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This paper investigates the stability of wires against size variation for Stranski-Krastanow systems under the
influence of an electric field generated by a patterned electric plate. The stability is determined by considering
the total energy change as a function of the wire size. The results show that the wire size can be stabilized by
the electric field if the system meets the viability criterion and the effective electric field effect is within the
minimum and maximum limits. The minimum limit ensures that the wire formation is energetically favorable
at moderate sizes, while the maximum limit enforces the suppression of the formation of large wires.
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I. INTRODUCTION

The self-assembly of nanoislands on the Stranski-
Krastanow �SK� systems is an attractive method for fabricat-
ing nanodevices. In this method, a flat film is grown het-
eroepitaxially on a thick substrate. The flat film then
develops into nanostructures on a flat wetting layer when
exceeding the critical thickness for the SK transition.1,2 The
method is appealing for its capability to manufacture nano-
structures by self-organization with high material quality and
unique electronic, magnetic, and optical properties.1–3 The
method, however, encounters the problem that the self-
organized nanoislands are unstable against coarsening, re-
sulting in a wide distribution of island size.4,5 Besides the
problem of island coarsening, the method also faces difficul-
ties in controlling the shapes and sites of the nanoislands.

Many schemes have been suggested in the literature to
overcome the challenges in the self-assembly of nanoislands
on the SK systems. The schemes can be generally classified
into three categories. The first one is to enhance the material
properties of the SK systems such as the surface stress6–8 and
the film-substrate interaction9,10 in order to induce island ar-
rays that are stable against coarsening.

In comparison, the second category employs embedded
structures to improve the uniformity of the island size and
spacing. The embedded structures can be multiple arrays of
nanoislands separated by layers of a different material.11–21

The embedded structures can also be the misfit dislocations
in the strained film22–24 or a regular dislocation network gen-
erated by bonding a film onto a substrate of the same mate-
rial but with a twist and/or miscut between them.25–27

The third category exploits special features on the film
surface to control the growth of nanoislands. The features
can be fabricated by lithography, which include mesas,28–35

pit arrays,36–40 patterned oxide masks,41–43 micropatterning
by focused ion beams,44 thin patterned films,45 microdisks,46

and gold patterns.47 The surface features can also be gener-
ated by novel techniques adopted in the growth process. Ex-
amples include activating step bunching to produce regular
ripples on vicinal surfaces,48 embedding hard particles in a
buffer layer to yield valleys on the surface,49–52 and fast
deposition of heteroepitaxial films to cause shallow holes on
the film surface.53–55

The schemes in the three categories provide inspiring
ideas for controlling the self-assembly of nanoislands. Those

schemes, however, either adopt complex manufacture steps,
e.g., lithography, prior to the self-assembly process, or lack
full control over the size, shape, and site of each nanostruc-
ture. Realizing controllable self-assembly via a simple pro-
cess is still a challenging issue in the nanotechnology.

A proposed alternative is to apply an electric field. This
approach was first adopted in the lithographically induced
self-assembly �LISA� where a liquid polymeric film on a
thick substrate was exposed to an electrode with the gap
between the film and the electrode being filled with air56,57

and/or another liquid layer.58–60 The system was then subject
to an electric field to induce viscous flow on the liquid film
in order to form structures.61,62 The scheme has the capabil-
ity to use patterns on the electrode to manipulate the size,
shapes, and sites of the structures, while the scheme has the
disadvantage of dielectric breakdown, long-range disorder-
ing, and structure coalescence.63–65

More recently, it was suggested that electric fields gener-
ated by patterned electrodes could also be an effective pre-
scription for resolving the issues in the self-assembly of
nanoislands in the SK systems; the idea was termed the elec-
tromolding self-organization �EMSO� process.66 Numerical
simulation for the EMSO process indicates the process is
capable of fabricating a wide range of island shapes, includ-
ing 2�2 island arrays, square rings, cross junctions, and
zigzag ridges, with controllable sizes and locations. The
EMSO process also has the crucial advantage that the pro-
cess can produce nanostructures stable against size
variation.66 The unique feature is in contrast to the common
problem of unstable islands in the SK systems and in the
LISA method.

The previous study clearly pointed out the potential of the
EMSO process to produce nanoislands on the SK systems
stable against size variation.66 The analysis of that study,
however, focused on specific examples. The size stability of
faceted nanostructures on general SK systems during the
EMSO process has not been fully understood.

The size stability is examined in this paper by analyzing
the total energy changes due to the formation of faceted
nanostructures. Our investigation focuses on the two-
dimensional �2D� cases, and of particular interest is the sce-
nario where the height of the electric plate is much larger
than the wire size. The results reveal that the size stability
can be achieved in the EMSO process if the material prop-
erties and the film thickness of the SK system satisfy the
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viability criterion expressed in Eq. �48�, and the effective
electric field effect is within the upper and lower limits. The
results illuminate a clear overall picture for understanding
how the size stability is affected by the vast amount of pa-
rameters involved in the EMSO process, including the mate-
rial properties of the SK system, the film thickness, the elec-
tric plate height, and the size and slope of the pattern on the
electric plate.

The paper is organized as follows: The paper first sum-
marizes the methods for calculating the total energy change
due to the formation of a faceted wire in Sec. II, and then
describes the model problem adopted for the stability analy-
sis in Sec. III. After presenting the methods and the model
problem, the paper shows the results in four sections: Section
IV examines the size stability of the SK systems without the
electric field. Section V adopts a coarsening SK system to
investigate the effects of the electric field on the size stabil-
ity. Section VI derives the stability condition for the case
where the electric plate height is large. Section VII studies
how the size stability is affected by misalignment between
the wire and the pattern on the electric plate. The paper con-
cludes with a discussion in Sec. VIII and a summary of the
results in Sec. IX.

II. ENERGY OF NANOSTRUCTURES IN THE SK
SYSTEMS

This section discusses the first-order boundary perturba-
tion method for evaluating the total energy change due to the
formation of a nanoisland on the SK film-substrate system.
The total mass of the film is conserved during the island
formation, and the whole system is subject to an electric field
generated by a patterned electrode. For simplicity, the dis-
cussion is limited to 2D cases.

A. SK film-substrate structure under an electric field

Figure 1 plots a SK system consisting of a thick substrate,
a thin conductor film, and an electric plate at a height of Hv
above the film. The electric plate and the film are connected
by a battery with the voltage being fixed at ��.

The system is attached by a set of Cartesian coordinate
axes on the film surface �1. The x and z axes are parallel to
the surface, while the y axis is normal to the surface.

The conductor film of the system contains a flat wetting
layer of thickness Hf and a nanowire with N facets. There are
totally N+1 vertices on the structures; the x components on
the vertices are denoted as B= �b1 ,b2 , . . . ,bN+1�. The angle
between the jth facet and the x direction is � j. For conve-
nience, one of the angles, denoted as ��, is chosen to define
the characteristic slope S=tan �� of the structure. The ratio
between the slope of the jth facet and the characteristic value
S gives the relative slope mj of the facet, i.e., mj =tan � j /S.

In addition to the nanostructure on the film surface �1, the
system also exhibits a pattern of N facets on the electric
plate surface �2. The geometry of the pattern can be fully
described by the characteristic slope Se of the pattern, the
relative slopes of the N facets �l1 , l2 , . . . , lN+1�, and the x
components of the vertices on the pattern T
= �t1 , t2 , . . . , tN+1�.

The film and the substrate are elastically similar materials
characterized by the shear modulus � and Poisson’s ratio �.
The film and the substrate are subject to a mismatch strain E0
between them, which results in deformation and strain en-
ergy in the system. In addition to the strain energy, the SK
system considered here is also affected by the electrostatic
energy, the film-substrate interaction energy, and the surface
energy. The changes of the four types of energy during the
wire formation are the key quantities in our analyses; the
solution procedure of calculating the energy changes under
the condition of mass conservation is presented in the subse-
quent subsections.

B. Strain energy change

The strain energy change �W	 due to the formation of the
nanostructure can be estimated by the first-order boundary
perturbation method for solving the elasticity problems of a
strained film on a thick substrate.67–70 The starting point of
the method is to determine the strain energy density w	�x� on
the islanded film surface accurate to the first order of S,67

w	�x� = w	0
3d − 2w	0S
	�x� , �1�

where w	0=��1+��2E0
2 / �1−��, w	0

3d =2w	0 / �1+��, and the
function 
	�x� illustrates the variation of w	�x� on the film
due to the nanowire,


	�x� = −
2

�
�
j=1

N

mjR�ln
x − bj+1

x − bj
� . �2�

The symbol R in Eq. �2� denotes the real part of a complex
number.

The result of w	�x� is then used to evaluate the variation
of the strain energy �W	 with that of the surface profile �f�x�
according to the following formula:67,68,71,72

�W	 =� w�x��f�x�dx . �3�

Carrying out the integration in Eq. �3� and requiring that the
total film volume remains the same as f�x� changes from a
flat surface to an islanded profile yields the strain energy
change �W	,67

FIG. 1. Schematic diagram of a heteroepitaxial film-substrate
system containing a faceted nanostructure on a flat wetting layer of
thickness Hf; the system is exposed to a patterned electric plate at a
height of Hv.
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�W	 = − w	0SVU	, �4�

where V is the volume of the nanowire, and U	 refers to the
effect of the nanostructure shape on �W	,

U	 =
1

V
�

B

	�x�f�x�dx . �5�

The quantity U	 is a constant for self-similar wires with
different size.

C. Interaction energy change

1. Formulas

The film-substrate interaction accounts for the SK transi-
tion and the development of the wetting layer.9,73,74 The in-
teraction can be modeled as a special type of film surface
energy of which the density g varies with the distance y
+Hf between the film surface and the film-substrate
interface.9 When the interaction is caused by the quantum
confinement, the density is expressed as g�y�=B / �y+Hf�,
where B is a material property.74 It is assumed that the inter-
action is not affected by the electric field.

The change of the interaction energy is determined by

�EI =� gd�B +� gd�w −� gd�0, �6�

where d�B refers to the area integral over the wire facets,
d�w represents that over the wetting layer surface, and d�0
denotes that over the flat film surface before the wire forma-
tion.

The area integral d�B can be expressed as d�B
= �Sm�−1dx; substituting the expression into the first term in
Eq. �6� yields

� gd�B = �
j=1

N
1

sin � j
	G�yj+1� − G�yj�
 , �7�

where yj is the y component of the jth vertices of the wire
and G�y� is defined by

G�y� =� g�y�dy . �8�

The function G�y� is simplified to G�y�=B ln�y+Hf� if the
quantum confinement is the mechanism of the film-substrate
interaction.

Turn to the second and the third terms in Eq. �6�. The
third term refers to the interaction energy of the system prior
to the wire formation, and is given by g�Hf�A, where A is the
area of the flat film surface. The second term, on the other
hand, corresponds to the interaction energy of the flat wetting
layer after the wire formation, and can be expressed as
g�Hf −�Hf��A−b�, where b=bN+1−b1 is the width of the
wire base, Hf −�Hf is the thickness of the wetting layer after
the wire formation, and �Hf =V /A. By evoking the condi-
tions A
b and Hf 
�Hf, the difference between the second
and the third terms can be calculated to be

g�Hf − �Hf��A − b� − g�Hf�A = − g��Hf�V − g�Hf�b . �9�

Adding Eqs. �7� and �9� determines the change of the inter-
action energy,

�EI = �
j=1

N G�yj+1� − G�yj�
sin � j

− g�Hf��bN+1 − b1� − g��Hf�V .

�10�

The result is further discussed in Sec. II C 2 with the focus
on the case where the interaction is dominated by the quan-
tum confinement mechanism.

2. Effects of interaction energy on wire formation

The interaction energy change �EI expressed in Eq. �10�
consists of three terms. The first two evaluate the difference
between the interaction energy on the wire surface and that
on the film surface with the area equal to that of the wire
base. In a sense, the difference is similar to the surface en-
ergy change during the wire growth except that the interac-
tion energy density decreases with the height of the wire.
Because of the similarly, the first two terms are called the
area contribution of �EI. The area contribution is positive at
small wire sizes and decreases to be negative as the wire size
increases.

The third term in Eq. �10�, on the other hand, refers to the
interaction energy change caused by the decrease in the wet-
ting layer thickness during the formation of wire under the
condition of mass conservation. Since this part of change is
proportional to the wire volume V, this part is called the
volume contribution of �EI; the volume contribution is posi-
tive.

After identifying the area and volume contributions of the
interaction energy, we examine the variation of �EI /V with
the size of a triangular wire at different film thickness. The
facet angle � of the wire is 10°, and the interaction energy
strength B is taken to be 1.5�10−10 J /m. The results, de-
picted in Fig. 2, show three characteristics of �EI /V. First,
�EI /V is positive, suggesting the interaction energy sup-
presses the formation of wires. Second, �EI /V is a constant
when the wire size is sufficiently large. The constant corre-
sponds to the volume contribution of the interaction energy

FIG. 2. The variation of �EI /V with the base width of a trian-
gular wire at different film thickness �Hf =3, 5, and 8 nm�. The facet
angle � of the wire is 10° and the interaction energy strength B of
the film is 1.5�10−10 J /m2.
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and is larger on thinner films. Third, and most importantly,
�EI /V exhibits a minimum. Similar to the second character-
istic, the depth of the minimum is also larger on thinner
films.

The volume contribution and the minimum of �EI /V il-
luminate how the wires in the SK systems can be stabilized
against size variation. The size stability is achieved when the
system meets the conditions that the formation of wires is
energetically unfavorable for large wires but favorable for
moderate ones. To satisfy the first condition, the strength of
the volume contribution of �EI has to be sufficiently large in
order to compete with the reduction of the strain and elec-
trostatic energy, which is also proportional to the wire vol-
ume. �The change of the electrostatic energy is discussed
later in Sec. II D.� Since the volume contribution of the in-
teraction energy increases with decreasing thickness, the first
condition can be fulfilled when the thickness is below a criti-
cal value.

The first condition ensures that the growth of large wires
is suppressed; however, wires of moderate sizes may still
form because of the minimum in �EI /V. The formation of
moderate wires is controlled by the interaction energy
strength B and the thickness of the film. A strong interaction
increases the depth of the minimum of �EI /V, thus favoring
the wire formation. The film thickness, on the other hand,
needs to be higher than a minimum value for wire formation
and lower than the critical value for the first condition.75 In
addition to the interaction energy strength and the film thick-
ness, the size stability is also affected by the pattern on the
upper electric plate. Discussion of this issue is delayed until
we present the formulas for calculating the electrostatic en-
ergy change due to wire formation in Sec. II D.

In short, the size stability is realized when the volume
contribution of the interaction energy can suppress the devel-
opment of large wires, and at the same time, the minimum in
�EI /V allows the growth of moderate wires. More quantita-
tive analyses of the size stability are presented later in Sec.
IV for SK systems without an electric field and in Secs.
V–VII for SK systems influenced by patterned electric
plates.

D. Electrostatic energy change

1. Formulas

This section examines the electrostatic energy change
�We due to the nanostructure formation on the film surface
where the formation is affected by the preexisting pattern of
the electric plate and is under the condition of film volume
conservation. The solution procedure for evaluating �We is
similar to that for �W	. The first step is to derive the elec-
trostatic energy density we�x� on the film surface by the first-
order perturbation method,

we = we0 + 2we0S
1�x� + 2we0Se
2�x� , �11�

where we0=�0��2 / �2Hv
2�, �0 is the permittivity of vacuum,


1�x� expresses the variation of we�x� due to the nanowire,
and 
2�x� corresponds to that due to the pattern on the upper
electric plate. The two functions, 
1�x� and 
2�x�, are found
to be


1�x� = −
1

�
R��

j=1

N

mj ln� e��x−bj+1� − 1

e��x−bj� − 1
�� , �12�


2�x� =
1

�
R��

j=1

N

lj ln� e��x−tj+1� + 1

e��x−tj� + 1
�� , �13�

where �=� /Hv.
After obtaining we�x�, the second step considers the varia-

tion of the electrostatic energy �We with that of the surface
profile �f ,

�We = −� we�x��f�x�dx . �14�

Substituting Eq. �11� into Eq. �14� and taking into account
the conservation of the film volume during the film morphol-
ogy variation yields

�We = − we0SVU1 − 2we0SeVU2, �15�

where U1 and U2 are determined by

Uk =
1

V
�

B

k�x�f�x�dx . �16�

The first term in Eq. �15� gives the electrostatic energy
change without the pattern on the electric plate, while the
second term represents the effect of the pattern on �We. The
coefficient 2 appearing in the pattern effect comes from the
condition that the electric plate pattern is present prior to the
nanostructure formation.76

The detailed derivation procedure of Eqs. �11�–�16�,
which are valid for the cases of faceted wires and patterns, is
presented elsewhere.77 Interested readers are referred to
Refs. 58, 61, 63, and 78–81 for the cases of wavy films and
patterns and to Ref. 82 for the case of two piezoelectric
solids bonded along a wavy interface.

2. Effects of electrostatic energy on wire formation

Equations �11�–�16� are further explored in this section to
understand qualitatively the effects of the electrostatic energy
on the wire formation. The discussion starts with the finding
that Eq. �14� can be rewritten as

�We = −� we�x��vnd� , �17�

where d� denotes an area integral and �vn

=�f�x� /
1+ 	f��x�
2 refers to the change of the film mor-
phology in the normal direction n pointing out of the film.
Equation �17� indicates that the electrostatic energy de-
creases by we when the film surface migrates by one unit
length in the normal direction. This suggests the electrostatic
energy density we is the energetic force associated with the
morphological change. Based on this interpretation, the two
terms, 2we0S
1�x� and 2we0Se
2�x�, appearing in the ex-
pression for we in Eq. �11� can be regarded as the energetic
force due to the wire and that due to the pattern on the
electric plate, respectively. For conciseness, the former is
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termed the intrinsic energetic force, and the latter is called
the extrinsic energetic force.

A typical example of 
1�x� and 
2�x� is depicted in Fig.
3 for the case where a triangular wire is exposed to an elec-
tric plate containing a triangular pattern. The electric plate is
at a height of 100 nm, the base width of the pattern is 100
nm, that of the wire is 60 nm, the facet angle of both struc-
tures is 10°, and the two structures misalign by 300 nm. The
result of 
1, corresponding to the intrinsic force for morpho-
logical changes, is the highest at the top vertex of the wire
and is the lowest at the wire base. The characteristics of 
1
suggest the intrinsic force favors the growth of the wire.

In comparison, the result of 
2 indicates the extrinsic
energetic force is the highest at the location right below the
tip of the pattern, and the force decays with the distance from
the location. The finding suggests the extrinsic force favors
wires aligning with the pattern.

Besides the aligning effect, the patterns on the electric
plate also affect the size stability of the aligned wire, particu-
larly in the systems where the formation of large wires is
suppressed.83 The pattern effects in those systems depend on
the amount of the electrostatic energy reduction induced by
the patterns. If the reduction is large, it becomes energeti-
cally favorable for large wires to grow in size, leading to
coarsening wires. A moderate reduction, on the other hand, is
insufficient to trigger the growth of large wires but allows the
formation of wires with medium sizes because of the mini-
mum in �EI /V. The difference between the formation of
large and medium wires suggests a moderate reduction has
the capability to transform an equilibrium flat film into a
stable islanded profile. The transformation ceases if the re-
duction of electrostatic energy is too small.

E. Surface energy and total energy changes

The surface energy change �Es due to the formation of
the nanostructure can be expressed as

�Es = �
j=1

N

�0Gj�bj+1 − bj� , �18�

where Gj =−1+� j / ��0 cos � j�, � j is the surface energy den-
sity of the jth facet, and �0 is that of the flat wetting layer.

Summing the changes of the strain, electrostatic, interaction,
and surface energy yields the total energy change �Etot,

�Etot = �W	 + �We + �EI + �Es. �19�

III. MODEL AND ENERGY ANALYSIS

This section first presents the model system for analyzing
the size stability in Sec. III A. The energy change �Etot of
the system is then determined in Sec. III B by adopting the
formula discussed in Sec. II. The result is further simplified
in Sec. III C for the case where the electric plate height is
much larger than the wire base width.

A. Model system

Figure 4 plots the model adopted in the paper where a
triangular wire on a SK film-substrate system is exposed to
an electric plate containing a triangular pattern. The wire is
characterized by the slope S=tan � and the base width 2a; in
comparison, the slope and width of the pattern are Se and 2d,
respectively. In addition to the differences in slope and
width, the wire and the pattern are also misaligned by x0. For
convenience, the center of the pattern base is taken to be at
�0,Hv�, and that of the wire at �x0 ,0�.

B. Energy analysis

For the triangular wire and pattern considered in the
model, the three functions, 
	, 
1, and 
2, for evaluating
the changes of the strain and electrostatic energy can be writ-
ten down directly by referring to Eqs. �2�, �12�, and �13�,


	 =
2

�
R�ln

�x − b1��x − b3�
�x − x0�2 � , �20�


1 =
1

�
R�ln	e��x−b1� −1
 + ln	e��x−b3� −1
 − 2 ln	e��x−x0� −1
� ,

�21�


2 =
1

�
R�ln	e��x+d� + 1
 + ln	e��x−d� + 1
 − 2 ln	e�x + 1
� ,

�22�

where b1=x0−a and b3=x0+a. Substituting Eq. �20� into Eq.
�5� leads to U	= �8 ln 2� /�; for conciseness, this value is
denoted as U0, i.e.,

FIG. 3. The variation of 
1�x� and 
2�x� with x for the case
where a triangular wire is exposed to an electric plate containing a
triangular pattern. The details of the system are depicted in the inset
of the figure.

FIG. 4. Schematic diagram of a triangular wire on a SK system
under the influence of a triangular pattern on an electric plate with
a misalignment of x0 between the centers of the two structures.
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U0 =
8

�
ln 2. �23�

Similarly, substituting 
1 and 
2 given in Eqs. �21� and �22�
into Eq. �16� yields U1 and U2. The quantity U1 depends on
�a, and U2 is a function of �x0, �a, and �d.

After U	, U1, and U2 are calculated, the total energy
change �Etot due to the formation of the wire can be deter-
mined by substituting Eqs. �4�, �10�, �15�, and �18� into Eq.
�19�,

�Etot = − w	0SVU0 + 2�0Ga − we0SVU1��a�

− 2we0SeVU2��a, d̂,�x0� +
2B

sin �
ln�Sa + Hf

Hf
�

+
BV

Hf
2 −

2Ba

Hf
, �24�

where d̂=d /Hv, G=−1+� / ��0 cos ��, and � is the surface
energy density of the wire facet. Equation �24� is the formula
used to obtain the numerical results presented in Secs. V and
VII.

For moderate values of �x0 and �a, the two quantities U1
and U2 have to be evaluated numerically. For the special case
where �x0�1 and �a�1, on the other hand, U1 and U2 can
be expressed as

U1 =
U0

2
+

�2a2

12�
, �25�

U2 = K0 −
K2�2a2

6
− K2�2x0

2, �26�

where the two constants K0 and K2 are given by

K0 =
2

�
ln cosh

�d̂

2
,

K2 =
1

4�
�1 − cosh−2�d̂

2
� . �27�

The quantity U1 given in Eq. �25� refers to the effect of
the wire shape on �We when �a�1. The result is found to
be positive, meaning the electrostatic energy is reduced when
the wire is formed.

The quantity U2 expressed in Eq. �26� consists of three
terms. The first two terms represent the pattern shape effect
on �We, and the sum of the two terms is positive since K0
�0 and �a�1. This proves our earlier contention in Sec.
II D that the pattern on the electric plate enhances the elec-
trostatic energy reduction during the wire formation. The
third term of U2 corresponds to the misalignment effect on
�We; this term is always negative, which means the electro-
static energy of a misaligned wire is higher than that of an
aligned one with the same amount of volume. The finding is
consistent with the result of 
2�x� illustrated in Fig. 3.

Substituting the results of U1 and U2 given in Eqs. �25�
and �26� into Eq. �24� and taking x0=0 yields �Etot of
aligned wires under the condition �a=�a /Hv�1. The result

can be further reduced to the following concise form by
adopting the simplification that sin ��S,

�Etot = − w	0SVU0 + 2�0Ga −
1

2
we0SVU0 − 2we0SeVK0

−
we0�2V2

12�S
+

we0SeK2�2V2

3S
+

2B

S
ln�Sa + Hf

Hf
�

+
BV

Hf
2 −

2Ba

Hf
. �28�

Equation �28� is the starting point for the stability analyses
presented in Secs. IV and VI.

C. Parameters and normalization

Before normalizing �Etot expressed in Eq. �28�, it is help-
ful to introduce three key parameters of the EMSO process,

namely, the normalized film thickness Ĥf, the normalized

stability number �̂, and the electromolding �EM� strength J.
The three parameters dominate the characteristics of the total
energy change and the size stability of the wire.

The normalized film thickness Ĥf is defined to be

Ĥf =
Hf

H1
, �29�

where H1 is the critical thickness for spontaneous island for-
mation �or called the first critical thickness in the
literature�,45

H1 =
 BL

�0U0S
. �30�

The quantity L=�0 /w	0 in Eq. �30� gives the length scale at
which the strain energy reduction due to the wire formation
is balanced by the corresponding surface energy increment.

The normalized stability number �̂ is given by10

�̂ =
1

G

BU0S

�0L
− 1. �31�

A positive value of �̂ means that the SK system can develop
an island array that is stable against coarsening, while a
negative value indicates the opposite. Since G is positive for

the SK systems, the parameter �̂ is larger than −1.
The EM strength J is expressed as

J = 1 +
1

2
ŵe0 + 2ŵe0Ŝe

K0

U0
, �32�

where ŵe0=we0 /w	0 and Ŝe=Se /S. The parameter J, de-

pending on ŵe0, Ŝe, and d̂, describes the effect of the electric
field on �Etot when �a�1 and x0=0. The variation of J
with d̂ and Ŝe is plotted in Fig. 5 for the case where ŵe0

=0.5. The result indicates J increases with d̂ and Ŝe.

In addition to Ĥf, �̂, and J, the total energy change

�Etot is also affected by the parameter J2=−�ŵe0Ĥf
4�1
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−4�ŜeK2� / �24U0S2�. Though influencing �Etot, this param-
eter has little effect on the condition of the wire size stability,
as shown later in Sec. VI.

By evoking the definitions of Ĥf, �̂, J, and J2, the total
energy change �Etot expressed in Eq. �28� can be rewritten
as

�Êtot = ln�1 + â� + ĉ1â + ĉ2â2 + ĉ4â4, �33�

where �Êtot=S�Etot / �2B�, â=Sa /Hf, and the three coeffi-
cients, ĉ1, ĉ2, and ĉ4, are given by

ĉ1 =
Ĥf − 1 − �̂

1 + �̂
, �34�

ĉ2 =
1

2
�1 − JĤf

2� , �35�

ĉ4 =
J2H1

2

Hv
2 . �36�

It is found that ĉ1 and ĉ2 are fully controlled by Ĥf, �̂, and J,
and ĉ4 is proportional to Hv

−2 as Hv→�.

IV. SK SYSTEMS WITHOUT ELECTRIC FIELD

As a first step, this section focuses on the SK systems
without an electric field. Of particular interest is the condi-
tion under which the systems can form a wire stable against
size variation. The results of this special case are used as a
reference point for those under the influence of an electric
field.

A. Characteristics of the total energy change

When the electric field is absent from the system, we0=0,
J=1, ĉ4=0, and the total energy change �Etot expressed in
Eq. �33� is reduced to

�Êtot = ln�1 + â� + ĉ1â + ĉ2
�â2, �37�

where ĉ1 is given in Eq. �34� and ĉ2
�= �1− Ĥf

2� /2.

The variation of �Êtot with â is plotted in Fig. 6 for the

cases where �̂=0.6 and Ĥf =0.97, 0.98, 0.99, and 1.02. The
results are denoted by lines 1A, 1B, 2, and 3, respectively.

Lines 1A, 1B, and 2 describe typical examples of �Êtot when

Ĥf �1, and line 3 illustrates �Êtot when Ĥf �1. These lines

have the same property that the slope d�Êtot /dâ is positive at
â=0, while they differ in the maximum and minimum points

of �Êtot�â�: Line 1A shows a monotonic increase in �Êtot
with â, line 1B is distinguished by a maximum and a positive

minimum of �Êtot, line 2 is similar to line 1B but the mini-
mum is negative, and line 3 is characterized by a maximum

point followed by a monotonic decrease in �Êtot.

These characteristics of �Êtot�â� signify different types of
film morphology. In particular, lines 1A and 1B indicate

�Êtot is the lowest at â=0, meaning the wire cannot form and
the flat film is the equilibrium morphology. The negative
minimum on line 2, on the other hand, suggests the system
can develop a wire stable against size variation. Wires can

also form in the case of line 3 since �Êtot can be negative;
however, the lack of a minimum on line 3 means the wires
are unstable in this case.

In brief, the film can be classified into three types of mor-
phology, namely, the unstable wire, the stable wire, and the

stable flat film. The unstable wire develops when Ĥf �1. The
stable wire and the stable flat film, on the other hand, occur

in the thickness range Ĥg�1; the condition differentiating
the two types of morphology is further investigated in Sec.
IV B.

B. Stability condition against size variation

The results depicted in Fig. 6 suggest that the film mor-
phology is characterized by the stable wire when the follow-
ing two conditions are satisfied:

�a� Condition I—There are one maximum and one mini-

mum points in �Êtot.

�b� Condition II—The minimum of �Êtot is negative.
The key quantities in the stable-wire conditions are the

minimum/maximum points of �Êtot, which can be derived by

solving the equation �Êtot /dâ=0,

FIG. 5. The contours of J as a function of d̂ and Ŝe for the case
where ŵe0=0.5.

FIG. 6. The variation of �Êtot with â for the cases where �̂

=0.6 and ĤF=0.97, 0.98, 0.99, and 1.02, which are denoted by lines
1A, 1B, 2, and 3, respectively.
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â1 =
− �2ĉ2

� + ĉ1� − 
Q

4ĉ2
�

, �38�

â2 =
− �2ĉ2

� + ĉ1� + 
Q

4ĉ2
�

, �39�

where 2ĉ2
�+ ĉ1 and Q are functions of �̂ and Ĥf,

2ĉ2
� + ĉ1 =

Ĥf

1 + �̂
	1 − �1 + �̂�Ĥf
 , �40�

Q = �2ĉ2
� + ĉ1�2 − 8�1 + ĉ1�ĉ2

�

=
Ĥf

1 + �̂
	�1 + �̂�2Ĥf

3 + 2�1 + �̂�Ĥf
2 + Ĥf − 4�1 + �̂�
 .

�41�

If both â1 and â2 are positive numbers, the two solutions

correspond to the maximum and minimum points of �Êtot,
respectively, meaning condition I is satisfied. In contrast, if
any one of â1 and â2 is a negative or complex number, there

is no minimum point in �Êtot and condition I cannot be met.
The criterion of positive â1 and â2 holds in the overlap-

ping regime of the following three domains:

Q � 0, �42�

2ĉ2
� + ĉ1 � 0, �43�

ĉ2
� � 0. �44�

The first domain described by Eq. �42� ensures that â1 and â2
are real numbers, and the remaining two domains enforce â1
and â2 to be positive.

The three domains are plotted in Fig. 7�a� to determine

the regime of ��̂ ,Hf� that satisfies condition I. The results
clearly show that condition I cannot be satisfied for SK sys-

tems with �̂�0. For SK systems with �̂�0, on the contrary,

condition I is met if the normalized film thickness Ĥf falls

into the range 	ĤQ ,1
, where ĤQ is the solution to the equa-

tion Q�ĤQ , �̂�=0. The critical thickness ĤQ for condition I is

equal to 1 at �̂=0 and decreases with increasing �̂; see Fig.
7�a�.

Calculating the minimum of �Êtot in the thickness range

	ĤQ ,1
 indicates the minimum �Êmin is always positive at

Ĥf = ĤQ, decreases gradually as Ĥf increases, and becomes

zero at the thickness ĤE. The variation of ĤE with �̂ is plot-

ted in Fig. 7�b�. Similar to ĤQ, ĤE is equal to 1 at �̂=0 and

decreases as �̂ increases. The domain between Ĥf =1 and

Ĥf = ĤE��̂� gives the regime of ��̂ , Ĥf� that satisfies condi-
tions I and II for stable wires.

C. Summary of SK systems without electric field

In summary, the dependence of the wire stability on the

two parameters �̂ and Ĥf of the SK systems can be illus-

trated by the phase diagram shown in Fig. 7�b�. The diagram

is divided into three regimes along the two boundaries, Ĥf

=1 and Ĥf = ĤE. In the regime above the boundary Ĥf =1, the

total energy change �Êtot is described by line 3 in Fig. 6,

which shows �Êtot decreases with â when â is sufficiently
large. This characteristic means the strain energy reduction is
higher than the volume contribution of the interaction en-
ergy, and the wires are unstable against coarsening.

Turn to the regime between the two boundaries, which

can also be expressed as ĤE� Ĥf �1. The inequality Ĥf �1
ensures that the strain energy reduction is less than the vol-
ume contribution of the interaction energy; accordingly, the

growth of large wires is suppressed. The inequality ĤE� Ĥf,
on the other hand, requires that the formation of wires of
moderate size is still energetically favorable in spite of the
suppression of large wires. The difference between the
growth of large and moderate wires results in the size stabil-

ity. The total energy change �Êtot�â� of this case is repre-
sented by line 2 in Fig. 6.

The regime below both boundaries refers to a stable flat
film, and the total energy change is described by line 1A or
1B in Fig. 6.84 In this regime the volume contribution of the
interaction energy far exceeds the strain energy reduction,
suppressing the formation of any wire.

V. ELECTRIC FIELD EFFECTS ON ALIGNED WIRES

This section adopts a typical coarsening system as an ex-
ample to investigate the effects of Hv and d on the size
stability of wires that align with the patterns. The results

FIG. 7. �a� The regime of ��̂ , ĤF� satisfying condition I; �b� the
phase diagram of the film morphology of the SK systems without
an electric field.
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demonstrate the potential of using a patterned electric plate
to fabricate stable wires. The results also reveal interesting
features that motivate further stability analyses of the case
where Hv and d are large in Sec. VI.

A. Characteristics of �Etot and phase diagram of wire size
stability

The size stability is determined by employing Eq. �24� to
evaluate �Etot�a� for different values of Hv and d. Typical
examples of �Etot�a� are depicted in Fig. 8�a� where Hv
=50 nm and d=110, 131, 140, and 160 nm. The results are
found to be similar to those in Fig. 6 for the case without an
electric field. The finding suggests the SK systems under the
influence of an electric field can still be classified into the
three types of film morphology discussed in Sec. IV, namely,
a stable flat film, a stable wire, and an unstable wire.

The dependence of the film morphology on Hv and d is
summarized by the phase diagram shown in Fig. 8�b�. The
diagram indicates stable flat films happen at small d and
large Hv, unstable wires are triggered at large d and small
Hv, and stable wires are obtained in the regime between the
two solid lines shown in the phase diagram. �The dashed
boundaries in the diagram are discussed later in Sec. V B.�
The existence of the stable-wire regime demonstrates that the
EMSO process can cause an originally coarsening SK sys-
tem to develop wires stable against size variation.

The stable-wire regime implies, for given electric plate
height Hv, a range of pattern size d can be adopted to gen-
erate stable wires of different sizes. For example, taking d to
be the value dmax on the upper boundary of the stable-wire
regime results in the largest stable-wire size aeq�max�, while
adopting dmin on the lower boundary yields the smallest
stable-wire size aeq�min�. The size range 	aeq�min� ,aeq�max�
 of
the stable wires is plotted in Fig. 8�c� as a function of Hv.
The results show aeq�max� increases with Hv, while aeq�min� is
insensitive to the electric plate height Hv.

B. Boundaries of stable-wire regime

After discussing the phase diagram of size stability and
the effect of Hv on the range of stable-wire size, the focus of
this section turns to the two boundaries of the stable-wire
regime in the phase diagram. The lower boundary is exam-
ined in Fig. 8�d� by depicting �Etot�a� of three cases where
the values of d are in the vicinity of the lower boundary and
Hv is fixed. In particular, line 1 plots �Etot when d is lower
than the value dmin on the boundary, line 2 illustrates the
result of the case where d=dmin, and line 3 presents that
when d�dmin. The results indicate two properties of the
lower boundary. First, the lower boundary is determined by
the condition that the minimum of �Etot is equal to zero.
Second, the lower boundary signifies the onset of the mor-
phological transition from a stable flat film to a stable wire.

FIG. 8. �a� The variation of �Etot /�0L with a for the cases where Hv=50 nm and d=110, 131, 140, and 160 nm, denoted by lines 1A,
1B, 2, and 3, respectively. �b� The domains of �d ,Hv� that lead to a stable flat film, a stable wire, and an unstable wire. �c� The variation of
the stable-wire sizes aeq�min� and aeq�max� with the electric plate height Hv. �d� The variation of �Etot /�0L with a for the cases where Hv
=80 nm and d is in the vicinity of the lower boundary of the stable-wire regime; d=205, 212.4, and 220 nm for lines 1, 2, and 3,
respectively. �e� The variation of �Etot /�0L with a for the cases where Hv=80 nm and d is in the vicinity of the upper boundary; d=230,
235, and 240 nm for lines 1, 2, and 3, respectively. The parameters adopted in the calculation are listed as follows: L=100 nm, �0

=1 J /m2, �=0.99 J /m2, B=1.5�10−11 J /m, S=Se=1 /5, ŵe0=3, and Ĥf =0.3. The normalized stability number �̂ can be evaluated to be
−0.24.
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The morphological transition happens when the electric field
effect caused by the patterned electrode is sufficiently strong.

Similarly, the upper boundary is investigated in Fig. 8�e�
by considering the cases where d are lower than, equal to,
and higher than the value dmax on the upper boundary. The
results, denoted by lines 1, 2, and 3, respectively, demon-
strate that the upper boundary corresponds to the morpho-
logical transition from a stable to an unstable wire, and is
characterized by the scenario that the curvature of the mini-
mum point of �Etot vanishes.

The lower and upper boundaries generally have to be de-
termined by numerical methods, preventing the two bound-
aries from being described analytically. Further examination
of the example depicted in Fig. 8�b�, however, reveals that
the two boundaries of the stable-wire regime approach
straight lines at large values of d and Hv. The straight lines
are expressed as d=�Hv �� is a constant�, and are denoted by
the dashed boundaries in the phase diagram. Motivated by
the simple expression for the boundaries of the stable-wire
regime, we investigate the wire size stability of the
asymptotic cases in Sec. VI.

VI. ASYMPTOTIC CASES

The size stability of the asymptotic case is analyzed by
considering the onset of two critical morphological transi-
tions, namely, the flat film–stable wire transition and the
stable-unstable wire transition. The former is studied in Sec.
VI A, yielding the minimum criterion for the EM strength.
The latter, imposing an upper limit on the EM strength, is
investigated in Sec. VI B. The results of the two sections are
summarized in Sec. VI C to present an overall picture of the
asymptotic cases. For convenience, the onset of the flat film–
stable wire transition is termed the basic stable state, while
that of the stable-unstable wire transition is called the utmost
stable state.

A. Minimum criterion and basic stable states

1. Derivation of the basic stable states

The asymptotic cases are characterized by the condition
that the height Hv and the pattern size d are large. This im-

plies �a=�a /Hv�1, and the total energy change �Êtot can
be expressed by Eq. �33�. The expression can be further sim-
plified by neglecting the term ĉ4â4 when studying the basic
stable states since Eqs. �34�–�36� and Fig. 8�c� suggest ĉ1, ĉ2,
and â of the basic stable states are invariant with Hv, but
ĉ4→0 as Hv approaches infinity. The simplification leads

�Êtot to

�Êtot = ln�1 + â� + ĉ1â + ĉ2â2, �45�

where ĉ1 is a function of Ĥf and �̂, and ĉ2 is that of Ĥf, �̂,
and the EM strength J.

Differentiating Eq. �45� with respect to â and requiring
the result to be zero yield an equation for the wire size âmin at
the minimum point,

1

1 + âmin

	2ĉ2âmin
2 + �ĉ1 + 2ĉ2�âmin + 1 + ĉ1
 = 0. �46�

The minimum point is a basic stable state if the total energy
change is zero at that point,

ln�1 + âmin� + ĉ1âmin + ĉ2âmin
2 = 0. �47�

Equations �46� and �47� constitute the conditions of the basic
stable states.

By evoking the definitions of ĉ1 and ĉ2 given in Eqs. �34�
and �35�, the two conditions for the basic stable states can be

rewritten in terms of Ĥf, �̂, âmin, and Jmin, where Jmin de-
notes the EM strength of the basic stable states. Among the

four variables, Ĥf and �̂ are known for a given SK system.

Substituting the values of Ĥf and �̂ into the conditions yields
two equations for determining Jmin and âmin of the basic
stable states. The two equations can be solved numerically.

2. Viable regime

The EM strength Jmin and the normalized wire size âmin
of the basic stable states are depicted in Figs. 9�a� and 9�b�,
respectively, as functions of �̂ and Ĥf. The results indicate
both Jmin and âmin can be obtained in the overlapping regime
of the following two domains:

Ĥf � 1,

Ĥf � 1 + �̂ . �48�

The overlapping regime identifies the SK systems that can be
activated by the EMSO process to develop wires stable

FIG. 9. The contours of �a� Jmin and �b� âmin of the basic stable

states as functions of �̂ and Ĥf.
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against size variation, and is termed the viable regime. For
SK systems out of the viable regime, the conditions of the
basic stable states cannot be satisfied for any value of Jmin
and âmin. Those systems are characterized by coarsening

wires �Ĥf �1� or stable flat films �1+ �̂� Ĥf �1�.
The viable regime illustrated in Fig. 9 suggests that all of

the noncoarsening SK systems ��̂�0� with Ĥf �1 can de-
velop stable wires during the EMSO process. This is in con-
trast to the case without an electric field where the stable
states can only occur in a much smaller thickness range

	ĤE��̂� ,1
. In addition to the noncoarsening systems, the vi-

able regime also includes the coarsening systems with Ĥf

less than 1+ �̂.

3. Minimum EM strength Jmin

The EM strength of the basic stable states, denoted as
Jmin, is the minimum EM strength needed in order to induce

a stable wire for the given values of Ĥf and �̂.85 When the
EM strength is less than Jmin, the electrostatic energy reduc-
tion due to the patterned electric plate is insufficient to cause
the formation of wires; as a consequence, the flat film is the
equilibrium morphology 	see line 1 in Fig. 8�d�
. Increasing
the EM strength J leads to higher electrostatic energy reduc-
tion. When J exceeds Jmin, the wire formation becomes en-
ergetically favorable for wires with moderate size 	see line 3
in Fig. 8�d�
. This implies stability against size variation.

The minimum EM strength Jmin depends on two param-

eters, namely, Ĥf and �̂. The variation of Jmin with the two
parameters is depicted in Fig. 9�a�. The results show that

Jmin decreases when �̂ and/or Ĥf increases.
Figure 9�a� indicates the minimum EM strength Jmin is

less than 1 in the area between the contour Jmin=1 and the

line Ĥf =1. Since the J�1, the inequality 1�Jmin means the
condition J�Jmin for size stability is always satisfied in the
area, and the corresponding SK systems can develop stable
wires even if ŵe0=0. The finding shows that the area is ac-
tually the stable-wire regime illustrated in Fig. 7�b� for SK
systems without an electric field,86 and the boundary

Jmin�Ĥf , �̂�=1 of the area is equivalent to the line Ĥf

= ĤE��̂� defined in Fig. 7�b�.

4. Wire size of basic stable states

Turn to âmin, the wire size of the basic stable states and
the smallest size of the stable wires in the asymptotic cases.
As discussed earlier in this section, âmin can be obtained by

solving Eqs. �46� and �47� with given �̂ and Ĥf. This shows

âmin is fully controlled by �̂ and Ĥf of the SK systems,
independent of the electric field generated by the patterned
electrode. The result explains the finding in Fig. 8�c� that the
smallest stable-wire size aeq�min� is insensitive to the electric
plate height Hv.

The effects of �̂ and Ĥf on the wire size âmin of the basic
stable states are depicted in Fig. 9�b�. The results indicate

âmin decreases when �̂ is raised or Ĥf is reduced, while âmin

increases drastically when approaching the boundary Ĥf =1

+ �̂ of the viable regime. The wire size âmin in the vicinity of
the boundary is further explored in the Appendix.

5. Effects of facet angle �

Figure 9 can be employed to understand the effects of the
facet angle � on the wire size stability. As an example, con-
sider the case where B=1.5�10−11 J /m, L=25 nm, Hf
=1.5 nm, and �0=�=1 J /m2. Substituting these values into

Eqs. �29� and �31� determines the variation of Ĥf and �̂ with

the facet angle �; see Fig. 10�a�. The results indicate Ĥf

increases with �, while �̂ decreases with the facet angle. The

changes of Ĥf and �̂, according to Fig. 9�a�, would cause the
SK system to be outside the viable regime. This demon-
strates that the nanostructures are unstable against size varia-
tion when the facet angle is sufficiently high.

The critical facet angle �cr for stable-wire size is con-
trolled by Hf /L, B /�0L, and �̂=� /�0. The variation of �cr
with Hf /L is illustrated by line 1 of Fig. 10�b� for the case
where B /�0L=6�10−4 and �̂=1. The line consists of two
smooth curves. The curve at small values of Hf /L corre-

sponds to � at the boundary Ĥf =1+ �̂ of the viable regime,
which depends on B /�0L and �̂. In comparison, the curve at

large Hf /L corresponds to � at the other boundary Ĥf =1,
which is dictated by B /�0L. On both curves, �cr decreases

with Ĥf /L.
In addition to line 1, Fig. 10�b� also depicts the variation

of �cr with Hf /L for another two cases to show the depen-

FIG. 10. �a� The variation of Ĥf and �̂ with � for the case where
B=1.5�10−11 J /m, L=25 nm, Hf =1.5 nm, and �0=�=1 J /m2.

�b� The variation of �cr with Ĥf /L of three cases: B /�0L=6
�10−4 and �̂=1 for line 1, B /�0L=10−3 and �̂=1 for line 2, and
B /�0L=10−3 and �̂=0.98 for line 3.
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dence of �cr on B /�0L and �̂. In particular, line 2 considers
the case where �̂ remains the same but B /�0L is raised to
10−3, while line 3 adopts B /�0L=10−3 and reduces �̂ to 0.98.
The comparison between lines 1 and 2 demonstrates that �cr
is increased when B /�0L is enhanced. The comparison be-
tween lines 2 and 3 suggests lowering �̂ also causes �cr to

increase. The effect of �̂, however, diminishes as Ĥf /L in-
creases.

B. Utmost stable states and maximum EM strength Jmax

1. Utmost stable states

This section first focuses on the utmost stable state under

the condition ĉ4�0, which is satisfied when Ŝe�1. It is then
shown that the result is also applicable to the cases with ĉ4
�0.

The utmost stable states, as illustrated in Fig. 8�e�, are
characterized by a stationary point with zero curvature in

�Êtot to signify the onset of no minimum in the total energy
change. The characteristic can be described by the two equa-

tions, �Êtot� �âmax�=�Êtot� �âmax�=0. By assuming ĉ4�0, the
two equations can be expressed as

1

1 + âmax

+ ĉ1 + 2ĉ2âmax + 4ĉ4âmax
3 = 0, �49�

−
1

�1 + âmax�2 + 2ĉ2 + 12ĉ4âmax
2 = 0, �50�

where âmax is the wire size of the utmost stable state. Com-
paring the order of magnitude of the terms in Eqs. �49� and
�50� suggests �1+ âmax�−1 and �1+ âmax�−2 can be neglected,
simplifying the two equations to

ĉ1 + 2ĉ2âmax + 4ĉ4âmax
3 = 0, �51�

2ĉ2 + 12ĉ4âmax
2 = 0. �52�

Equations �51� and �52� can be solved to express ĉ2 and
âmax in terms of ĉ1 and ĉ4,

âmax = � ĉ1

8ĉ4
�1/3

, �53�

ĉ2 = −
3ĉ1

4âmax

. �54�

Since ĉ4 is proportional to Hv
−2 when Hv approaches infinity,

Eqs. �53� and �54� imply âmax�Hv
2/3 and ĉ2�Hv

−2/3. The re-
sult âmax�Hv

2/3 confirms the insignificance of �1+ âmax�−1 and
�1+ âmax�−2 in Eqs. �49� and �50�, respectively. The finding
ĉ2�Hv

−2/3 suggests the EM strength of the utmost stable
states is given by

Jmax =
1

Ĥf
2

. �55�

For the case where ĉ4�0, it is necessary to include higher
order terms of â in order to determine the maximum stable

size âmax. The EM strength, however, is still given by Eq.
�55� because the coefficients of the higher order terms, simi-
lar to ĉ4, all decay to zero as Hv→�. In such a case, the

minimum point of �Êtot would cease to exist when ĉ2�0.
The critical condition ĉ2=0 leads to the result expressed in
Eq. �55�.

2. Maximum EM strength Jmax

The EM strength Jmax at the utmost stable state is the
maximum EM strength allowed for stable wires. When the
EM strength is higher than the maximum value, the strain
energy reduction plus the electrostatic energy reduction due
to the patterned electric plate is larger than the volume con-
tribution of the interaction energy. As a consequence, the
formation of large wires becomes energetically favorable,
and the wires are unstable against size increment 	see line 3
of Fig. 8�e�
.

The maximum EM strength Jmax, as expressed in Eq.

�55�, increases with decreasing Ĥf and is independent of the

stability number �̂. It is further demonstrated in the Appen-
dix that Jmax is always larger than the minimum EM strength
Jmin in the viable regime of stable wires. The inequality
shows that the two critical values define a range of EM
strength for growing stable wires in the viable regime.

C. Size stability of wires

The results in Secs. VI A and VI B reveal that the size
stability of wires in the asymptotic cases is determined by
two criteria. The first one is the viability criterion expressed
in Eq. �48�. This criterion evaluates whether or not the SK
system can be activated by the electric field to develop stable
wires during the EMSO process. Failing the viability crite-
rion indicates stable wires cannot be produced in the SK
system during the EMSO process. Satisfying the viability
criterion, on the other hand, means stable wires can be gen-
erated if the EM strength J meets the second criterion that J
is in the range of Jmin to Jmax,

Jmin�Ĥf,�̂� � J�ŵe0, d̂,Ŝe� � Jmax�Ĥf� . �56�

The lower limit Jmin in Eq. �56� signifies the moment when
the patterned electric plate can induce sufficient electrostatic
energy reduction so that the formation of wires with a mod-
erate size becomes energetically favorable. In comparison,
the upper limit Jmax represents the onset of unstable island
growth, which occurs when the reduction of the electrostatic
and strain energy exceeds the volume contribution of the
interaction energy.

Since J�1+ ŵe0 /2, the second criterion imposes an up-
per bound for the normalized electrostatic energy density
ŵe0,

ŵe0 � ŵe�max� = 2� 1

Ĥf
2

− 1� . �57�

As an application, Eqs. �48� and �56� are employed to
investigate the size stability of two special cases. In the first

case, ŵe0, d̂, and Ŝe are given, and the focus is on the domain
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of ��̂ , Ĥf� that leads to stable wires. The second case, on the

other hand, examines the stability domain of �d̂ , Ŝe� under

the condition that ŵe0, �̂, and Ĥf are fixed.

1. Stability domain of (�̂ ,Ĥf)

We examine the first case in this section where ŵe0, d̂, and

Ŝe are given. The three parameters determine the EM
strength J of the system. Substituting J into the first in-
equality expressed in Eq. �56� leads to the condition that the

film thickness Ĥf has to exceed a minimum value Ĥmin,
where

Jmin�Ĥmin,�̂� = J . �58�

Equation �58� indicates Ĥmin is a function of �̂ and J.
Similarly, substituting J into the second inequality in Eq.

�56� and evoking Eq. �55� yield Ĥf � Ĥmax, where Ĥmax
=1 /
J is the maximum film thickness allowed for stable

wires. In contrast to Ĥmin, Ĥmax is independent of �̂.
The lower and upper limits of the film thickness are plot-

ted in Fig. 11�a� as functions of �̂ for the case where ŵe0

=0.5, Ŝe=1, and d̂=1. �The values of these parameters yield

J=1.582.� The results indicate Ĥmin approaches Ĥmax as �̂

decreases, and the two limits coincide at �̂= �̂min, where

�̂min=−1+1 /
J. When �̂ is below �̂min, the size stability
criterion cannot be satisfied for any film thickness.

The stability diagram of ��̂ , Ĥf� for different values of J
would exhibit the same characteristics shown in Fig. 11�a�: a

stable-wire domain bounded by Ĥf = Ĥmax and Ĥf = Ĥmin and

the interception of the two boundaries at �̂= �̂min. These
characteristics are also observed in the stability diagram of
SK systems without an electric field; see Fig. 7�b�.

2. Stability domain of (d̂ ,Ŝe)

This section investigates the effects of the pattern geom-
etry on the size stability of a viable SK system with a fixed
value of ŵe0. In this situation, the two parameters of the SK

system, namely, Ĥf and �̂, are known, which in turn deter-
mine the minimum and the maximum EM strength of the
system. Substituting the results and ŵe0 into Eq. �56� yields a

formula for identifying the domain of �d̂ , Ŝe� that generates
stable wires.

An example of the stability domain is depicted in Fig.

11�b� for the case where Ĥf =0.55, �̂=10, and ŵe0=0.5. The
result indicates the stability domain is bounded by two lines
representing the basic and the utmost stable states of the

system. It is found that d̂ in the stability domain increases

with decreasing Ŝe.

The stability domain of �d̂ , Ŝe� is reduced to a range of

normalized pattern size 	d̂min, d̂max
 when Ŝe is fixed. The
two critical values define the lower and upper limits of the

ratio d /Hv for size stability, i.e., d̂min�d /Hv� d̂max. The re-
sult explains the finding in Fig. 8�b� that the stability diagram
of �Hv ,d� is bounded by two straight lines in the asymptotic
cases.

VII. EFFECTS OF PATTERN-WIRE MISALIGNMENT

The focus of this section turns to the effects of pattern-
wire misalignment on the formation of wires. The effects are
determined by analyzing the variation of �Etot with the wire
size a for four values of misalignment, namely, x0=0, 20, 35,
and 50 nm. The other parameters of the system are identical
to those for line 3 in Fig. 8�d�, an example of pattern-induced
stable wire.

The results of �Etot�a� for the four values of x0 are de-
picted in Fig. 12. The figure indicates �Etot exhibits a nega-
tive minimum when x0=0 and 20 nm, suggesting the wires at
locations with no or small misalignments are stable against

FIG. 11. �a� The stability domain of ��̂ , Ĥf� for the case where

ŵe0=0.5, Ŝe=1, and d̂=1; �b� the stability domain of �d̂ , Ŝe� for the

case where Ĥf =0.55, �̂=10, and ŵe0=0.5.

FIG. 12. The effects of pattern-wire misalignment x0 on the
variation of �Etot with the wire size a; the parameters of the system
are taken to be the same as those for line 3 in Fig. 8�d�.
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size variation. Comparing the two results of stable wires
shows that the depth of the minimum of �Etot and thus the
size stability of the wire decline with increasing misalign-
ment.

As the misalignment is further increased, the minimum in
�Etot becomes shallower and its value changes into a posi-
tive one; see the result of x0=35 nm. The minimum eventu-
ally disappears at sufficiently large misalignments, as indi-
cated in the result of x0=50 nm. A positive minimum or the
absence of a minimum means the formation of wires is sup-
pressed energetically.

The results in Fig. 12 provide a clue to the outcomes of
preexisting nanostructures when a patterned electric plate is
employed to grow stable nanoislands. The outcomes depend
on the locations of the preexisting nanostructures. If the lo-
cations are in the areas with little influence from the patterns,
the preexisting nanostructures possess higher energy than a
flat film; as a consequence, the structures would shrink and
evolve into a flat film. If the location is in the vicinity of the
site aligning with the pattern, on the other hand, the preex-
isting structure would undergo a self-aligning-organizing
process to transform into the aligned stable nanoisland dic-
tated by the pattern.

VIII. DISCUSSION

A. Modification of SK systems for stable nanostructures

In this section we briefly discuss how to modify the SK
systems in order to satisfy the viability criterion for stable
nanostructures. The approach depends on whether the film is
a conductor or a semiconductor. For conductor films, the
interaction energy strength B is high; thus, the critical thick-

ness H1 for the SK transition is large, and �̂ is a positive
value. In those systems, the viability criterion can be fulfilled
by simply decreasing the film thickness Hf below H1.

As an example, consider the case where the film is silver,
�m=0.02, E=83 GPa, �=0.37, �0=1 J /m3, L=27.7 nm, �̂
=0.99, and �=10°. The interaction energy strength B of sil-
ver films was estimated to be 6.62�10−10 J /m.74 Substitut-
ing the value of B and the material properties into Eqs. �31�
and �30� yields �̂=15.4 and H1=7.7 nm. Since �̂�0, the
film would satisfy the viability criterion if Hf is less than
H1=7.7 nm.

The large value of H1 implies amin can be small even at

moderate film thickness. For instance, a film of 4.8 nm �Ĥf
=0.622� in our current case yields amin=12.2 nm when the
electric field is taken to be 0.073 V/nm and the pattern is

described by d̂=2.5 and �e=10°. The size amin is reduced to
1.86 nm if Hf is equal to 1.5 nm, and a high electric field of
1.29 V/nm is applied.

Turn to the semiconductor film-substrate systems. It is
more difficult to meet the viability criterion in those systems
because the interaction strength B is much smaller. One pos-
sible solution is to enhance the strength by doping the film
heavily. It was suggested that the strength B of a SiGe film
could reach 5.7�10−12 J /m when introducing one atomic
percent of donors in the film.10 This interaction strength can
produce amin=26 nm for the case where L=100 nm, �

=11.3°, �̂=0.99, and Hf =0.4 nm, which roughly corre-
sponds to the SiGe film with 25% of Ge in atomic concen-
tration. The equilibrium island size can be further reduced if
the interaction strength can be increased significantly. This,
however, requires a different interaction mechanism, a cru-
cial issue that needs to be explored in the future.

B. Kinetics

After discussing the possible approaches for satisfying the
size stability criteria, we comment briefly in this section
whether or not the stable nanostructures can develop during a
typical annealing process where surface diffusion is the
dominating kinetic mechanism. To answer this question, it is
helpful to compare the simulation results in Refs. 66 and 87.
Both adopted the same model for the SK systems to study
the growth of nanoislands driven by the surface diffusion
mechanism, while the two works differed in the electric field:
Reference 66 took into account the effects of the electric
field generated by a patterned electric plate; in contrast, Ref.
87 focused on the cases where the electric field is absent. The
comparison of the two works reveals that the growth of
nanoislands under a patterned electric plate is much faster
than that without the electric field.88 Since the latter can be
observed in experiments routinely, the patterned-induced is-
land formation is expected to be feasible.

The effect of a pattern on the growth rate of nanostruc-
tures can be understood as follows. The growth of nanostruc-
tures in SK systems without an electric field is driven by the
strain energy reduction, and it follows from Eq. �3� that the
corresponding energetic force for island growth is given by
the negative of the strain energy density −w�x�. �This is
analogous to the energetic force due to the electrostatic en-
ergy discussed in Sec. II D.� This energetic force, as ex-
pressed in Eq. �1�, increases with the slope and size of the
nanostructure. Thus, the energetic force for island growth is
small when the film morphology is a slightly rough surface
profile.

The pattern on the electric plate, on the contrary, induces
an energetic force that is independent of the geometry of the
nanoislands on the film surface �see Sec. II D�. This ener-
getic force can be large even when the nanostructures on the
film are still shallow and/or small. This explains why the
pattern can accelerate the growth of nanostructures drasti-
cally.

C. Controlled growth of nanoislands

The size stability analyses presented in this paper illus-
trate a potential method for controlling the self-assembly of
nanostructures. The first step is to choose a system that can
satisfy the viability criterion given in Eq. �48�. The system

can be a coarsening one characterized by �̂�0 or a stable

one with �̂�0, while the stable one is a better choice since
it allows a larger thickness range for fabricating stable nano-
structures.

The stable SK system can develop stable wires without an
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electric field if the normalized thickness Ĥf is in the range

ĤE� Ĥf �1, where ĤE is defined earlier in Fig. 7. This
range, however, is unsuitable for controlling the island
growth since the nanostructures can develop at any location
on the film surface.

The controllable self-assembly of nanoislands is achieved

by using films in the thickness range Ĥf � ĤE together with a
patterned electric plate. In this design, the flat film is the
equilibrium morphology in the areas with little influence
from the patterns, while the flat film is transformed into
stable nanostructures in the area affected by the pattern. The
transformation can occur if the EM strength J due to the
patterns satisfies the criterion expressed in Eq. �56�, which in
turn defines a stability domain of the pattern parameters 	see

for example the stability domain of �d̂ , Ŝe� of nanowires dis-
cussed in Sec. VI C
. Varying the pattern geometry within
the stability domain leads to different sizes and shapes of
stable nanostructures at the specified locations.

For a given SK system, �̂ is fixed, and the smallest size of
stable nanostructures âmin can be reduced by decreasing the

normalized thickness Ĥf; see Fig. 9�b�. Decreasing Ĥf, how-
ever, causes Jmin and thus the electric field to increase; see
Fig. 9�a�. The electric field can become too high to be fea-
sible in the actual systems, and this imposes a constraint on
the smallest film thickness that can be attained in the process.

D. Limitations

The analyses presented in this paper provide a simple
scheme for determining the size stability of wires under the
influence of a patterned electric plate. The scheme, neverthe-
less, overlooks several issues that can affect the size stability.
For example, the formulas adopted here for calculating the
strain and electrostatic energy changes are accurate to the
first order of the wire slope. This is valid for shallow islands,
while the effects of large wire slopes have to be included in
order to have more accurate predictions of the size stability.

Besides the large slopes, other issues that need to be con-
sidered include the kinetics of the EMSO process, the surface
stress, other mechanisms of the interaction energy, and the
electrostatics of semiconductor films. Understanding these
issues is essential for developing technologies that can con-
trol the growth of nanoislands in the SK systems.

IX. SUMMARY

This paper investigates the stability of wires against size
variation during the EMSO process. The investigation starts
with the case where the electric field is absent from the pro-
cess. In such a case, the wire is stable against size variation if

the normalized stability number �̂ is positive and the normal-

ized film thickness Ĥf is within the range 	ĤE ,1
. The varia-

tion of the thickness range with �̂ is illustrated in Fig. 7�b�.
The investigation then turns to a typical example of a

coarsening SK system to study the effects of d and Hv on the
size stability of wires that align with the pattern. The results
show that the coarsening system can be activated to develop

stable wires of different sizes when the pattern size d and the
electric plate height Hv are in the stable-wire regime depicted
in Fig. 8�b�. The results also indicate the upper limit of the
wire size aeq�max� increases with Hv, while the lower limit
aeq�min� is insensitive to the parameters of the electric field.

Motivated by the findings in the specific example, the
investigation further explores the wire size stability of the
asymptotic cases where the pattern size d and the electric
plate height Hv are large. The size stability is shown to be
determined by two criteria. The first one, the viability crite-
rion given in Eq. �48�, evaluates whether or not the SK sys-
tem can be activated by the electric field to generate stable
wires.

The second criterion, expressed in Eq. �56�, requires that
the EM strength J is in the range 	Jmin,Jmax
. The minimum
EM strength Jmin corresponds to the moment when the pat-
terned electric plate can induce sufficient electrostatic energy
reduction so that the wire formation becomes energetically
favorable for moderate size. The minimum EM strength Jmin

depends on the normalized film thickness Ĥf and the normal-

ized stability number �̂; the variation of Jmin with the two
parameters is depicted in Fig. 9�a�. In comparison, the maxi-
mum EM strength Jmax signifies that the reduction of the
electrostatic and strain energy exceeds the volume contribu-
tion of the interaction energy, leading to unstable growth of
large wires. The maximum EM strength is expressed in Eq.

�55�, indicating Jmax increases with decreasing Ĥf.
In addition to the cases of aligned wires, the effects of the

pattern-wire misalignment on the formation and the stability
of wires are also examined. It is found that the wire at the
site aligning with the pattern has the lowest energy and the
highest size stability. As the misalignment increases, the en-
ergy increases and the stability declines. At sites with large
misalignment, the formation of wire is completely sup-
pressed. The results demonstrate the potential of using pat-
terns to fabricate nanostructures stable against size variation
at specified locations.
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APPENDIX: THE BASIC STABLE STATES IN THE

VICINITY OF Ĥf=1+ �̂

The Appendix first derives âmin and Jmin of the basic

stable states in the vicinity of the boundary Ĥf =1+ �̂. The
result of Jmin is then compared with Jmax to demonstrate that
Jmax�Jmin except on the boundary where the two limits
coincide.

When studying the basic stable states in the vicinity of the

boundary Ĥf =1+ �̂, it is convenient to express the coeffi-
cient ĉ1 as ĉ1=−� where � is a positive number with small
magnitude. Substituting the expression into Eq. �45� and em-

ploying the change of variable t= âmin� reduce �Êtot given in
Eq. �45� to
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�Êtot = ln t − ln � – t +
ĉ2t2

�2 . �A1�

The minimum point of �Êtot is determined by solving the

equation �Êtot�t�=0, which can be rewritten as

ĉ2t2

�2 −
t

2
+

1

2
= 0. �A2�

According to Eq. �A2�, �Êtot at the minimum point can be
calculated to be

�Êmin = ln t − ln � −
t

2
−

1

2
. �A3�

It can be verified later that t
1 at small values of �. Thus,

t
 ln t, �ln ��
1 /2, and �Êmin can be further simplified to

�Êmin = − ln � −
t

2
. �A4�

The minimum �Êmin vanishes at the basic stable states, lead-
ing to the solution t=−2 ln �. The result confirms the asser-
tion that t
1 as �→0. The result also determines the stable-
wire size âmin in the vicinity of the boundary to be

âmin =
− 2 ln �

�
. �A5�

Equation �A5� explains the result depicted in Fig. 9�b� that
âmin increases drastically when approaching the boundary
Ĥf =1+ �̂.

Substituting the solution of t into Eq. �A2� and ignoring
the smallest term −1 /2 yields

ĉ2 =
�2

2t
= −

�2

4 ln �
. �A6�

Comparing Eq. �A6� with Eq. �35� gives the required mini-
mum EM strength Jmin in the vicinity of the boundary Ĥf

=1+ �̂,

Jmin = �1 +
�2

2 ln �
� 1

Ĥf
2

. �A7�

On the boundary, �=0 and Jmin ��=0=1 / Ĥf
2=Jmax. In other

words, the asymptotic lower and upper limits of the EM
strength coincide on the boundary Ĥf =1+ �̂.

Except on the boundary Ĥf =1+ �̂, the lower and upper
limits are different. In particular, Jmin decreases if Ĥf is fixed
but �̂ increases 	see Fig. 9�a� and Eq. �A7�
. On the other
hand, Jmax remains the same as long as Ĥf is fixed. This
demonstrates that Jmax�Jmin in the viable regime for the
stable wires.
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total energy change �Êtot is a function of â and J. Thus, the
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