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We consider a two-dimensional electron gas in the presence of Rashba spin-orbit coupling, and study the
effects of magnetic s-wave and long-range nonmagnetic impurities on the spin-charge dynamics of the system.
We focus on voltage induced spin polarizations and their relation to spin Hall currents. Our results are obtained
using the quasiclassical Green function technique, and hold in the full range of the disorder parameter �pF�.
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In the field of spintronics, much attention has recently
been paid to spin-orbit related phenomena in semiconduc-
tors. One such phenomenon is the spin Hall effect, i.e., a spin
current flowing perpendicular to an applied electric field.1–4

It is now well known that, for linear-in-momentum spin-orbit
couplings such as the Rashba or Dresselhaus ones, the spin
Hall current vanishes exactly in the bulk of a disordered
two-dimensional electron gas �2DEG�.5–8 This can be under-
stood by looking at the peculiar form of the continuity equa-
tions for the spin, as derived from its equations of motion in
operator form.9–11 For a magnetically disordered 2DEG
things are, however, different, and a nonvanishing spin Hall
conductivity is found.12–14 Once more, a look at the continu-
ity equations provides a clear and simple explanation of the
effect:13 a term, whose appearance is due to magnetic impu-
rities, directly relates in-plane spin polarizations, induced by
the electric field, to spin currents. As the former, which have
been the object of both theoretical and experimental
studies,15–20 are influenced by the type of nonmagnetic scat-
terers considered, we forgo the simplified assumption that
these are s wave and take into account the full angle depen-
dence of the scattering potential. Besides going beyond what
is currently found in the literature, where, in the presence of
magnetic impurities, the nonmagnetic disorder is either ne-
glected or purely s wave, our approach also shows the inter-
play between polarizations and spin currents in a 2DEG.21

We note that in the correct limits our results agree with what
is found in Ref. 14. On the other hand a discrepancy with
Ref. 12 arises.

For the calculations we rely on the Eilenberger equation
for the quasiclassical Green function in the presence of spin-
orbit coupling.22 The spin-orbit energy is taken to be small
compared to the Fermi energy, i.e., �pF��F—or equiva-
lently ��vF, and the standard metallic regime condition
1 /���F is also assumed. Here � is the spin-orbit coupling
constant, pF �vF� the Fermi momentum �velocity� in the ab-
sence of such coupling, and � the elastic quasiparticle life-
time due to nonmagnetic scatterers. Our results hold for a
wide range of values of the dimensionless parameter �pF�
since this is not restricted by the above assumptions. Contri-
butions of order �� /vF�2 are neglected throughout. We focus
on intrinsic effects in the Rashba model; extrinsic ones,23

Dresselhaus terms,24 and hole gases25 are not taken into ac-
count. Finally, weak localization corrections, which could in
principle play an important role,11 are beyond the scope of
our present work.

The Hamiltonian of the 2DEG, confined to the x−y plane,
reads

H =
p2

2m
− b · � + V�x� , �1�

with b=�ez�p the Rashba internal field, � the vector of
Pauli matrices, and V�x�=Vnm�x�+Vm�x� the disorder poten-
tial due to randomly distributed impurities.26 Nonmagnetic
scatterers give rise to Vnm�x�,

Vnm�x� = �
i

U�x − Ri� , �2�

while Vm�x� describes magnetic s-wave disorder

Vm�x� = �
i

B · ���x − Ri� . �3�

Both potentials are treated in the Born approximation, and
the standard averaging technique is applied.

To begin with, we look at the continuity equation for the
sy spin polarization,13,27

�tsy + �x · jsy
= − 2m�jsz

y −
4

3�sf
sy , �4�

where the second term on the right-hand side is due to mag-
netic impurities. Here �sf is the spin-flip time that stems from
the potential �3� �cf. Eq. �13��. Under stationary and uniform
conditions the above equation implies a vanishing spin
current—hence a vanishing spin Hall conductivity—unless
magnetic disorder is also present, in which case instead

jsz

y = −
2

3m��sf
sy . �5�

Since the out-of-plane polarized spin current is related to the
in-plane spin polarization, we now use simple physical argu-
ments to explain how the latter is generated by an applied
voltage.15,28 Since the Fermi surface is shifted by an amount
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proportional to the applied electric field �say along the x
direction�, as shown in Figs. 1�a� and 1�b�, there will be
more occupied states with spin up—along y—than with spin
down. In the case of short-range disorder, the total in-plane
polarization can be estimated to be proportional to the den-
sity of states multiplied by the shift in momentum, sy
�N�p�N�e�E�. Since in the present situation we are dealing
with the two Fermi surfaces corresponding to the two helic-
ity bands ��= p2 /2m��p, obtained from the Hamiltonian
�1�, one expects sy ��N+−N−��p, where, for the Rashba in-
teraction, one has N�=N0�1	� /vF�, N0=m /2
. Explicit
calculations agree with this simple picture and lead to the
result due to Edelstein,15 sy =−N0��e�E�. When long-range
disorder is considered, a reasonable guess would be to sub-
stitute for � the transport time �tr

� → �tr,
1

�tr
=� d�W����1 − cos���� , �6�

with W��� being the angle-dependent scattering probability,
so that sy =−N0��e�E�tr. This was proposed in Ref. 29; how-
ever, the picture is too simplistic, and therefore the guess is
wrong. As discussed in Ref. 21, the proper sy polarization is
given by sy =−N0��e�E�E, with

� → �E,
1

�E
=� d�W����1 − cos�2��� . �7�

This particular time �E, where “E” stands for Edelstein,
arises from the asymmetric shift of the two Fermi surfaces,
as depicted in Fig. 1�c�, due to different transport times in the
two bands. It shows that contributions from both forward
��=0� and backward ��=
� scatterings are suppressed. The

next step is to consider what happens when magnetic impu-
rities are included. Relying once again on the simple picture
of the shifted Fermi surface, one could argue that these have
a rather small impact on the spin polarization since the spin-
flip scattering time usually makes a small contribution to the
total transport time. However, even when this is the case,
magnetic disorder does not simply modify the total transport
time but has an additional nontrivial effect. In its presence
the spins do not align themselves along the internal b field
since they acquire nonvanishing components in the plane
orthogonal to it �see Fig. 1�d��. It is these components that
give rise to a finite spin Hall conductivity. In this respect,
magnetic disorder has an effect similar to that of an in-plane
magnetic field: it affects the spin-quantization axis and tilts
the spins out of their expected stationary direction. We now
make these arguments quantitative.

The starting point is the Eilenberger equation,22 which we
write explicitly for a homogeneous Rashba 2DEG in linear
response to a constant and homogeneous applied electric
field

�tg
K = vF · E�e���geq

K −
1

2
	 1

pF
��b · �,e� · E�e���geq

K 

+ i�b · �,gK� − i�̌, ǧ�K. �8�

The quasiclassical Green function �ǧ� ǧt1t2
�p̂ ;x�� is defined

as ��= p2 /2m−��

ǧ =
i



� d�Ǧt1t2

�p,x�, Ǧ = �GR GK

0 GA  , �9�

where Ǧt1t2
�p ,x� is the Wigner representation of the Green

function, which has a matrix structure in both Keldysh �de-
noted by the check symbol� and spin space. Equation �8� is
the equation of motion for the Keldysh component—the one
related to physical observables—identified by the superscript
“K,” which will be from now on implicitly assumed and thus
dropped. Moreover, geq

K =tanh�� /2T��geq
R −geq

A �, where
geq

R =−geq
A =1−��b ·�, indicates the equilibrium—no electric

field—function.22 All objects are evaluated at the Fermi sur-
face in the absence of spin-orbit coupling while � is the
angle defined by the momentum, p= p�cos � , sin ��, and e�

= �−sin � , cos ��. From Eqs. �2� and �3� one obtains the self-
energy contributions

̌nm�p� = nnm�
p�

�U�p − p���2Ǧ�p�� , �10�

and

̌m = nm
B2

3 �
l=1

3

�
p

�lǦ�p��l, �11�

where nnm and nm denote the concentrations of nonmagnetic
and magnetic impurities, respectively. In order to consider
long-range nonmagnetic disorder, we first expand the non-
magnetic scattering kernel in spherical harmonics of the scat-
tering angle, and neglect its dependence on the modulus of p
and p�

py

p
x

py

p
x

Ex
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py

p
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p
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p
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FIG. 1. �Color online� ��a� and �b�� The Fermi-surface shift,
�p= �e�E�, due to an applied electric field along the x direction. The
white arrows show the direction of the internal field b. ��c� and �d��
Shifted bands and spin polarization in stationary conditions. �c�
Asymmetric shift of the two bands when angle-dependent scattering
is present. The long dark �blue� arrows show the contributions to
the spin polarization arising from a sector d� of phase space. �d�
When magnetic disorder is turned on, additional contributions or-
thogonal to the internal field b appear, here shown by the short
inward and outward pointing �blue� arrows. Out-of-plane contribu-
tions are also present but, for the sake of simplicity, are not shown.
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nnm�U�2 =
1

2
N0�
�1 + 2K1 cos�� − ���

+ 2K2 cos�2� − 2��� + . . .�

�
1

2
N0�
�1 + K�� − ���� , �12�

with � the nonmagnetic contribution to the elastic lifetime.
Then we write the magnetic scattering kernel in terms of the
spin-flip time �sf,

nmB2 =
1

2
N0�sf
. �13�

The complete disorder self-energy can then be written, sepa-
rating its s-wave and higher harmonics contributions,

̌ = ̌m + ̌nm
1 + ̌nm

2 = −
i

6�sf
�
l=1

3

�l�ǧ��l −
i

2�
�ǧ� −

i

2�
�Kǧ� ,

�14�

where �. . .���d� /2
. . ..
The connection between ǧ and the physical observables is

made by integrating over the energy �, which is the Fourier
conjugate variable of the time difference t1− t2. For instance,
the spin density is given by the angular average of the
Keldysh component,30

s = seq −
N0

8
� d��Tr��g�� . �15�

In order to solve Eq. �8�, it is convenient to turn it into matrix
form, writing g as a four-vector

g = g0�0 + g · �, �g�� = �g0,g� . �16�

Rather than using the standard ��x ,�y ,�z� basis, we choose
to rotate to ��� ,�� ,�z�, the subscripts � and �, indicating,
respectively, the directions parallel and perpendicular to the
internal field b. Defining the rotation matrix R��� by

�
�0

�x

�y

�z

� =�
1 0 0 0

0 sin � cos � 0

0 − cos � sin � 0

0 0 0 1
��

�0

��

��

�z

� , �17�

one has

g�� = �
��=0

3

R���
−1 ���g��, �g�� � = �g0,g�,g�,gz� , �18�

K����,��� = �
��=0

3

R���
−1 ���K�� − ���R������� . �19�

Expanding in harmonics, we also drop the four-vector indi-
ces

K��,��� = K�a� + cos�� − ���K�b� + sin�� − ���K�c� + . . . .

�20�

In the above we have defined

K�a� =�
0 0 0 0

0 K1 0 0

0 0 K1 0

0 0 0 0
�, K�b� =�

2K1 0 0 0

0 K2 0 0

0 0 K2 0

0 0 0 2K1

� ,

�21�

and

K�c� =�
0 0 0 0

0 0 − K2 0

0 K2 0 0

0 0 0 0
� . �22�

For the purpose of calculating polarizations and spin cur-
rents, the higher harmonics play no role and are thus ignored.

By using geq
R =−geq

A =1−��b ·� and performing a rotation
to the new spin basis, one can write Eq. �8� as

�tg� =
1

��
�− Mg� + �N0 + N1��g�� + �N2 + N3��Kg��� + SE.

�23�

The matrices appearing in Eq. �23� read

M =�
1 −

��

�

�

vF
K1 0 0

−
��

�

�

vF
K1 1 0 0

0 0 1 2�pF��

0 0 − 2�pF�� 1

� ,

�24�

N0 =�
1 0 0 0

0 1 −
4��

3�sf
0 0

0 0 1 −
4��

3�sf
0

0 0 0 1 −
4��

3�sf

� , �25�

N1 =
�

vF� 0 − �1 −
4��

3�sf
 0 0

− 1 0 0 0

0 0 0 0

0 0 0 0
� , �26�

N2 =
��

�

�

vF�
0 − 1 0 0

− 1 0 0 0

0 0 0 0

0 0 0 0
�, N3 =

��

� �
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� ,

�27�

where �� is the elastic quasiparticle lifetime, defined as
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1

��
�

1

�
+

1

�sf
, �28�

which we now use for convenience of notation but will be
later incorporated into the proper transport time. Finally, SE
is the source term due to the electric field. We take this to be
along the x direction so that

SE � �e�vFE���2 tanh��/2T���
cos �

− cos �
�

vF

− sin �
�

vF

0

� . �29�

Solving for the sz spin current flowing along y, we obtain

jsz

y = −
N0

4
� d�vF�p̂ygz�

= −
N0

4
� d��−

4

3�sf
− i�

2m�
���p̂yg�� − �p̂xg���

= −
N0

4
� d��−

4

3�sf
− i�

2m�
��gy�

= �−

4

3�sf
− i�

2m�
�sy , �30�

i.e., the continuity equation result �Eq. �4�� under homoge-
neous conditions. In the third line we have used Eq. �17� to
set �gy�= �p̂yg��− �p̂xg��. Similarly, one obtains the complete
expression for the frequency dependent sy spin polarization

sy = − N0��e�E2��pF�2�� 1

�tr
− i�� 1

�E
− i�� 4

3�sf
− i�

+ 2��pF�2� 1

�E
+

4

3�sf
− 2i��−1

. �31�

Besides 1 /�sf, there appear in the above two other different
time scales,

1

�tr
�

1

�
�1 − K1� +

1

�sf
,

1

�E
�

1

�
�1 − K2� +

1

�sf
.

The first, �tr, is the total transport time. The second, �E, is the
generalization of the characteristic time related to the sy spin
polarization introduced in �7�. By using Eq. �31� in Eq. �30�,
one obtains the expression for the frequency dependent spin
Hall conductivity

�sH��� =
�e�
4


� 4

3�sf
− i�2��pF�2�� 1

�tr
− i�� 1

�E
− i�

�� 4

3�sf
− i� + 2��pF�2� 1

�E
+

4

3�sf
− 2i��−1

.

�32�

Its real part is displayed in Fig. 2 for different values of the
disorder parameter �pF�. In the limit �→0, the magnitude
of the spin Hall conductivity depends on the value of �pF� as
well as on the ratio � /�sf. In the absence of magnetic impu-
rities one has the known result �sH=0. As spin-flip scattering
grows, the conductivity reaches values of the order of the
“universal” �e� /8
. This was noted already in Ref. 12, where
however, as pointed out in the beginning, angle-dependent
scattering was not considered. Large values of �pF� can be
achieved both in III-V and II-VI semiconducting materials.
Doping the latter with Mn allows controlling of the spin-flip
time �sf while only weakly affecting the electron
mobility31–33 even though it is not perfectly clear whether
these can appropriately be described in terms of the linear
Rashba model.34 Additionally, for certain frequencies one
can see crossing points ����0.5 and ���2 in Fig. 2�a�� at
which magnetic disorder has no effect on the spin Hall re-
sponse. Such points are well defined only when �pF��1.
For clean ��pF��1� or dirty ��pF��1� samples, the differ-
ent curves cross each other over a progressively wider range
of frequencies.

Finally, in the diffusive regime, ��tr�1, �pF�tr�1, and

τ/τsf = 0.4
τ/τsf = 0.3
τ/τsf = 0.2
τ/τsf = 0.1

τ/τsf = 0

αpF τ = 1

ωτ

R
e

σ
sH

/
(e

/
8
π
)

543210
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αpF τ = 5

ωτ

R
e

σ
sH

/
(e

/
8
π
)

20151050
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FIG. 2. �Color online� Real part of the frequency dependent spin
Hall conductivity in units of the universal value �e� /8
 for �a�
�pF�=1 and �b� �pF�=5. The different curves correspond to dif-
ferent values of the ratio � /�sf =0,0.1,0.2,0.3,0.4 �from top to bot-
tom at the maximum of Re �sH�.
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assuming �tr /�sf �1, �E /�sf �1, one obtains the following
spin-diffusion equations:

�tsx = − � 1

�s
+

4

3�sf
sx, �33�

�tsy = − � 1

�s
+

4

3�sf
sy − �N0�e�E�E

�s

, �34�

�tsz = − � 2

�s
+

4

3�sf
sz, �35�

where �2�pF�tr�2 /2�tr�1 /�s is the D’yakonov-Perel spin-
relaxation rate, tied to Rashba spin-orbit coupling. From Eq.
�34� the sensitivity of the in-plane spin polarization on spin-
flip scattering is apparent: in the stationary limit the source

�proportional to E� is balanced by the spin relaxation. Spin-
flip scattering leaves the source unchanged, whereas it en-
hances the relaxation rate so that in the end sy is reduced.

In conclusion, we studied the combined effect of long-
range and magnetic disorders on voltage induced spin polar-
izations and the related spin Hall currents in a Rashba 2DEG.
We investigated homogeneous but nonstatic conditions from
the dirty ��pF��1� to the clean ��pF��1� regime. Care is
required when treating long-range disorder because of the
two-band structure of the problem while magnetic impuri-
ties, even in low concentrations, play a nontrivial role be-
yond that of a simple redefinition of the time scales.
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