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Spin filtering by a periodic spintronic device
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For a linear chain of diamondlike elements, we show that the Rashba spin-orbit interaction (which can be
tuned by a perpendicular gate voltage) and the Aharonov-Bohm flux (due to a perpendicular magnetic field)
can combine to select only one propagating ballistic mode, for which the electronic spins are fully polarized
along a direction that can be controlled by the electric and magnetic fields and by the electron energy. All the
other modes are evanescent. For a wide range of parameters, this chain can serve as a spin filter.
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I. INTRODUCTION

In addition to their charge, electrons also carry a spin,
which is the quantum relativistic source for the electron’s
intrinsic magnetic moment. Future device technology and
quantum information processing may be based on
spintronics,! where one manipulates the electron’s spin (and
not only its charge). One major aim of spintronics is to build
mesoscopic spin valves (or spin filters), which generate a
tunable spin-polarized current out of unpolarized sources.
Much recent research aims to achieve this goal by using
narrow-gap semiconductor heterostructures, where the spins
are subject to the Rashba? spin-orbit interaction (SOI): in a
two-dimensional electron gas confined by an asymmetric po-
tential well, the strength of this SOI can be varied by an
electric-field perpendicular to the plane in which the elec-
trons move.> An early proposal of a spin field-effect
transistor* used the Rashba SOI to control the spin preces-
sion of electrons moving in quasi-one-dimensional wires.
Placed between two ferromagnets, the transport of polarized
electrons through such a semiconductor could be regulated
by the electric field. However, such devices are difficult to
make, due to the metal-semiconductor conductivity mis-
match.

Some of the most striking quantum effects arise due to
interference, which is best demonstrated in quantum net-
works containing loops. Indeed, interference due to the
Rashba SOI has been measured on a nanolithographically-
defined square loop array.’> Here we discuss the possibility to
construct a spin filter from such loops. Recently, several
groups proposed spin filters based on a single loop, subject to
both an electric and a magnetic [ Aharonov-Bohm (AB) (Ref.
6)] perpendicular fields.”” However, such devices produce a
full polarization of the outgoing electrons only for special
values of the two fields. In the present paper we consider a
chain of such loops, as shown in Fig. 1. The effects of the
Rashba SOI on the spectrum of the diamond chain of Fig. 1
were studied by Bercioux et al.'® They found a strong varia-
tion of the averaged (over energies) conductance with the
strength of the SOI, which they associated with localization
of the electron due to interference between different paths in
each diamond. Later, this group'' found similar effects due to
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both the SOI and an AB flux. However, the possibility to use
such networks to achieve spin filtering has not been consid-
ered. As we show below, the polarization of the outgoing
electrons depends on the energy. Therefore, averaging over
energies mixes different polarization directions and elimi-
nates the possibility of obtaining full polarization.

We find that both the ballistic conductance and the spin
polarization of the electrons going through the device can be
sharply varied by an electric field [determining the SOI (Ref.
3)], a magnetic field (determining the AB phases of the or-
bital electronic wave functions) and the electrons’ energy (set
by the chemical potential in the source). Varying these three
parameters, we find large parameter ranges where all the
energy eigenstates of the device except one become evanes-
cent and decay exponentially, forming the localized states
discussed in Refs. 10 and 11. However, the electrons in the
remaining single mode propagate with fully polarized spins.
Thus, electrons which enter with arbitrary spins exit fully
polarized. Since this polarization can be tuned by the param-
eters, our system is an ideal spin filter.

Section II outlines the tight-binding model which we use
for solving the Schrodinger equation on the periodic chain of
diamonds. Section III presents results for the ballistic con-
ductance and for the polarization of the electrons in the re-
gions where they are fully polarized. Finally, Sec. IV con-
tains a discussion of our results, including a comparison with
the case of a single diamond and a discussion of the appli-
cation of our results to a finite chain.

II. TIGHT-BINDING MODEL

With SOI, we need to solve for the two-component spinor
at each point on the network. Bercioux et al.'%!! treated each
bond of the network as a continuous one-dimensional (1D)
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FIG. 1. Chain of diamonds.
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wire. Having expressed the solutions along each bond in
terms of the spinors of the nodes at its two ends, they used
the Neumann boundary conditions at the nodes to derive
discrete equations for the spinors at these nodes. As we dis-
cuss elsewhere,!? these boundary conditions are sufficient
but not necessary for current conservation at the nodes. A
more systematic way to treat such network replaces each
continuous bond by a discrete sequence of sites, and then
studies the tight-binding model for the wave functions on
these sites (and on the original nodes). As the number of
these intermediate sites increases, one has more sites per unit
cell, and therefore one ends up with more energy bands for
the solutions which contain waves moving along the main
axis of the network [i.e., along the (1,1,0) direction in Fig.
1]. Qualitatively, we find that all these bands are similar to
each other, and also similar to those found for the continuous
network used in Refs. 10 and 11. Therefore, we choose to
report here only on the simplest case, with no intermediate
sites within the bonds. Thus, we treat a simple tight-binding
model, with sites {u} only on the corners of the diamonds.
The latter model could also describe a network of quantum
dots or antidots, located at these nodes.!> The stationary
spinors ¥, with energy €, obey the Schrodinger equations,

(oW, = eV, =-J> U, V,, (1)
v

where the sum is over the nearest-neighbor nodes {v}, J is
the (real) hopping matrix element (in the absence of fields)
and

Uy = U, =expli( @i + $5)] (2)

is a unitary 2 X 2 matrix, representing the phase factors due
to the AB flux and to the SOI, ¢£‘f and qﬁzl? , respectively. For
our structure, all bonds are in the xy plane, and both the
uniform magnetic field H=HZ and the potential asymmetry
which creates the SOI are along the z axis. As can be seen
from Fig. 1, the nth unit cell contains three sites, and Eq. (1)
reduces to equations for the related spinors, W ,(n),V(n),
and W .(n). Choosing the edges of the diamonds along the x
and y axes (see Fig. 1), so that site a, is located at r,
=(n,n,0)L (L is the length of each edge), the unitary hop-
ping matrices within the nth diamond are given by'#

Uah(n) = Uj;a(n) = einiﬁ/zeiagx’

Upe(n) = U (n) = e7"?2e719%, (3)

where o is the vector of Pauli matrices, a=kgoL (kgo mea-
sures the strength of the “microscopic” SOI, (fi/m)kgoo
X p) and ¢p=27HL?/ D, represents the AB phase associated
with a single square diamond (here, ®y=hc/e is the flux
unit; /& is Planck’s constant, ¢ is the speed of light, and e is
the electron charge). Note that the dependence of U ,,(n) and
of U,.(n) on n results from our choice of gauge for the
vector potential. The net flux through each diamond is equal
to ¢, independent of n.

For e=0 one encounters dispersionless modes, for which
W, (n)=0. Since these solutions have zero velocity, and
therefore carry no current, we ignore them in the following
discussion. We next eliminate the spinors W,(n) and V.(n)
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from the equations, and end up with effective one-
dimensional equations,

ANV () =V W (n=1)+ V¥, (n+ 1), (4)
with 4A=(e/J)*—4 and
V=U,(n)Uue(n+1) + Uy(n)Ugp(n + 1)

— e—i¢/2eia0'xe—ia0'y+ei¢/26—iaoyeiaax. (5)
Unlike the individual U,,’s, the “renormalized” hopping ma-
trix V is not unitary. This lack of unitarity reflects interfer-
ence between the two paths in a diamond, which may de-
crease the current along the chain.

In the following we concentrate on propagating waves,

W, (n) = Ae""x(q). (6)

where Z:L\E is the lattice constant of the diamond system
along its axis (1,1,0), the (real) wave vector ¢ is in the range

—m/2<qL</2 and y, is a normalized spinor (which de-
pends on g). For such solutions, Eq. (4) implies that y, must
obey the eigenvalue equation Hy,(q)=Ax,(q), with the 2
X 2 Hermitian matrix

4H = ety 4 plily )
We next write
H=A+B- o, (8)
with

A =c? cos(gL)cos(¢/2),

B = - ¢s sin(gL)cos(¢/2)(1,— 1,— cot(gL)tan(¢/2)s/c),
©)

where c=cos a, s=sin a. It follows that the spinor x,(q)
must be an eigenvector of the spin component along n
=B/|B|: n-ox,(¢)=ux,(q).u==1. Thus, A=A+ulB|
Given A, this equation can be written as a quadratic equation
in x=cos(¢L). Denoting the solutions by x; ,, we end up with
four solutions ‘11i,2= * arccos xy ,. These solutions are propa-
gating (evanescent) if ¢ is real (complex). For each ¢ one
then has u=(A—A)/|BJ, so that w is invariant under flipping
the sign of q.

Since x,(g) is an eigenvector of n- o, each solution with a
given ¢ is associated with a full polarization along the direc-
tion n,

S = (Xu(@)|o|x4(g)) = pn. (10)

As usual for Rashba SOI, n is always perpendicular to the
direction of motion along the axis of the diamond chain,
(1,1,0). In the absence of an AB flux (i.e., ¢=0) n remains in
the direction (1,—1,0). However, the orbital AB flux causes
a rotation of the polarization axis toward the z direction.
Below we present results for S, and for S,,=(S,-S,)/ V2.
Since n,, (n,) is odd (even) in g, flipping the sign of g flips
the sign of S,, but not that of .
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FIG. 2. (Color online) The spectrum (g versus €) of the propa-
gating solutions. Here, /=1 and the wave vector ¢ is in units of 7rL.
Left: ¢=0. Right: ¢=0.47. Top to bottom: =0, 0.27r, 0.47. The
vertical lines indicate boundaries at which the number of propagat-
ing solutions changes.

The probability current from site u to site v is
I(u — v) = IRV ,|U,,[V,). (11)

The current from site a, to site a,,; on the diamond chain,
equal to the sum of the currents from a, to b, and to c,, is
thus found to be

I(n—n+1)==2J7he)I{V, (n)|V|¥,(n+1))].
(12)

For a single propagating solution of the form (6), Egs. (5)
and (10) yield

In—n+1)=- (4J2/fL€)|A|2
x{sin(gL)[cos(/2)c* + un. sin(¢/2)s?]

+ u(n, — ny)cos(qu)cos((ﬁ/2)sc}. (13)

It is easy to see that [ flips sign with g. When we have only
a pair of propagating modes, we thus concentrate on the one
with 7>0.

III. RESULTS

Figure 2 shows the spectrum €(g) of the propagating so-
lutions (real ¢’s), for several values of ¢ and «. The left
column shows results for ¢=0, similar to Ref. 10: increasing
a splits the energy band vertically, and changes its width.
Thus, the SOI can turn propagating waves into evanescent
ones, with complex g (our figures show only the solutions
with real ¢). However, whenever the energy € allows for real
values of ¢, there exist four such values, forming pairs which
move in opposite directions and have opposite spins along
(1,-1,0).

The situation becomes more interesting when we have
both the SOI and the AB flux. Adding only the latter (upper
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plot on the right-hand side of Fig. 2) creates a gap (i.e.,
evanescent states) around €=0. The degeneracy of the propa-
gating solutions is not lifted, since the two spin directions
have exactly the same energies. As seen in the right column
in Fig. 2, increasing « at fixed ¢=0.47 causes the splitting
of each subband horizontally.

We next discuss the ballistic conductance of our device,
G. For an ideal conductor, this conductance is given by G
=(e*/h)g, where g is the number of right-moving (or left-
moving) propagating modes at a given energy.'>~!7 This for-
mula clearly applies for the infinite periodic chain of dia-
monds discussed here. Below we argue that the filtering
effect which we find also survives for a finite chain, under
certain conditions. As Fig. 2 shows, at a given energy € one
can encounter zero, two, or four propagating solutions. The
number g can be read directly from Fig. 2: on the left-hand
side of this figure, the number of real ¢’s (both left moving
and right moving) is always zero or four, and thus g=0 or 2.
In contrast, the right-hand side of Fig. 2 shows 0, 2, or 4 real
q’s,i.e., g=0, 1, or 2, depending on the parameters €, ¢, and
.

We next consider electrons coming with arbitrary spin
directions from a reservoir at —, with energy € equal to their
chemical potential in that reservoir. For each electron, its
spinor will become a combination of the eigenmodes of the
problem inside the system. In fact, the same will happen to
electrons which enter into a finite but long chain from the
left-hand side: their spinor within the chain will become a
similar combination of the four eigensolutions there, multi-
plied by some transmission coefficients. When all four ¢’s
have nonzero imaginary parts, all of these modes are evanes-
cent, and the wave function will decay to zero, resulting with
zero current. In that case there are no propagating modes,
and g=0. When all four ¢’s are real, i.e., g=2, the incoming
wave function is a combination of two right-moving modes,
and it has no definite spin. However, for g=1 the wave func-
tion of the right-moving electron is a linear combination of
one propagating and one evanescent modes. The latter will
decay, and the spinor will converge to that of the single
propagating solution, which has a uniquely polarized spin,
see Eq. (10). Without the AB flux, we always had g=2 or
g=0. For ¢# 0, we find regions of energy where g=1. Fig-
ure 3 shows contour plots of g in the ¢-a plane, for several
values of € As one can see, for -energies €
=-1.2J and e=-2.4J there are large regions where g=1. In
these regions, the electron will have a well defined polariza-
tion, which depends only on €,¢, and a.

We next consider specific cuts through these contour
plots. Figure 4 shows results as a function of a for fixed
energy €/J=-2.4 and AB phase ¢=0.297. The plots show
only the (g=1 or g=2) right-moving modes (/>0). The
other propagating modes have opposite signs for ¢, I, and
S,y The dashed curves represent the second mode, which
arises only when g=2. For our purposes, we concentrate on
the regions where g=1, where one has only the dotted lines.
The top plots show the solutions for g and the corresponding
currents /. The bottom plots show the spin components S,
and §,. The variation of §,, with « is striking: the spins of the
propagating electrons switch the sign of their in-plane com-
ponent with a small change of @ near a= = 0.57. Note also
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FIG. 3. (Color online) Contour plots of the ballistic conductance
(in units of e2/h) in the ¢-a plane (the AB phase ¢ and the SO
strength « are in units of 7). The values g=0,1,2 are represented
by dark, medium, and bright areas. The number above each plot is
the energy e (in units of J).

the flipping of S,, as a crosses * . This flipping persists as
¢ increases, and the range with g=2 near these points nar-
rows. Figure 5 shows results as a function of ¢, for the same
energy, but at fixed SO strength @=0.757. Clearly, even a
relatively small AB flux already yields a single right-moving
propagating mode (g=1) and therefore fully polarized spins.
At small ¢, the polarization starts close to the (1,-1,0)
direction, but it then rotates toward the z direction as ¢ in-
creases toward *r, and flips sign after crossing these points.

IV. DISCUSSION

Given the above analysis, we may compare our system
with that of the single diamond, Ref. 8. As we report
elsewhere,'® the single diamond generates fully polarized

FIG. 4. (Color online) Wave vectors ¢ (in units of L), currents
I, and spin components S,, and S, for right-moving modes, as
functions of the SO strength « (in units of ), for e/J=-2.4 and
¢=0.297. For values of « at which g=1, the figures show only one
mode (dotted line). When g=2, the figures show two modes (dotted
and dashed lines).
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FIG. 5. (Color online) Same as Fig. 4, for €/J=-2.4 and for
fixed SO strength a=0.757, as functions of ¢ (in units of 7).

electrons, along a controllable direction, whenever sint «

=cos’(¢/2) and for any e. Although this condition is less
restrictive than that given in Ref. 8, it is still much more
restrictive than the conditions we found above. The literature
contains many other proposals for spin filters, also based on
the Rashba SOI. Usually, these give only a partial polariza-
tion. Some of these devices also require a large Zeeman field.
In contrast, our filter can work at a relatively low (and fixed)
magnetic field (as apparently desired technologically), so
that the Zeeman energy is negligible. Note also that both «
and ¢ depend on the diamond size L, and therefore one can
choose a geometry which corresponds to the available ranges
of the magnetic field and the microscopic Rashba param-
eters.

In real experiments it is not realistic to use an infinite
chain of diamonds. We now argue that under appropriate
conditions it is sufficient to use a finite chain, as long as it is
longer than the decay lengths of the evanescent modes. For
the electrons coming in from the left we do not need to
worry about the details of the connection between the incom-
ing lead and the chain; even if some of the electrons are
reflected back into that lead, those which are transmitted into
the chain will split into a sum of the four modes there, and
when g=1 we still remain with fully polarized electrons (al-
though their overall amplitude may involve a transmission
factor with magnitude smaller than 1). The situation on the
right-hand end of the chain is more delicate. Here we should
avoid reflections, since they may modify the outgoing
spinors and change their polarization. A standard way to
avoid reflections is to use adiabatic contacts. This is usually
done for retaining the ballistic conductance of mesoscopic
devices.'® One way to avoid reflections is to have a large
leakage to the ground near the exit channel, so that only a
small fraction of electrons enter into the exit lead.

For our filter to be useful, one also needs to measure the
outgoing spins, or to relate the outgoing spin polarization to
some measurement of a voltage or a current. This issue is
common to many proposed filters, and it requires separate
research. For the present purposes, we mention just a few
possibilities. First, one can follow the original proposal of
Datta and Das,* and connect the right-hand end of the device
adiabatically to a ferromagnetic lead, whose magnetization
can be tuned. The outgoing current will decrease with the
angle between the electron polarization and this magnetiza-
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tion. Second, to avoid connections to ferromagnets, one can
also connect our filter adiabatically to another such filter,
with different parameters which may block the polarized
electrons coming from the first filter.

Another way to test the spin polarization is to couple one
of the a nodes (Fig. 1) to a side quantum dot, that is in a
Pauli-spin blockade region.!® After a while, the side dot will
capture one of the polarized electrons, and this will block the
current (which contains electrons with the same polariza-
tion). Changing the parameters will then change the spin
direction of the propagating electrons, and allow some cur-
rent until the next blocking occurs.

In conclusion, we propose a simple spin filter, which
yields a full polarization over a broad range of parameters.

PHYSICAL REVIEW B 78, 125328 (2008)

For given energy € and magnetic flux ¢ (which need not be
very large), the polarization of the outgoing electrons can be
tuned by varying the electric field which determines the SOI
strength a.
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