
Memory effects in transport through a hopping insulator: Understanding two-dip experiments

V. I. Kozub,1,2 Y. M. Galperin,1,2,3 V. Vinokur,2 and A. L. Burin4

1A. F. Ioffe Physico-Technical Institute of Russian Academy of Sciences, 194021 Saint Petersburg, Russia
2Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA

3Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway
4Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA

�Received 27 July 2008; published 3 October 2008�

We discuss memory effects in the conductance of hopping insulators due to slow rearrangements of many-
electron clusters leading to formation of polarons close to the electron hopping sites. An abrupt change in the
gate voltage and corresponding shift of the chemical potential change populations of the hopping sites, which
then slowly relax due to rearrangements of the clusters. As a result, the density of hopping states becomes time
dependent on a scale relevant to rearrangement of the structural defects leading to the excess time-dependent
conductivity.
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I. INTRODUCTION

Memory effects in low-temperature transport properties of
hopping insulators have been reported in several systems.1–4

After excitation from equilibrium by, e.g., a sudden change
in gate voltage, Vg, the conductance of the system increases,
independent of the sign of the change. This excess conduc-
tance, ��, may persist for long times after the excitation
forming the so-called memory cusp; see Ref. 5 for a review.

Several concepts were used to explain the memory cusps
in the dependence of the conductance, G, versus the gate
voltage, Vg. The so-called intrinsic mechanism is based on
the assumption that the memory effects are due to complex
dynamics in the strongly correlated system of interacting
electrons.6–8 It is a natural assumption since hopping insula-
tors lack strong metallic screening and the long-range Cou-
lomb interaction can be decisive. In Ref. 9 the connection
between the glasslike behavior and Coulomb gap was ar-
gued. Another scenario, the so-called extrinsic, assumes that
the observed conductance relaxations are due to the influence
of slowly relaxing atomic configurations acting on the con-
ducting channels. It was first advocated in Ref. 10 to explain
the occurrence of a G�Vg� cusp in granular gold films.

The mechanism behind the memory effects in hopping
insulators is far from being fully understood. In particular,
we are not aware of a fully convincing explanation of the
experimental results5 on the “double-dip” structure of the
G�Vg� dependences and their relaxations. Several dips can be
grown in the dependence of conductivity of the gate voltage
by the application of different gate voltages for a long time.
Recent experiments11 aimed at studies of the influence of the
sample lateral dimensions on the glassy properties show that
there are reproducible conductance fluctuations having ap-
parently different time scales comparing with the memory
cusps.

Recently we suggested a simple extrinsic model allowing
for the “two-dip” behavior of the conductance of a structur-
ally disordered hopping insulator.12 According to this model,
the memory is supported by two-state dynamic structural de-
fects present in any medium with sufficient amount of struc-
tural disorder.13 The two-level defects get polarized by the

electrons and, in turn, form a polaron gap at the hopping
sites decreasing hopping conductance. The slow dynamics of
conductance is then due to slow rearrangement of polaron
clouds around the hopping sites. An important feature of this
extrinsic model qualitatively explaining logarithmic relax-
ation and memory effects3,4 is the presence of a set of fluc-
tuators possessing dipole moments, uniform density of states,
and logarithmically uniform spectrum of relaxation times.
Such fluctuators can also have intrinsic electronic nature.14

Recent experiments5,11 can help determine which particular
mechanism—“extrinsic” or “intrinsic”—is responsible for
the observed behavior using the temperature dependence of
the “typical” relaxation time defined by the memory deep
equilibration. We will show that the “chessboard” electronic
fluctuators suggested in Ref. 15 to interpret 1 / f noise in hop-
ping conductivity also lead to the nonequilibrium conductiv-
ity behavior similar to that observed experimentally. As we
will see below, this time is sensitive to the minor deviations
of the relaxation-time distribution from its �1 /� shape. The
model15 turns out to be able to explain the observed increase
in the typical relaxation time with temperature, as well as
some other observed features.

II. MAIN CONCEPTS

To calculate the time-dependent conductance of the sys-
tem, one needs to know the time-dependent density of hop-
ping states �DOS� at the Fermi level. The DOS is modified
by rearrangement of the populations of the sites neighboring
the sites belonging to the hopping cluster. This rearrange-
ment driven by hopping electrons leads to decrease, U, in the
energy of a hopping site. The polaron shifts U are different
for different sites and can be characterized by a distribution
function, F�U , t�. This distribution slowly depends on time
due to rearrangement of the polaron clouds.

The analysis below is similar to our previous work.12 A
site can be brought from the ground to an excited state by
placing or removing an electron that can take place only if
the excitation energy, �, exceeds the polaron gap. Thus the
formation of the polaron gap excludes all the states with U
��̄. Here �̄ is the typical excitation, its equilibrium value
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being the width of the hopping band, �h. For an equilibrium
state created by sudden change 	Vg
�h of the gate voltage
�̄�	Vg. Thus, �̄�max��h ,	Vg�. The effect of the polaron
cloud on the conductivity can be estimated as

	G�t�
G

� − �
�̄

�

F�U,t�dU . �1�

This result is straightforward—the sites inside the polaron
cloud cannot be occupied, and the density of states is less
than the universal one. Thus the relative decrease in the den-
sity of states due to polarons can be estimated as a relative
volume occupied by the polaron cloud.

To find F�U , t� one needs to specify the slow relaxing
aggregates producing the polaron shift U. Following previ-
ous studies of 1 / f noise in hopping conductivity,15 we as-
sume that slow dynamics is due to chessboard electroneutral
clusters having 2N sites placed at a distance �r between
each other. The relaxation rate, �, of a given aggregate de-
pends both on the number of sites, 2N, in the aggregate and
on the typical distance, r, between the sites and energy dif-
ference E between its lowest-energy levels. We are interested
in the domain where E�T since in the opposite case the
cluster resides in its ground state. Let us define the distribu-
tion P�N ,r ,E� such that P�N ,r ,E�dN dr dE is the number of
the clusters per unit volume having the parameters within the
region �N+dN ,r+dr ,E+dE�. To estimate this distribution,
we will take into account that the typical aggregate volume is
Nr3, while the energy bandwidth for small energies is equal
to �Ne2 /r. Thus, the total density of states, W�N ,r ,E�, of
all aggregates with the intersite distances r� larger than some
r is given as W�N ,� ,E���N /T0N3/2a3�2. Here � is a prob-
ability to add additional pair of sites to the aggregate; �
	r /a, where a is the localization length, while T0	e2 /a.
In this way we get the expression for the partial density as
P�N ,����N /T0N3/2a3�2. Since we are interested in the case
E�T�T0 the partial density is E independent. Let us first
consider the Efros-Shklovskii �ES� regime16 of variable
range hopping �VRH�. In this case the relaxation rate for
cluster rearrangement can be expressed by the interpolation
formula15

�−1�N,�� = �0�e−N2/3�2/� + e−N�� , �2�

where �	�T0 /T�1/2. The first contribution corresponds to
formation of a “domain wall” in the aggregate, while the
second one corresponds to coherent tunneling transitions
leading to recharging of all aggregate sites. The distribution
of relaxation rates can be calculated as

P��� =� dN d� P�N,��	
��N,�� − �� . �3�

As shown in Ref. 15, the integral is dominated by the values
N=Nc and �=�c, where

Nc��� = 
ln��0��/��6/5, �c��� = �/
Nc����1/6. �4�

The quantities Nc and �c characterize the most important
clusters among those switching during the time ��−1. Since
the number of electrons in cluster Nc depends logarithmically
on all relevant parameters and it cannot be very large be-

cause other relevant parameters are exponentially sensitive to
it, we set Nc�1 following Ref. 15. Substituting Eq. �4� into
Eq. �3� we obtain

P��� �
P0

�

1

��0��� . �5�

Here P0	1 / �T0a3�3� and ������−6/5 ln1/5��0���1.
Note that at 	Vg
�h the typical distance R�e2 / �	Vg�

corresponding to the polaron shift �	Vg produced by a near-
est neighbor turns out to be less than the hopping length rh
=a�, as well as a typical size �rh of the aggregate. Conse-
quently one can treat the interaction between the site belong-
ing to the percolation cluster and a fluctuator as a contact
one. Thus, U�R��e2 /R, where R is the distance between
the hopping site and its nearest neighbor belonging to the
fluctuator. As result, the contribution of the clusters with re-
laxation time � to the distribution of polaron shifts is

F��U� =
8�R2P���
d ln U/dR

=
8�e6

3U3P��� . �6�

Here we have taken into account that only aggregates with
E�U form the polaron as well as the fact that each of the 2N
sites of the aggregate can be coupled to the hopping site. The
proper distribution F�U , t� is determined by the manipulation
protocol. For example, if the system is brought to some state
at time t0 by a sudden change in the gate voltage then the
polaron clouds are formed by all the fluctuators, which have
changed their states by the observation time, t. Consequently,
F�U , t�=�t0

t F��U�d�.

III. DISCUSSION

By now we were discussing the ES regime of VRH. One
can expect that the number of the metastable aggregates
strongly decreases within the Mott regime. Indeed, aggre-
gates are constructed from the sites where the intersite Cou-
lomb energies are of the order of single-particle energies.
This is not the case for typical hopping sites in the Mott
VRH regime where the spread in the energies of the local-
ized states is rather due to extrinsic disorder than to Coulomb
interaction. Because of this spread it is less probable to find
a set of sites forming a two-state aggregate. The addition
factor entering the probability � for adding a pair of sites to
an aggregate can be estimated as the ratio of the width of the
Coulomb gap, �C�T0

3/2TM
−1/2, to the typical hopping band in

the Mott regime, �M =TM
1/4T3/4. Here TM is the characteristic

temperature of the Mott VRH, ��e−�TM / T�1/4
; we have de-

fined �C as the temperature of crossover between regimes of
ES and Mott VRH. The ratio �C /�M = ��C /T�3/4 is an addi-
tional factor entering the probability �. Deeply in the Mott
regime, T
�C, this factor is small. Since TM �1 /g0 where
g0 is the Mott density of states � decreases with decrease in
g0.

To compare our prediction with experimental results of
Refs. 3, 5–7, 11, 17, and 18 obtained using InO films, we
assume that in the absence of Coulomb interaction their
DOS, g0, would be energy independent at the energies less
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than or of the order of both room temperature, Tr, and the
shift in the chemical potential, 	�, due to variation in the
gate voltage, 	Vg, within the dip. This DOS consists of lo-
calized and extended states split by the mobility edge, �m.
The closer � is to �m, the larger the localization length is
and, consequently, the hopping conductance. Different
samples have different g0 and different � with respect to �m.
This picture is conventional for materials with large amount
of disorder.

The authors of Ref. 7 determine the carrier concentration
from the Hall coefficient at T=Tr. Then the found concentra-
tion, nr, is just the concentration of the extended carriers, and
one can estimate DOS as g0�nr /Tr. The width of the dip is
related with the shift in chemical potential as 	Vg=g0	� /C
�	�, where C is capacitance. Thus the width of the dip is
�g0 and, for a given position of the chemical potential, it is
correlated with nr found in Ref. 7. On the other hand, the
samples with the same g0 but different positions of the
chemical potential have different resistance—the lower � the
lower is the localization length and the larger is the resis-
tance. From a phenomenological point of view, the samples
with the same g0 but larger resistance can be characterized
as “more dirty.” For density of states
g0= �4�1018 cm−3� / �300 K��1032 cm−3 erg−1, which
roughly corresponds to the threshold of the memory effect in
Refs. 5 and 7, the Coulomb gap can be estimated as �C
= �g0e6 /3�1/2�3�10−15 erg. At the same time, T=4 K
corresponds to a crossover between the Mott and ES VRH
regimes, and at this temperature ��5 and �h��C. Thus, we
explain the observed correlation of Refs. 5 and 7 between
pronounced decrease in the memory effect and the decrease
in the dip width by the decrease in the density of the meta-
stable aggregates in the Mott regime.

According to Eq. �1� the relative change in the conduc-
tance is ��̄−2. Thus the shape of the dip can be cast in an
interpolation formula,

	G

G
� −

�e2/�3P0Q�t�
�C	Vg/g0�2 + �h

2 , Q�t� 	 � d���0��−�

�
, �7�

where the limits of integration are determined by the ma-
nipulation protocol. The temperature dependence of the dip
magnitude is given by the product �−9/5�h

−2�T−0.1. Showing
the same trend as in experiment5 it is still much weaker.
Assuming ln �0��20, we estimate the height of the dip as
�1/5�ln �0��−6/5�0.05 that is in agreement with experiments.

To analyze time dependence of the dip, we take into ac-
count that the parameters of the system �such as concentra-
tion and localization length� are somewhat different for dif-
ferent gate voltage. It is clearly demonstrated by the fact that
the G�V� curves have a systematic slope �subtracted in the
course of studies of the dip�. Let us for simplicity assume
that the bonding parameter � depends on the gate voltage,
say, through the localization length. As it is seen from ex-
periment, G increases with increase in concentration, i.e.,
with Vg. Consequently, we can assume that � decreases with
increase in Vg. Correspondingly, the parameters of the aggre-
gates also depend on Vg and are different for the aggregates
responsible for different dips in the two-dip experiment.

In the well-known double-dip experiments5 the typical re-
laxation time is defined as follows. First, the gate voltage in
a gated sample is rapidly changed from some initial to some
final value Vg1 �we have denoted the time of this variation as
�min�. Then it is kept constant until some time, which we will
denote as tmax. During this time the conductivity slowly �ap-
parently logarithmically� decreases to some value, G0
−	G�tmax,�min�. Then the gate voltage is swept to some other
value, Vg2, and kept constant, the conductivity decreasing
with time forming a new dip, G0−	G�t ,�min�. Here with a
logarithmic accuracy we ascribed the same estimate �min for
the fast process of switching from Vg1 to Vg2. Let us assume
that the shift of � due to the variation in Vg is less than the
typical single-particle energies of the sites forming the ag-
gregates. Then at the new value of Vg the aggregates respon-
sible for the polaron gap at Vg=Vg1 stay at the same configu-
ration of the occupation numbers. However, the occupation
of the sites forming the percolation cluster at Vg=Vg1 at Vg
=Vg2 is completely changed provided that the shift of the
chemical potential is larger than �h. Thus the aggregates re-
sponsible for the first dip start to relax. However at the times
t��max the slow aggregates still preserve the configuration
corresponding to Vg=Vg1; thus the first dip is partly restored
if the gate voltage is returned to the value Vg1. The depth of
the restored dip at the time t is expected to be 	G��max, t�.
The relaxation time, �̄, is defined according to equality of the
depths of the “old” and “new” dips. This condition corre-
sponds to the equality �̄ is calculated according to the fol-
lowing procedure:

�
�min

�̄

P���d� = �
�̄

�max

P���d� . �8�

Since P����const��−1��0��−� Eq. �5� then up to the lowest
approximation in �, �̄0=��max�min. The next iteration
provides the correction �̄1 / �̄0=− �

8 ln2��max /�min�, which leads
to decrease in �̄ with temperature increase. However, it is
more sensitive to the possible dependence of the parameter �
on the gate voltage. The first �initial� dip and the second one
correspond to different gate voltages and one can expect that
they are formed by the states with different localization
lengths. Consequently, the values of � are different. Denot-
ing them as �1,2 for the first and the second dips, respec-
tively, and assuming that �1−�2�� we arrive at the second
temperature-dependent correction �̄2 / �̄0�
��1−�2� /4��ln
��0�0���max /�min��/2. As follows from experiments7,17 the
conductance for the second dip is larger than for the first one,
which indicates the smaller value of � for the second dip.
Since ���−6/5 one concludes that �1��2. Thus the correc-
tion �̄2 is positive and increases with temperature both due to
increase in � and �0. This trend can qualitatively explain the
observed weak increase in �̄ with temperature. A similar con-
clusion can be made for another protocol5,18 for determining
a typical relaxation time. As we have seen, increase in resis-
tance or � is correlated with decrease in the exponent � and
subsequently slowing down the time evolution. This can be a
qualitative explanation of the observation in Ref. 3, slowing
down the time evolution with increase in disorder.
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Now let us discuss an effect of external magnetic field.5

One can imagine two possible mechanisms: �i� shrinkage of
the wave function manifesting itself as a positive addition
�H2 to the hopping exponent16 and �ii� spin effect related to
a presence of doubly occupied centers. In the latter case the
magnetic field aligns spins of singly occupied sites, which
blocks the spin-conserving hops between the singly occupied
sites. One can expect that at �gH��h the latter mechanism
leads to a positive magnetoresistance, its magnitude being
proportional to the relative contribution of the doubly occu-
pied sites. Both mechanisms can be accounted for by a field
dependent increase in the tunneling length � entering the
second item on the right-hand side of Eq. �2�. That would, in
turn, lead to the decrease in the exponent �.

In the experiments,3 the observed magnetoresistance is
only weakly dependent on the magnitude of resistance and
decreases with resistance increase. This behavior seems to be
contradictory to the wave shrinkage mechanism since in that
case the magnetoresistance would dramatically increase with
an increase in the hopping exponent �. In addition, the
shrinkage effect is expected to be small for materials with
small localization length. Thus, it is the spin mechanism that
probably dominates.

Interestingly, the double-dip memory effects are not ob-
served in standard semiconductor materials. We believe that
the reason is that the ES regime of variable range hopping
�VRH� in such materials either occurs at very low tempera-
tures �less than a few Kelvins�, which implies weak heat
withdrawal or corresponds to very large resistances. Both of

these factors seem to be disadvantageous for typical memory
experiments.

To conclude, our model qualitatively explains the follow-
ing experimentally observed features of the memory effect:
�i� double-dip behavior of the conductance as a function of
gate voltage, �ii� suppression of the above phenomenon at
small carrier concentrations due to possible crossover to the
Mott regime of VRH, �iii� rather counterintuitive slowing
down of the time evolution �expressed through the effective
relaxation time �̄� with temperature increase, �iv� slow
power-law relaxation tending to logarithmic with increase in
resistance, �v� qualitative dependences of memory dips on
temperature and electron concentration, and �vi� slowing
down the relaxation with increase in external magnetic field
and degree of disorder characterized by increase in
resistance.
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