exp{—-AU,,/T}. The phonon energy [har-
monic perturbation in the interatomic potential (6)] satisfies
the condition AU,;<<T. Phonons do not interact in the har-
monic approximation. Respectively, the equilibrium position
of vibrating atoms does not depend on temperature, and the
average displacement of an oscillating atom from the equi-
librium position is zero.>® However, the mean square dis-
placement (or the average phonon energy) is proportional to
temperature:

f q*exp(— AU,/T)dq

—00

(> = (16)

* - Mo’
f exp(— AU,/T)dg ph

—00

This derivation qualitatively complies with a more rigorous
calculation for the average amplitude of atomic vibrations
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around the lattice vertex at a temperature exceeding the De-
bye temperature 7,73 Maw?(g*)=T. Here, wp=Tp/h is
the Debye frequency.

The phonon-phonon interactions become important when
the growing lattice temperature approaches the equilibrium
melting point. The atomic vibrations lose their harmonic
character; the nonlinearity in the interaction potential should
be taken into account. The perturbation in the interatomic
potential with the third-order term included reads®®

1{FU e
AU, =Cq*-gq’, C=~¢e)2d’, g:g(a—q3> g6_;3.
0
(17)

The distribution function with the nonlinear term included is
presented as the following:?’

¢a = exp{- (Cq* - g¢*)/T} = exp{— Cq*/TH1 + g¢*IT).
(18)

Now the average displacement from the cold equilibrium
position increases as the lattice temperature goes up:

3gT T
<qn]> - 4C2 Zde' (19)

The atomic motion loses its oscillatory character and be-
comes chaotic (randomized) when the change in average
atomic position by Eq. (19) constitutes a significant part of
the oscillation amplitude. The displacement of equilibrium
atomic position due to nonlinear interaction of phonons cal-
culated by Eq. (19) at a temperature equal to that of the
equilibrium melting point coincides with the average dis-
placement following from the Lindemann criterion of melt-
ing with an accuracy of 10%.3%3° This seems to be an amaz-
ing coincidence from the first sight. In fact, it is the evidence
for the failure of the harmonic approximation for description
of atomic motion during the phase transition stage.

The nonlinear processes of multiphonon interaction at
temperatures close to the equilibrium melting point gradually
results first in the mode softening (that is the decrease of the
oscillation frequency), and then in the lattice instability later
in time when the square of the frequency may turn negative.

Now we define the time scale when the nonlinear interac-
tion becomes dominant.

b. Three-phonon interaction: phonon decay time (life-
time). The probability of multiphonon processes in unit time
defines the characteristic phonon decay time. The probability
of decay of an optical phonon (spatial dispersion neglected)
into two acoustic phonons per unit time can be calculated
with the help of quantum perturbation theory as third-order
term.3! We present here a simplified version of a similar
derivation estimating the perturbation Hamiltonian, H’, as
the third term in the series of potential expansion in powers
of atomic displacement from Eq. (16). Then the scaling for
the probability for the phonon decay is the following:

PHYSICAL REVIEW B 78, 134302 (2008)

|H'[?
o

KT’ (20)

where we take the average phonon energy as Mw%(qz)
~fiw,,~T. Respectively, the third-order term in the pertur-
bation potential (perturbation Hamiltonian) is expressed as

follows:
1 &3(] T 3/2
H'%—<_3> <q2>3/2z8_b3< 2) . (21)
6\dq’/, 6d° \ M wy,

Now the probability of phonon decay, or the optical phonon
decay rate, can be easily expressed as function of basic prop-
erties of a solid. For temperatures in excess of the Debye
temperature, k7> hwp, the single phonon decay rate reads

v Md2 ﬁ(DD ’

where C is a proportionality parameter in the scaling law. For
Bi (Mg=347X10"% g; d=33X10"% cm) at kT=hw)p
(Tp=119 K) this decay rate equals to w=7%/Md>=2.79
X 10° s7!. Respectively, at the maximum lattice temperature
of 1273 K (at 6.7 mJ/cm?) this rate is 3.2 X 10" s~!, which
is in qualitative agreement with the experimental observa-
tions. Nonlinear phonon-phonon interactions also result in
the dependence of the phonon frequency on the lattice tem-
perature.

¢. Redshift in the phonon frequency and increase in the
interatomic separation due to laser excitation. The binding
energy in the laser-excited solid is reduced compared to that
in a cold state due to the excitation of electrons and the
lattice heating. One can describe the property of excited solid

using a simplified form for the empirical chemical
pseudopotential ;404!
V(r)=Vee " = Vye ™. (23)

Here Vg, Vy4, 6, and \ (or s=6/\ and \) are, respectively, the
repulsive and attractive potentials along with their gradients.
The attractive part of the interatomic potential decreases with
temperature increase in comparison to the repulsive part,
thus effectively increasing the repulsion. It follows from Eq.
(23) that in the heated solid the interatomic distance (where
the potential is a minimum) can be expressed via the binding
energy as the following:
;)VA> ~dy+ L (24)
)\Sbo

Thus in the excited state at ,—7, (assuming &,>T,) the
interatomic distance increases and this increase depends on
the gradient of the attractive part of the potential that is most
strongly affected:

1T,

dg~——=.
q )\Sb’o

(25)

One can see that the above relation qualitatively complies
with Eq. (18) and that it is the result of thermal expansion.
However, in Eq. (25) the asymmetry in the interatomic po-
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tential is taken into account. Similarly, the second derivative

of the potential allows recovery of the excited phonon fre-

quency [compare to Eq. (6)]:

2 .l(fX) _ Nl
r=d

W= =—. 26
L AV M (26)
Thus the square of the phonon frequency in the excited solid
linearly decreases with temperature growth in the first ap-
proximation, where the change in the interatomic distance

with the temperature is ignored:

T,
wéhzw3<l—|86|>. (27)
b0
Therefore, the above estimate implicitly assumes that elec-
trons are excited and the lattice is cold. For example, in Bi
excited to the maximum electron temperature of 3480 K
(which is 0.3 eV, while the binding energy 2.16 eV) the
phonon frequency decrease predicted by Eq. (27) is ~7%.
Thus for the A;, mode the frequency of 3 THz in accord to
Eq. (27) should decrease to 2.78 THz. The experimental
value is 2.82 THz at 4 mJ/cm? (see Fig. 5). One can see that
when the temperature approaches the equilibrium melting
point, which is the onset of transition to the intermediate
potential minimum corresponding to liquid state, the second
derivative of the potential passes through zero. This is a
manifestation of the onset of vibrational instability when the
square of phonon frequency temporarily may turn negative.

D. Transient optical properties in the laser-excited solid
1. Dielectric function

Our goal is to trace the atomic motion and the subsequent
phase changes through the time-dependent dielectric proper-
ties of laser-affected material. We assumed in Eq. (2) that the
dielectric tensor modified by the laser effect consists of two
terms, the Drude-t(yg)e term, ep, and the polarization term,
s}i):ejk:sn dy+ej; . The polarization part is the real num-
ber. Thus, the total dielectric function can be presented as a
sum:

Ejx=¢p- 5jk+8§£)58,+i8i,

— o =
sr—sj’,:)+8,’D, £, =¢gp. (28)

The Drude term has its conventional form:

o’ @

v
_ P P e-ph __ .
ep=l-—F—5—+i—5 5 =g, ptigp.
OV, @V, @
(29)

This function depends on the number density of the conduc-

tivity electrons, n,, and on the2 electron effective mass

through plasma frequency, wﬁ:“e—?“(t). It is unknown to the
m,

best of our knowledge how the electron effective mass

changes during heating and melting of a solid. For example,

it is established that in liquid bismuth, the effective mass is

equal to that of a free electron’s;*> we may assume that in the

PHYSICAL REVIEW B 78, 134302 (2008)

solid phase at room temperature the effective mass is also
equal to the free electron mass. Therefore we ignore the elec-
tron effective mass change in the following analysis. The
dependence of the electron-phonon energy exchange on the
phonon amplitude and frequency and on the lattice tempera-
ture enters through the electron-phonon momentum ex-
change rate in the explicit form with the use of Egs. (8) and
(18):

Veph = €pn/fi = Mo 2% = wpg?2g3. (30)

The small perturbation in the electron-phonon rate due to
laser excitation is expressed through the change in the pho-
non amplitude as follows:

2Aq(1)
Ve—ph = g(_),),h . (3 1)
90

A

The polarizability part from Eq. (4) is expressed directly
through the laser-induced atomic displacement:

v
el = 477(ﬁ) Ag(2). (32)
9x; /o
The atomic displacement Ag(7) is expressed by formula (15).
The real and imaginary parts of the slightly perturbed di-
electric function are as follows:

de An
AS,ZAS(«Q))+A8},D:A£%)+(¢> e
! ’ ! dlnn,/y n,
+ ( aSD’r ) AVE—ph’
dIn Ve-ph 0 VO,e—ph
dg; An de; Av,.
AgiEAsi,D:<+D) _€+< i.D ) eph'
dIn Nelo Ne dIn Ve—ph 0 VO,e—ph

(33)

Subscript “0” denotes that a derivative is taken from the
unperturbed function. Derivatives are presented in the Ap-
pendix. Thus, the dielectric function in a swiftly excited
metal-like solid is changing due to the increase in the num-
ber density of conductivity electrons and the variation in the
electron-phonon momentum exchange rate. The transient
changes following the excitation are expressed as explicit
functions of the electron temperature and atomic vibrations.

For example, in Bi the real part of the dielectric function
in equilibrium liquid is slightly higher than that in a solid
while the imaginary part increases more than two times. The
number density of electrons and the electron-phonon rate in
liquid are almost three times higher of those in a solid (see
Ref. 42 and Table I below). On the other hand, the logarith-
mic derivatives of the real and imaginary parts of the dielec-
tric function on electron number density and derivatives of
real parts on the electron-phonon rate are of the same sign in
both states (see Table II below). However, the logarithmic
derivative of the imaginary part on the electron-phonon rate
in a solid is slightly positive (0.86) while in a liquid it is
strongly negative (—11.95). Thus, the sign of this derivative
changes somewhere during the solid-liquid transition time.
One can make two conclusions from this analysis. First, one
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TABLE L. Solid and liquid bismuth optical properties at 800 nm (w=2.356 X 10'3 s~!, photon energy 1.55

eV).

Ereal €im € m, Ueff/w RO (wp/w)2
Solid? -16.25 15.4 22.39 5.34x 102 Free 0.893 0.74 31.0
Liquid® -11.0 28.9 30.92 14.1 X 102 Free 2.408 0.67 81.58

4References 22-24.
bReference 42.

cannot present the transient dielectric function as an expan-
sion into series during the solid-liquid transition because lin-
ear approximation does not work in this case. Second, the
transient phase state may have peculiar optical properties due
to strong changes in the electron-phonon collision rate di-
rectly related to the laser-excited atomic motion.

2. Time-dependent reflectivity

Now it is instructive to present the directly measured
time-dependent reflectivity of a laser-excited solid through
the solid internal properties. First, we express the Fresnel
reflection coefficient, R=|&'?—1/&"?+1|?, through the real
and imaginary parts of the dielectric function, e=g")+ig®,
as follows:

B le|+1-2"2(|e| + &)1

le|+1+2"2(|e| + &)1

Here |e|=(g2+&7)!"?
reads

(34)

. Small variation in reflectivity then

AR=<§> (AS,D+A8§I;>)+(§> Ag;p.  (35)
d r’ 0 ' (?81- 0 '
Substituting variations in the dielectric function from Eq.
(33) one can present the small first-order reflectivity varia-
tion expressed through the changes in polarization, in the
number of the conductivity electrons and in the electron-
phonon rate with the coefficients combined through the un-
perturbed solid parameters:

IR A Av,.
AR:(—) Ae® +C, S, SHEh (36
€r/0 ¢ Neo eph Ve-ph,0

Here the coefficients (see the Appendix) are combined from
the derivatives taken from the unperturbed functions:

R de, JdR de;
C, = e +|— ,
¢ e /o\dInn,/, \ds;/y\dInn,/,
=\—||——) +{— | |———| .
e\ de, Jo\dIn v, /o \d&/o\dIn v,/

For Bi (see III below and the Appendix) both coefficients in
expansion (36) have the same signs (C, is positive and C,
is negative) and they are of the same order of magnitude in
both solid and liquid states. It is also known from the
experiments?~811:12.1424 that the amplitude of the reflectivity
changes in the observed oscillations is on the order of

(37)

1073—-107*. Therefore, it is reasonable to describe the time-
dependent reflectivity oscillations by expansion (36) where
each term has a clear physical meaning. Indeed, the first term
describes the reflectivity decrease due to polarization
changes in the dielectric function during the pulse, which is
positive, while the reflectivity derivative is negative (for Bi).
The second term describes the increase in the reflectivity
during the laser pulse that is the consequence of the increase
in the number of conductivity electrons. After the end of the
pulse this contribution gradually decreases (remaining posi-
tive) due to the recombination of excited carriers. The third
contribution into the reflectivity changes is the result of the
effect of atomic vibrations on the optical properties of ex-
cited solid. This contribution is of the same physical nature
as the first term and it is negative. All variations in optical
properties are explicit functions of electron and lattice tem-
perature, which are functions of laser excitation and param-
eters of the solid.

IV. COMPARISON TO THE EXPERIMENTS

The reflectivity of a probe beam was recorded with time
resolution of 100 fs and less in many experiments,"*** where
the absorbed energy density has been several times larger the
equilibrium enthalpy of melting. Under these conditions a
solid transferred into a transient state.

What kind of information about the transient phase state
of laser-excited solid can be extracted from the time-
dependent reflectivity oscillations? First of all, the reflectiv-
ity of the transient state has to be compared to the reflectivity
of the solid and liquid states. The reflectivity increases first
over the level for a cold solid after the end of the pulse to its
maximum value during the time comparable to the cold pho-
non period. Then, the reflectivity starts to oscillate with the
cold phonon frequency and the amplitude gradually decreas-
ing with time. In several picoseconds time, during a period
comparable to the electron-phonon energy transfer time the
reflectivity decreases below the initial solid level indicating
the onset of the phase transition to a liquid state but never
reaches the liquid value. Another distinctive feature of the
transient reflectivity is a time period in which reflectivity
oscillations cease to exist. This time is associated with life-
time of atomic harmonic vibrations, or phonons, it can be
directly measured from the time-dependent reflectivity as an
inverse of the damping coefficient. As the above analysis
suggests, this time is inversely proportional to the probability
per unit time for the optical phonon to decay into two acous-
tic phonons. Thus this time signifies the moment when har-
monic atomic oscillations are completely converted into a
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TABLE II. Numerical values for dielectric constant derivatives for solid and for liquid Bi at 800 nm.

de,/d1nn, de,l d1n v, de;/d1n n, deil d1n vy dR/ds, dR/de;
Solid Bi -17.25 0.032 15.4 0.87 -1.2x1072 -6x1073
Liquid Bi -12 0.012 28.9 -11.94 -75%X1073  1.58x1073
nonlinear chaotic motion. For the considered case where the 5 5 2 T
temperature is higher than the Debye temperature k7> kT, Wpp = @) 1= 1= )\_do a : (39)

the single phonon decay rate reads

~ci(£>2 (38)
Wdecay Md*\hwy) ’

where C is a proportionality parameter in the scaling law. For
Bi (Mg=347X10"2% g; d=4X108 cm; w,=1.77
%X 10" s7!; unperturbed phonon energy 1.17 X 107 eV) at
low temperature, below the Debye temperature, this decay
rate equals to 1.89 X 10° s~!. Examination of the experimen-
tal data in Fig. 3 shows that the decay time follows a tem-
perature power law of 1.4, which is lower than the
temperature-squared law for a single phonon decay. This
suggests that the two-phonon decay process was mixed with
some other involved dissipation processes, such as mul-
tiphonon interaction. In other words, the moment when the
reflectivity oscillation amplitude ceases to exist can be con-
sidered as the onset of the vibration instability, which in turn
instigates the beginning of the disordering of a solid crystal
and the beginning of the transition. Reflectivity oscillations
in Bi were measured at different pump fluences, i.e., at dif-
ferent electron and lattice temperatures. These oscillations
were also observed for different initial temperatures at the
same excitation fluence.

It was observed that the phonon frequency decreases (red-
shifts) compared to the cold material with the increase in the
pump fluence, i.e., with the growth of maximum electron and
lattice temperature in the excited solid at the constant initial
temperature of a sample. The redshift of phonon frequency
was also observed as a function of the initial lattice tempera-
ture while the excitation fluence remained the same. How-
ever the magnitude of the shift in these two cases is different.

In a solid heated in the equilibrium conditions (electron
and lattice temperatures are the same) the binding energy
decreases along with the increase in the interatomic distance
due to thermal expansion (with the shift in the equilibrium
positions of vibrating atoms). The phonon frequency scales
with the binding energy and the interatomic distance as wéh
~g,/ Md?. Therefore, changes in the interatomic distance,
d=dy+T/(\eyy), and in the binding energy, &,~¢ey—T,
both contribute into the frequency change as

N e (v
w3, = W - .
pho PO €50 Ndoep,

Keeping only the first-order terms in expansion of the above
squared frequency in series of a small parameter, 7/ g, one
obtains the redshift of the phonon frequency as a function of
temperature in the form

With swift laser heating the frequency redshift occurs mainly
due to the rise in the electron temperature because the coher-
ent displacement of atoms during the short pulse does not
change the interatomic distance in a cold lattice. Therefore
the frequency change by the action of the ultrashort pulse is
expressed as

wf)h ~ ‘Ulz)h,o{l — (T, + To)/ep}- (40)

Comparing Egs. (39) and (40) one can see that at the same
temperature the frequency shift in equilibrium might be sev-
eral times larger than that during the subpicosecond excita-
tion. However, this linear approximation is only the indica-
tion of a trend. When the temperature approaches the melting
point, nonlinear effects may become dominant and the above
expansions will be an underestimate.

The dependence of the frequency of reflectivity oscilla-
tions in the bismuth sample at room temperature (7
=290 K, 0.025 eV) as a function of the exciting laser flu-
ence, which is presented in Fig. 5, is well described by Eq.
(40) with wy, g=3.04 THz up to the fluence of ~13 mJ/ cm?
when maximum electron temperature reaches 0.573 eV, and
maximum lattice temperature is 4.5 times higher than equi-
librium melting point. It is amazing that a simple linear ap-
proximation works so well even outside the area of its appli-
cability. Similarly, the oscillation frequency dependence on
the initial temperature in a range from 50 to 510 K was
measured at a fixed fluence of 6.9 mJ/cm? (maximum elec-
tron temperature 0.363 eV). The simple formulae of Egs.
(39) and (40) explain well the experimental data in the range
of applicability of the linear approximation. Experiments at
the laser fluence level leading to strong overheating (fluence
>10 mJ/cm?, T, >3.5 T,,;) show much stronger influence
of nonlinear effects than those taken into account by the
first-order approximation by Egs. (39) and (40).

V. CONCLUSIONS

Summing up one can conclude that reflectivity oscilla-
tions measured with high accuracy allow subtle atomic mo-
tion, induced by the action of the laser pulse with duration
shorter than all relaxation times, to be uncovered. First, the
coherent atomic displacement is produced by the polarization
force and electron pressure force during the laser pulse and
this results in the initial negative drop in the reflectivity. The
frequency of the following reflectivity oscillations is chirped,
redshifting from the initial value due to electron heating. The
amplitude decreases gradually as the electrons transfer their
energy to the lattice. Heating of the lattice and thermal ex-
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pansion transformed the initially harmonic vibrations of the
atoms into strongly nonlinear chaotic motion that is charac-
teristic of the onset of solid-to-liquid phase transformation.
This process is identified by the measurement and interpre-
tation of the damping rate of the reflectivity oscillations. The
observed dependence of the damping rate on the temperature
is close to the dependence of the rate of optical phonon de-
cay into two acoustic phonons, and this confirms the inter-
pretation of the inverse damping rate as the lifetime of the
phonons. The reflectivity oscillations are followed by a de-
crease below the reflectivity of the initial solid state toward
the liquid state. However, the level of this decrease before
recovering to the initial solid reflectivity is relatively small,
AR/Ry=5X 1073 at most, while the difference between the
reflectivity of solid and liquid phases is much larger: (Rgiq
=Rjig)/ Ry1iq=0.1. It seems from the naive point of view that
melting should have occurred inevitably at a lattice tempera-
ture in excess of melting point. However it appears to be
wrong in the case of ultrafast heating. Indeed, it has been
demonstrated that ice,** gallium,*> and aluminum*® over-
heated to T,/ Trei=1.073,2.67,9.4 do not melt for times of
200 ps, 20 ps and 3.5 ps, respectively, where this time is
much longer than electron-lattice equilibration time. The ra-
tio of maximum temperature to the melting point in the ex-
periments presented in this paper and in Ref. 24 is
1273 K/545 K=2.33. Thus, the results of this paper are in
agreement with Refs. 43—-46. There were no indications that
the phase transition was completed during several tens of
picoseconds after the laser excitation. A deeper insight into
internal properties of a solid in this transition state is needed
in order to describe it in more detail (the distribution func-
tions, order parameter, etc.).
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TABLE III. Coefficients in the reflectivity variations.

G, G,
e e-ph
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4References 22-24.
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APPENDIX

The derivatives of the Drude dielectric function are the
following:

de de w?
Lome—1, — =282,
dlnn, d1n v, w,
Je; de; 1 - (vw)?
— =g, =¢g- 5.
dlnn, d1n v, 1+ (Vw)

Below are the reflectivity derivatives from the Fresnel for-
mula expressed through the dielectric function:

dR V’E[sf—sf—|8|+sr(|£|—l)]
de, |8|\r’/(|8| +e,)|e|+1+ \"/2(|8| +e)

dR & VE(|8| +2¢,—1)
de; el V(e +&)le| + 1+ \2(e| + &)

Here |e|=(s?+&7)"2. Both derivatives are negative for solid
Bi at 800 nm (Tables II and III).
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