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Electric current and spatial displacement due to trembling motion �Zitterbewegung �ZB�� of electrons in
graphene in the presence of an external magnetic field are described. Contributions of both inequivalent K
points in the Brillouin zone of graphene are considered. It is shown that, when the electrons are prepared in the
form of wave packets, the presence of a quantizing magnetic field B has very important effects on ZB. �1� For
B�0 the ZB oscillations are permanent while for B=0 they are transient. �2� For B�0 many ZB frequencies
appear while for B=0 only one frequency is at work. �3� For B�0 both interband and intraband �cyclotron�
frequencies contribute to ZB while for B=0 there are no intraband frequencies. �4� Magnetic field intensity
changes not only the ZB frequencies but the entire character of ZB spectrum. An emission of electromagnetic
dipole radiation by the trembling electrons is proposed and described. It is argued that graphene in a magnetic
field is a promising system for an experimental observation of Zitterbewegung.
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I. INTRODUCTION

The Zitterbewegung �ZB� �trembling motion�, first de-
scribed by Schrodinger1 with the use of the Dirac equation
for free relativistic electrons in a vacuum, has been in recent
years a subject of great theoretical interest since it has been
shown that this phenomenon should exist in many systems in
solids.2–13 If one deals with two or more interacting energy
branches, an interference of the upper and lower energy
states gives rise to ZB, also in the absence of external fields.
A formal similarity between two bands interacting via the
k ·p terms in a solid and the Dirac equation for relativistic
electrons in a vacuum allows one to apply similar theoretical
methods for both systems �see Refs. 14 and 15�. Most of the
theoretical ZB treatments for semiconductors used as a start-
ing point plane electron waves. However, Lock16 in his im-
portant paper observed that, since such a wave is not local-
ized, it seems of a limited practicality to speak of rapid
oscillations on the average position of a wave of infinite
extent. Using the Dirac equation, Lock demonstrated that,
when an electron is represented by a wave packet, the ZB
oscillations do not sustain their amplitude but become tran-
sient. The disappearance of oscillations at large times is guar-
anteed by the Riemann-Lebesgues theorem as long as the
wave packet is a smoothly varying spatial function. The tran-
sient character of the trembling motion was demonstrated in
our recent papers.12,17 Since the ZB is by its nature not a
stationary state but a dynamical phenomenon, it is natural to
study it with the use of wave packets �see Ref. 18�. These
have become of practical use with the emergence of the fem-
tosecond pulse technology.19 Recently, the transient trem-
bling motion was proposed for ultracold atoms,20,21 for pho-
tons in two-dimensional �2D� photonic crystals,22 and for
Ramsey interferometry.23 Most recently, an actual observa-
tion of an acoustic analog of ZB in a macroscopic two-
dimensional sonic crystal was reported.24

The trembling motion of charge carriers in solids has been
described until now for no external potentials. On the other
hand, Lock has remarked that, when an electron spectrum is

discrete, the ZB oscillations do not have to disappear with
time. In the present work we consider the trembling motion
of electrons in solids in the presence of an external magnetic
field �see Refs. 25 and 26�. The magnetic field is known to
cause no interband electron transitions so the essential fea-
tures of ZB, which results from an interference of positive
and negative-energy states of the system, are expected not to
be destroyed. On the other hand, introduction of an external
field provides an important parameter affecting the ZB be-
havior. We show that, indeed, the ZB in a magnetic field is
not damped in time.

We consider the ZB phenomenon in monolayer graphene
�cf. Ref. 8�. This material has recently become an important
subject of investigation in the condensed-matter physics and
its applications.27–29 In particular, the charge carriers in
graphene are considered to represent massless Dirac fermi-
ons. In our approach we look for observable ZB phenomena.
The situation we describe seems to be the most promising
case for an experimental observation of the trembling motion
in solids considered until now.

The paper is organized as follows. First, we consider the
Hamiltonian for electrons in graphene in a magnetic field, its
eigenvalues and eigenfunctions. Second, we calculate carrier
velocities and their averages that are taken over by a Gauss-
ian wave packet. Third, we give results for the ZB of electric
current and electron position, and emphasize the essential
features introduced by the presence of a magnetic field. Fi-
nally, we propose and describe electromagnetic radiation
emitted by the trembling electrons. The paper is concluded
by a summary. In Appendixes A–E, we discuss additional
points related to the subject.

II. PRELIMINARIES

We consider a graphene monolayer in an external mag-
netic field parallel to the z axis. As shown in both continuum
and tight-binding models, there exist two inequivalent points
K1 and K2 of the Brillouin zone �BZ� of graphene. The
Hamiltonian for electrons and holes at the K1 point is30,31
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Ĥ = u� 0 �̂x − i�̂y

�̂x + i�̂y 0
� , �1�

where u�1�108 cm /s is a characteristic velocity, �̂= p̂
−qÂ is the generalized momentum, Â is the vector potential,
and q is the electron charge. We remark that the above
Hamiltonian is not symmetric in p̂x and p̂y. Using the Landau

gauge we take Â= �−By ,0 ,0�, and for an electron q=−e with

e�0. Since in the above gauge Ĥ does not depend on x, we
take the wave function in the form

��x,y� = eikxx��y� . �2�

Introducing the magnetic radius L=�� /eB and the variable
�=y /L−kxL, we have

Ĥ =
u�

L
� 0 − � − �/��

− � + �/�� 0
� . �3�

Defining the standard raising and lowering operators for the
harmonic oscillator â= ��+� /��� /�2 and â+= ��−� /��� /�2,
the Hamiltonian becomes

Ĥ = − �	� 0 â

â+ 0
� , �4�

where the frequency is 	=�2u /L.
Next we determine the eigenstates and eigenenergies

of the Hamiltonian Ĥ. Using a two-component function

= �
1 ,
2�, we have

	 − �	â
2 = E
1,

− �	â+
1 = E
2.

 �5�

Expressing 
1 by 
2 from the first equation, we obtain from
the second equation: �2	2â+â
2=E2
2. The solution is

2= �n�, where �n� is the nth state of the harmonic oscillator,
and the energy is

Ens = s�	�n . �6�

Here n=0,1. . ., and s= �1 for the conduction and valence
bands, respectively. Formula �6� was experimentally con-
firmed for graphene in many works.28,32,33 The functions
r �n� are given by

r�n� =
1
�L

1

Cn
e− 1

2
�2

Hn��� , �7�

where Cn=�2nn !��, and Hn��� are the Hermite polynomi-
als. From Eq. �5� we obtain


1 = −
�	â
2

E
= −

�	�n�n − 1�

s�	�n
= − s�n − 1� . �8�

Each eigenstate �n� is labeled by three quantum numbers:
oscillator number n, energy branch s, and wave vector kx.
The complete function is

�n� � �nkxs� =
eikxx

�4�
�− s�n − 1�

�n�
� . �9�

For n=0, the first component in Eq. �9� vanishes and the
normalization coefficient is 1 /�2�.

III. VELOCITIES OF ZITTERBEWEGUNG

We want to calculate the velocity of charge carriers de-
scribed by a wave packet. In order to do that we first calcu-
late matrix elements f �n� between an arbitrary two-
component function f = �fu , f l� and eigenstates �Eq. �9��. A
straightforward manipulation gives

f �n� = − sFn−1
u + Fn

l , �10�

where

Fn
j �kx� =

1
�2LCn

� gj�kx,y�e− 1
2

�2
Hn���dy , �11�

in which

gj�kx,y� =
1

�2�
� f j�x,y�eikxxdx . �12�

The superscript j=u , l stands for the upper and lower com-
ponents of the function f .

The Hamilton equations give the velocity components:

v̂i�0�=�Ĥ /��̂i, with i=x ,y. We want to calculate averages of
the time-dependent velocity operators v̂i�t� in the Heisenberg
picture taken on the function f . The averages are

v̄i�t� = �
n,n�

eiEn�t/�f �n��n��vi�0��n�n�f�e−iEnt/�, �13�

where the energies and eigenstates are given in Eqs. �6� and
�9�. The summation in Eq. �13� goes over all the quantum
numbers

�
n,n�

→� � dkxdkx��
n,n�

�
s,s�

. �14�

We calculate a contribution to the velocity from the point
K1 of the Brillouin zone. The matrix elements n��vy�0��n�
and n��vx�0��n� can be shown to be

n��vy�0��n� =
iu

2
�kx,kx�

�− s�n�,n−1 + s��n�,n+1� , �15�

and

n��vx�0��n� = −
u

2
�kx,kx�

�s�n�,n−1 + s��n�,n+1� . �16�

It is seen that the only nonvanishing matrix elements of
the velocity components are those with the final states
n�=n�1. Putting the above matrix elements into Eq. �13�,
we finally obtain, after some manipulation for the K1 point of
BZ,
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v̄y�t� = u�
n=0



Vn
+ sin��n

ct� + u�
n=0



Vn
− sin��n

Zt�

+ iu�
n=0



An
+ cos��n

ct� + iu�
n=0



An
− cos��n

Zt� , �17�

and

v̄x�t� = u�
n=0



Bn
+ cos��n

ct� + u�
n=0



Bn
− cos��n

Zt�

+ iu�
n=0



Tn
+ sin��n

ct� + iu�
n=0



Tn
− sin��n

Zt� , �18�

where

Vn
� = � Un−1,n

u,u � Un,n−1
u,u − Un+1,n

l,l − Un,n+1
l,l ,

Tn
� = � Un−1,n

u,u � Un,n−1
u,u + Un+1,n

l,l − Un,n+1
l,l ,

An
� = − Un,n

u,l + Un,n
l,u � Un−1,n+1

u,l � Un+1,n−1
l,u ,

Bn
� = Un,n

u,l + Un,n
l,u � Un−1,n+1

u,l � Un+1,n−1
l,u , �19�

in which

Um,n
�,� =� Fm

���kx�Fn
��kx�dkx. �20�

The superscripts � ,� refer to the upper and lower compo-
nents, see Eq. �10�. The velocity averages must be real val-
ues. For example, if both gj�kx ,y� �j=u , l� in Eq. �12� are real
then also both Fn

j �kx�, given by Eq. �11�, are real and there is
Um,n

�,�=Un,m
�,�. As a result the last two terms in Eqs. �17� and

�18� vanish.
The time-dependent sine and cosine functions come from

the exponential terms in Eq. �13�. The frequencies in Eqs.
�17� and �18� are �n

c =	��n+1−�n�, and �n
Z=	��n+1

+�n�, where 	 is given in Eq. �4�. The frequencies �n
c cor-

respond to the intraband �cyclotron� energies while frequen-
cies �n

Z correspond to the interband energies �see Fig. 1�. The
interband frequencies are characteristic of the Zitter-
bewegung because the trembling motion is caused by an in-
terference of states corresponding to the positive and nega-
tive energies.34,35 The intraband �cyclotron� energies are due
to the band quantization by the magnetic field and they do
not appear in field-free situations �see Refs. 4–6 and 12�.

IV. GAUSSIAN WAVE PACKET

We take the function f�x ,y� in the form of a Gaussian
wave packet having an initial nonvanishing momentum
p0x=�k0x,

f�x,y� =
1

��dxdy

exp�−
x2

2dx
2 − ik0xx −

y2

2dy
2��au

al
� . �21�

In the above model the upper and lower components of f
differ only by the coefficients au and al, respectively. There
is au

2+al
2=1. Then �see Eq. �12��

g�kx,y� =� dx

�dy
exp�− 1

2dx
2�kx − k0x�2�exp�−

y2

2dy
2��au

al
� .

�22�

This gives �see Eq. �11��

Fn
��kx� =

a�An
�Ldx

�2�dyCn

e−dx
2�kx − k0x�2/2e−kx

2D2/2Hn�kxc� . �23�

Here D=L2 /�L2+dy
2, c=L3 /�L4−dy

4, and

An =
�2�dy

�L2 + dy
2�L2 − dy

2

L2 + dy
2�n/2

. �24�

After some manipulations, we finally find �see Ref. 36�

Um,n
�,� =

a�a�Am
� AnLQdx

��e−W2

2�CmCndy
�
l=0

min�m,n�

2ll ! �m

l ��n

l �
��1 − �cQ�2��m+n−2l�/2Hm+n−2l� cQY

�1 − �cQ�2� ,

�25�

where Q=1 /�dx
2+D2, W=dxDQ, and Y =dx

2k0xQ. Thus in
case of a Gaussian wave packet, we obtain the coefficients
Um,n

�,� in the form of analytical sums. For the special case
dy =L, there is simply

Um,n
�,� =

��im+na�a�dx

CmCnL
� L

2P
�m+n+1

�exp�−
dx

2k0x
2 L2

2P2 �Hm+n�− idx
2k0x

P
� , �26�

where P=�dx
2+ 1

2L2. In the above model the coefficients Um,n
�,�

are real numbers so that An
� and Tn

� in Eqs. �17� and �18�
vanish. A sum rule for Un,n

�,� is given in Appendix A.

s=+1

s=-1

hΩ
k

E
n

er
gy

E=
-uk E=

uk

n=3

n=2

n=1

n=0

n=3

n=2

n=1

FIG. 1. The energy dispersion E�k� and the Landau levels for
graphene in a magnetic field �schematically�. Intraband �cyclotron�
and interband energies for n�=n�1 are indicated �see text�. The
basic energy is �	=�2�u /L.
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V. RESULTS AND DISCUSSION

In Fig. 2 we show calculated current components ji=
−ev̄�t� as functions of time for different values of the initial
wave vector k0x. The calculations were carried out for the K1
point of BZ, taking au=al=1 /�2, and a constant magnetic
field of 10 T. We assumed a circular wave packet dx=dy =L
=83.13 Å, the coefficients Um,n

�,� were calculated using Eq.
�26�. Figure 2�a� shows the results for k0x=0. It can be seen
that, if there is no initial momentum, only jx�t� is nonzero.
The main frequency of oscillations is �0=	, which can be
interpreted either as �0

c =	��n+1−�n� or �0
Z=	��n+1

−�n� for n=0. Frequency �0
c belongs to the intraband �cy-

clotron� set while �0
Z belongs to the interband set �see Fig.

1�. Somewhat unequal amplitude of oscillations means that
other frequencies also come into play so that we already deal
with the trembling motion. For k0x=0, the asymmetry be-
tween v̄x�t� and v̄y�t� comes from the above mentioned asym-
metry of the initial Hamiltonian with respect to p̂x and p̂y
�see Eq. �1��. In Figs. 2�b�–2�d� we show calculated contri-
butions to the current for growing values of k0x. For nonzero
values of k0x, both jx and jy appear. It is seen that the fre-
quency and the shape of ZB oscillations change with grow-
ing k0x values. For growing k0x, different Um,n

�,� become large,
and in consequence different frequencies �n

c and �n
Z domi-

nate in sums �17� and �18�. The striking feature seen in Figs.
2�a�–2�c� is that the ZB is manifested by several frequencies

simultaneously. This is a consequence of the fact that, as
follows from Eq. �6�, in graphene the energy distances be-
tween the Landau levels diminish with n, which results in
different values of frequencies �n

c and �n
Z for different n.

Thus, it is the presence of an external quantizing magnetic
field that introduces various frequencies into ZB.

For sufficiently large values of k0x, only one frequency
prevails, as shown in Fig. 2�d�. This is related to the fact that,
as seen in the inset of Fig. 8 in Appendix B, the coefficients
Um,n

�,� in this regime have a pronounced maximum around a
specific value nmax. The dominant frequency is �max

=���nmax+1−�nmax�, which is simply the cyclotron fre-
quency for nmax �see Fig. 1�. Thus, it might appear that the
current shown in Fig. 2�d� corresponds to the simple classi-
cal cyclotron motion and the trembling motion is manifested
only by the damping in time �see Appendix D�. This is how-
ever not the case.

In Fig. 3 we show the calculated current for k0x
=0.06 Å−1 �the same as in Fig. 2�d�� but in a much larger
time scale. It turns out that, after the ZB oscillations seem-
ingly die out, they actually reappear.

Thus, for all k0x values �including k0x=0�, the ZB oscilla-
tions have a permanent character; that is, they do not disap-
pear in time. This feature is due to the discrete character of
the electron spectrum caused by a magnetic field. The above
property is in sharp contrast to the no-field cases considered
until present, in which the spectrum is not quantized and the
ZB of a wave packet has a transient character �see Refs. 12
and 17�. In mathematical terms, due to the discrete character
of the spectrum, averages of operator quantities taken over
by a wave packet are sums and not integrals �see Eqs. �17�
and �18��. The sums do not obey the Riemann-Lebesgues
theorem for integrals, which guaranteed the damping of ZB
in time for a continuous spectrum �see Ref. 16�. We consider
the demonstration of a permanent character of ZB oscilla-
tions for a discrete spectrum to be the main result of our
present work.

In Fig. 4 we show the ZB oscillations of the current for a
constant wave vector k0x=0.035 Å−1 at different magnetic
fields. It can be seen that the intensity of a magnetic field has
a dramatic effect on ZB: not only has its frequency changed
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FIG. 2. Contribution of the K1 point of the Brillouin zone to the
electric current in graphene at B=10 T versus time, calculated for a
Gaussian wave packet of width dx=dy =L=81.13 Å and various
values of k0x: �a� k0x=0, �b� k0x=0.02 Å−1, �c� k0x=0.035 Å−1, and
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but also the character of oscillations. Lower magnetic fields
are equivalent to higher k0x values since both lead to higher
Landau levels involved �see Figs. 2�d� and 4�a��. Inversely,
higher magnetic fields and lower k0x values lead to lower
Landau levels involved �see Figs. 2�b� and 4�c��. At very
small magnetic fields, there exist three regimes of ZB oscil-
lations: the “initial” oscillations dying out during a few fem-
toseconds �as shown in Fig. 2 of Ref. 12�, the second range
of oscillations dying out during several picoseconds, as
shown in Fig. 2�d�, and the third range of permanent, some-
what irregular oscillations shown for t�1 ps in Fig. 3.

Finally, we calculate the displacements x̄�t� and ȳ�t� of the
wave packet. To this end we integrate expressions �17� and
�18� with respect to time using the initial conditions x0
= x̄�0� and y0= ȳ�0�. The results are plotted in Fig. 5 in the
form of x-y trajectories for different initial wave vectors k0x.
The direction of movement is clockwise. The trajectories
span early times �1 ps� after the creation of a wave packet.
As mentioned above, the ZB oscillations do not die out in
time, which is reflected by infinite trajectories. In Fig. 5 the
trajectories are shown around the point x0=y0=0, whereas in
reality the y component of the center is almost a linear func-
tion of k0x :y0�k0xL

2.
All in all, the presence of a quantizing magnetic field has

the following important effects on the trembling motion. �1�
For B�0 the ZB oscillation are permanent while for B=0
they are transient. �2� For B�0 many ZB frequencies appear
whereas for B=0 only one ZB frequency exists. �3� For
B�0 both interband and intraband �cyclotron� frequencies
appear in ZB while for B=0 there are no intraband frequen-
cies. �4� Magnetic field intensity changes not only the ZB
frequencies but the entire character of ZB spectrum.

The results shown in Fig. 2 were obtained using the
simplifying assumption about packet’s width: dx=dy =L
= �� /eB�1/2. This allowed us to use formula �26� for the cal-

culation of Um,n
�,�. However, in Fig. 4 we show the results

obtained for constant dx=dy and variable B, for which we
had to use general formula �25�. In all the calculations in-
volving magnetic field, precise numerical values of the Her-
mite polynomials are required �see Eqs. �25� and �26��. For
the results shown above, we used the values of the first 400
Hermite polynomials and checked their high precision using
sum rule �Eq. �A1��. We also considered the case of an initial
electron momentum directed not only along the x direction
�as shown above� but also along the y direction. In this case
the Um,n

�,� coefficients are imaginary so that only the last two
terms of Eqs. �17� and �18� come into play. The final results
are similar but not identical to those quoted above. The rea-
son is that, as already mentioned, the initial Hamiltonian �1�
is not symmetric in p̂x and p̂y momenta. When using Gauss-
ian wave packet �21�, we assumed equal upper and lower
components au=al=1 /�2. This is in contrast to previous pa-
pers, which usually took au=1, al=0.4,11,12,16,18 This choice is
somewhat arbitrary: it is determined by an experimental
wave packet usually prepared by optical methods. One
should keep in mind that the relative final amplitudes of v̄x�t�
and v̄y�t� �and the resulting currents� depend on this choice
via Um,n

�,� coefficients �see Eqs. �25� and �26��. If one chooses
au=1, al=0, the resulting motion coming from the K1 point
of BZ is only along the y direction.

It is of interest that phenomena analogous to those de-
scribed above for electrons occur also for photons. In par-
ticular, Hamiltonian �4� is similar to that describing an inter-
action of atoms with electromagnetic radiation according to
the so-called Jaynes-Cummings model.37,38 In particular, the
collapse and revival of electron’s ZB oscillations, as illus-
trated in Figs. 2�b� and 3, is predicted by the Jaynes-
Cummings model for the number of emitted photons and it
was observed in one-electron masers.39
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VI. DIPOLE RADIATION DUE TO ZITTERBEWEGUNG

Experimental possibilities of observing the trembling mo-
tion were considered previously4,6,12 and we do not consider
this problem again. The results shown in Figs. 2–4 describe
the electric current, which is an observable quantity. One
could also try to see directly the displacement of charge �cf.
Refs. 40 and 41�. On the other hand, we argue below that the
ZB should be accompanied by electromagnetic dipole radia-
tion emitted by the trembling electrons. The oscillations r̄�t�,
as shown in Fig. 5, are related to the dipole moment −er̄�t�,
which couples to the electromagnetic radiation. We shall
treat the radiation classically,42 i.e., we take the radiated
transverse electric field to be43

E��r,t� =
er̄̈�t�

4��0c2

sin���
R

, �27�

where �0 is the vacuum permittivity, and � is an angle be-
tween the direction of motion of a wave packet and the po-
sition of the observer R. Integrating E�

2 over the angle �, one
obtains the total radiated power given by the Larmor for-
mula,

P =
e2ā2�t�2

6��0c3 , �28�

where ā is the acceleration averaged over the packet. To find
P we calculate the acceleration from Eqs. �17� and �18� by
taking the time derivatives. The spectrum of the emitted ra-
diation is obtained by the Fourier transform of the electric
field. We have

E��t� =
1

2
a�0 + �

m=0



a�m cos�m� t

T
� + b�m sin�m� t

T
� , �29�

where

a�m = lim
T→

�
−T

T

cos�m� t

T
�E���r,t�dt ,

b�m = lim
T→

�
−T

T

sin�m� t

T
�E���r,t�dt , �30�

and a�0=0. For the numerical calculations we take a large
period T=20 ps. The intensity spectrum of oscillations is

I��m� � �
m

�a�m
2 + b�m

2 � . �31�

The plot of I��m� is given in Fig. 6. The strongest frequency
peak corresponds to oscillations with the basic frequency
�=	. The peaks on the high-frequency side correspond to
the interband excitations and are characteristic of ZB. The
peaks on the lower frequency side correspond to the intra-
band �cyclotron� excitations. At higher magnetic fields, we
may expect smaller number of distinct frequencies while for
lower fields, the classical radiation will evolve toward a qua-
sicontinuous spectrum. In absence of Zitterbewegung the
emission spectrum would contain only the intraband �cyclo-
tron� frequencies �see Appendix D�. Thus the interband fre-

quencies �n
Z shown in Fig. 6 are a direct signature of the

trembling motion. It can be seen that the �n
Z peaks are not

drastically weaker than the central peak at �=	, which
means that there exists a reasonable chance to observe them.

In Fig. 7 we plot the dependence of the emitted power
intensity on the initial wave vector k0x for three lines �calcu-
lated for B=10 T�: the basic cyclotron line at �=	, the
intraband frequency �3

c, and the interband frequency �6
Z. It is

seen that the intensity of various emission lines depends dif-
ferently on k0x. At small k0x values, the basic line �=	
dominates but at k0x�0.04 Å−1, the intensities of various
lines become comparable. The characteristic two maxima of
�6

Z occur also for the other interband frequencies. We believe
that the k0x dependence of the line intensities, as shown in
Fig. 7, can serve as a signature of ZB.

The properties shown in Figs. 2–7 have been calculated
for the K1 point of the Brillouin zone in graphene. The main
features applying to the K2 point of BZ are described in
Appendix E. The above calculations are somewhat idealized
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FIG. 6. Intensity spectrum versus frequency during the first 20
ps of motion of an electron described by a Gaussian wave packet
having k0x=0.035 Å−1 at B=10 T. The frequencies �n

c and �n
Z are

defined in Eqs. �17� and �18�.

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0

1.2

o

k
0x

(A-1)

ω = Ω
ω = ωc

3

ω = ωZ

6

B=10T

I(
ω
)
(a

rb
.
u

n
it

s)

FIG. 7. Intensities of emission lines corresponding to �3
c

�dashed line�, �0=	 �dotted line�, and to �6
Z �solid line� versus the

wave vector k0x of Gaussian wave packet at B=10 T.

TOMASZ M. RUSIN AND WLODEK ZAWADZKI PHYSICAL REVIEW B 78, 125419 �2008�

125419-6



since they do not take into account the position of the Fermi
energy in a given sample. Thus they correspond approxi-
mately to a situation with the Fermi energy relatively low in
the valence band. Clearly, the frequencies corresponding to
transitions with the final states below the Fermi energy are
not possible.

In general terms, the excitation of the system we propose
is due to the nonzero momentum �k0x given to the electron.
It can be provided by accelerating the electron in the band or
by exciting the electron with a nonzero momentum by light
from the valence band to the conduction band. The electron
can emit light because the Gaussian wave packet is not an
eigenstate of the system described by Hamiltonian �1�. The
energy of the emitted light is provided by the initial kinetic
energy related to the momentum �k0x. Once this energy is
completely used, the emission will cease. If the electron is
described by a non-Gaussian wave packet, all our results are
quantitatively valid; only the intensity spectrum will differ
from that shown in Fig. 6. We emphasize that the sustained
character of ZB oscillations caused by a discrete energy
spectrum makes graphene in a magnetic field probably the
most favorable system for an experimental observation of the
trembling motion considered until now.

VII. SUMMARY

We described the Zitterbewegung of electrons in solids in
the presence of a magnetic field assuming that the electrons
are represented by Gaussian wave packets. The system under
consideration is monolayer graphene. It is shown that the
presence of a quantizing magnetic field has a profound influ-
ence on the Zitterbewegung. In particular, the discrete energy
spectrum in a magnetic field causes the Zitterbewegung to be
sustained in time while for B=0, the ZB has a transient char-
acter. In addition, at B�0 many ZB frequencies appear
whereas at B=0 one deals with only one ZB frequency. For a
given value of initial electron momentum, the magnetic-field
intensity affects not only ZB frequencies but the entire shape
of the ZB spectrum. We consider and describe an electro-
magnetic radiation emitted by the trembling electrons.
Graphene in a magnetic field seems to be a very favorable
system for an experimental observation of Zitterbewegung.

APPENDIX A

We consider a sum rule for the coefficients Um,n
�,� of Eq.

�20�. Let us calculate 1= f � f�,

1 = �
n

�f �n��2 = �
n,s
� dkx�− sFn−1

u �kx� + Fn
l �kx��2

= 2�
n=0

�Un,n
u,u + Un,n

l,l � . �A1�

Factor of two appears due to the summation over s. It is to be
reminded that au

2+al
2=1. The above sum rule can be used for

a verification of the numerical values of Un,n
�,�.

APPENDIX B

We calculate v̄y�t� from Eq. �17� for a situation when Un,n
�,�

have a maximum for a large value of n. In our model there is

Un,n
�,�=a�a�Un,n. We use the Poisson summation formula for

an estimation of the velocity average, disregarding a� and a�

coefficients. Upon replacing Um,n by a continuous variable
U�x� and approximating Un,n�1=Un�1,n�U�x�, the term
with Vn

− in Eq. �17� vanishes. Then

v̄y�t� � 4u�
0



sin��xt�U�x�dx

+ 4u�
l=1

 � sin��xt�U�x�cos�2�xl�dx , �B1�

where �x=	��x+1−�x�. For sufficiently small times, we
may disregard the second term and v̄y�t� is given by the first
integral in Eq. �B1�. In Fig. 8 we show the results of the
integration compared with the exact calculations of Eq. �17�
for k0x=0.12 Å−1. The two curves practically coincide, apart
from the small contributions of higher ZB frequencies
present in exact formula �17�. The effective frequency of
the motion is given by �max=	��xmax+1−�xmax�, where
xmax=46 corresponds to the maximum of U�x� �see inset�.
For larger times the second term in Eq. �B1� is not negligible
and full formula �B1� is equivalent to Eq. �17�.

APPENDIX C

Here we consider briefly the gauge aspects. According to
the general theory,44 if one introduces a new gauge by means
of an arbitrary function ��r�, the vector potential is
A�=A+��, and the scalar potential is A0�=A0+�� /�t. Then
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FIG. 8. Contribution of the K1 point to the electron velocity
v̄y�t� versus time, calculated for the indicated parameters: �a� using
full formula �17� �see Fig. 2�d�� and �b� using the first integral of the
Poisson formula �B1�. The two curves practically coincide. The
inset shows coefficients Un,n�1=Un�1,n�U�x� for k0x=0.12 Å−1.
The frequency of oscillations corresponds to �max for xmax=46 �see
text�.
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the wave function changes as ��=e�ie/����, and the gauge

invariance for an operator Ô= Ô�A ,A0� means

��Ô�A,A0���� = ���Ô�A�,A0������ . �C1�

This leads to

Ô�A�,A0�� = e�ie/���Ô�A,A0�e−�ie/���

= Ô�A,A0� + �e�ie/���,Ô�A,A0��e−�ie/���.

�C2�

If, instead of the gauge A= �−By ,0 ,0�, we take A�
= �0,Bx ,0�, which gives the same magnetic field, we have
�=xy /L2 so that ���x ,y�=eixy/L2

��x ,y�. Using prescription
�C2� and calculating

�eixy/L2
, p̂x� = − eByeixy/L2

,

�eixy/L2
, p̂y� = − eBxeixy/L2

, �C3�

one shows that relation �C1� is satisfied also for Hamiltonian
�1� in the changed gauge.

APPENDIX D

We consider here the motion of a wave packet in the
presence of a magnetic field according to the Schrodinger
equation. For 2D Hamiltonian there is �n�= �nkx�
=eikxxHn���e−�2/2 / ��2�LCn�, and En=��c�n+1 /2�, where
�c=eB /m. The velocity average v̄x�t� is

v̄x�t� =
1

m
�

n,n�,kx,kx�

f �n�kx��nkx�f�ei�c�n�−n�tn�kx���̂x�nkx� ,

�D1�

and similarly for v̄y�t�. Since

n�kx���̂x�nkx� = −
��kx,kx�

�2L
��n�n�,n−1 + �n + 1�n�,n+1� ,

�D2�

we have

v̄x�t� = −
�

�2Lm
� dkx�

n=1



f �n − 1�

�n�f��ne−i�ct �
�

�2Lm
� dkx�

n=0



f �n + 1�

�n�f��n + 1ei�ct. �D3�

There is �n�n−1�= â�n� and �n+1�n+1�= â+�n�, and we cal-
culate

v̄x�t� =
�

�2Lm
� dkx�f â�f�e−i�ct + f â+�f�ei�ct� , �D4�

and similarly for v̄y�t�. For a one-component wave packet of
Eq. �21�, the integrals indicated in Eq. �D4� can be done
analytically. We finally obtain

v̄x�t� =
�k0x

2m
�− e−i�ct − ei�ct� = −

�k0x

m
cos��ct� ,

v̄y�t� = i
�k0x

2m
�e−i�ct − ei�ct� = −

�k0x

m
sin��ct� . �D5�

Thus an electron represented by a Gaussian wave packet
having the initial momentum �k0x moves on a circular orbit
with the cyclotron frequency �c without attenuation. A simi-
lar result is known for a one-dimensional wave packet mov-
ing in a parabolic potential. On the other hand, the motion
illustrated in Fig. 2�d� is damped during the first picosecond,
which is another manifestation of Zitterbewegung.

APPENDIX E

Here we consider contributions related to ZB of electrons
at the inequivalent point K2 of the Brillouin zone. The form
of Hamiltonian at the K2 point is somewhat controversial,
with various authors giving different expressions. According

to Refs. 45 and 46 the Hamiltonian Ĥ� is

Ĥ� = u� 0 − �̂x − i�̂y

− �̂x + i�̂y 0
� , �E1�

i.e., Ĥ�=−ĤT. The eigenvectors of Ĥ� are

�nkxs�� =
eikxx

�4�
� �n�

s�n − 1�
� , �E2�

i.e., they differ from those given by Eq. �9�. The quantum

velocity �Ĥ� /�p̂x=−u�x and �Ĥ� /�p̂y = +u�y. Thus, the x
component of the velocity changes sign while the y compo-
nent remains unchanged. Repeating the calculations, we ob-
tain again Eqs. �17� and �18�, in which the coefficients are

Ṽn
� = − Un,n+1

u,u − Un+1,n
u,u � Un,n−1

l,l � Un−1,n
l,l ,

T̃n
� = + Un,n+1

u,u − Un+1,n
u,u � Un,n−1

l,l � Un−1,n
l,l ,

Ãn
� = − Un,n

u,l + Un,n
l,u � Un+1,n−1

u,l � Un−1,n+1
l,u ,

B̃n
� = − Un,n

u,l − Un,n
l,u � Un+1,n−1

u,l � Un−1,n+1
l,u . �E3�

If we are interested in the electric current, we should add
the velocities of the two inequivalent points of the BZ. As a
consequence, the x component of the velocity vanishes while
the y component nearly doubles.
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