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We present a deterministic and scalable scheme to generate photon polarization entanglement via a single
electron spin confined in a charged quantum dot inside a microcavity. This scheme is based on giant circular
birefringence and giant Faraday rotation induced by a single electron spin. Two independent photons are
sequentially sent to the cavity and get entangled after measuring the spin state. We show that this scheme can
be extended to generate multiphoton polarization entanglement including Greenberger-Horne-Zeilinger states
and cluster states in a deterministic way.

DOI: 10.1103/PhysRevB.78.125318 PACS number�s�: 78.67.Hc, 03.67.Mn, 42.50.Pq, 78.20.Ek

I. INTRODUCTION

Entanglement lies at the heart of quantum mechanics and
is a fundamental resource in quantum information science
especially for quantum communications, quantum computa-
tion, quantum metrology, and quantum networks.1,2 En-
tanglement has been demonstrated in various quantum sys-
tems, among which photons are well investigated as an ideal
candidate to transmit quantum information and even for
quantum information processing.3 There exist three main
ways to generate polarization entangled photon pairs. One
way is via spontaneous parametric processes in nonlinear
crystals or fibers where nondeterministic photon pairs are
created.4,5 The second way is via radiative quantum cascades
in a single atom6 or biexciton in a semiconductor quantum
dot �QD�,7,8 by which deterministic photon pairs are gener-
ated. A third way is via single-photon mixing at a nonpolar-
izing beam splitter followed by coincidence measurement.9,10

These methods require quantum interference through photon
or path indistinguishability. Starting from entangled photon
pairs, multiphoton entanglement can be built but this in-
volves the use of nondeterministic and low-efficiency
interference-based gates. This approach is ultimately not
scalable and to our knowledge the current record is six-
photon entanglement.11

In this paper, we show that we can make entangled photon
pairs and multiphotons in a deterministic and thus scalable
way. We exploit our previous work on giant optical Faraday
rotation induced by a single electron spin confined on a
charged quantum dot with excitonic transition strongly
coupled to a microcavity.12 Independent photons are sent se-
quentially to probe a single microcavity containing a single
electron spin in a superposition state. After measuring the
spin state, we get entangled photon-pair states or in general
N-photon Greenberger-Horne-Zeilinger �GHZ� states. This
scheme is deterministic and thus scalable in principle to high
N. It relies on path interference but does not necessarily need
indistinguishable photons. Following similar procedures, a
deterministic scheme for a photon-spin quantum interface
could be implemented. These deterministic multiphoton en-
tangler and photon-spin quantum interface are two essential
components for solid-state quantum networks with single
photons and single QD spins.

II. PHOTON-SPIN ENTANGLING OPERATOR

The optical properties of singly charged QDs are domi-
nated by the optical transitions of the negatively charged
exciton �X−� that consists of two electrons bound to one
hole.13 Due to the Pauli’s exclusion principle, X− shows spin-
dependent optical transitions:14 the left-handed circularly po-
larized photon �marked by �L� or L photon� only couples to
the electron in the spin state �↑ � to X− in the spin state �↑↓⇑�
with the two antiparallel electron spins; the right-handed cir-
cularly polarized photon �marked by �R� or R photon� only
couples to the electron in the spin state �↓ � to X− in the spin
state �↑↓⇓�. Here �↑ � and �↑ � represent electron-spin states
�� 1

2 �, and �⇑ � and �⇓ � represent heavy-hole spin states �� 3
2 �.

The spin-quantization axis is along the normal direction of
cavity.

However, the above spin selection rule only holds for an
ideal QD that is symmetric in both the QD shape and the
strain field distribution so that there is no spin-level mixing
or splitting. A realistic QD that is generally asymmetric can
be made symmetric by applying an electric field,15 thermal
annealing,16 or tuning the QD size.17 This spin selection rule
for X− transitions has been demonstrated in quantum wells14

and QDs.13,18,19 Hole mixing in a realistic QD can also affect
the above selection rule. However, the hole mixing �e.g., for
self-assembled In�Ga�As QDs� is in the order of a few per-
cent and can be reduced by engineering the shape and size of
QDs or by using different types of QDs.20,21

We consider a singly charged QD, e.g., a self-assembled
In�Ga�As QD or a GaAs interface QD inside an optical reso-
nant cavity. Figure 1 shows a micropillar cavity where the
two GaAs/Al�Ga�As distributed Bragg reflectors �DBR� and
the transverse index guiding provide the three-dimensional
confinement of light. Only the single-sided cavity is consid-
ered here: The bottom DBR is 100% reflective while the top
DBR is partially reflective in order to couple the light into
and out of the cavity. The QD is located at the antinodes of
the cavity field to achieve optimized light-matter coupling.
By solving the Heisenberg equations of motions for the
cavity-field operator �â and X−� and dipole operator ��−� in
the weak excitation approximation, we can obtain the reflec-
tion coefficient12
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where �r���� is the reflectance and ���� is the phase shift. �,
�c, and �X− are the frequencies of external field �probe
beam�, cavity mode, and X− transition, respectively. g is the
coupling strength between X− and the cavity mode. � /2 is
the X− dipole decay rate, and � /2 and �s /2 are the cavity-
field decay rates into the input/output modes and the leaky
modes, respectively. For simplicity we use the following
shorthand notation. If the QD couples to the cavity, we call it
a hot cavity; if the QD does not couple to the cavity, we call
it a cold cavity.

By taking g=0, we get the reflection coefficient for a cold
cavity with QD uncoupled to the cavity,

r0��� =

i��c − �� −
�
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+
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2

i��c − �� +
�

2
+

�s

2

. �2�

The side leakage �and background absorption� can be
made rather small by optimizing the etching process �or im-
proving the sample growth� as reported recently.22 Therefore,
we neglect the side leakage first in the following discussions
but come back to it later.

For the cold cavity, we get near-unity reflectance �r0����

1 and �0���= ��+2 arctan 2��−�c� /�, where “+”
stands for the case of ���c and “−” stands for �	�c with
�c as the cavity-mode frequency. �0��� can be tuned be-
tween −� and � by varying the frequency detuning ��
−�c�.

For the hot cavity where X− strongly couples to the cavity,
i.e., g
 �� ,��, we get �rh����
1 and �h���
0 within a fre-

quency window ��−�c��g. The near-unity reflectance is
due to the formation of the mixed X−-cavity modes. The
strongly coupled QD-cavity system has been demonstrated
recently in various microcavities and nanocavities.23–25 For
micropillars with diameter around 1.5 �m, the coupling
strength g=80 �eV and the quality factor of more than 4
104 �corresponding to �=33 �eV� have been reported22,23

indicating g /�=2.4 is already achievable for the In�Ga�As
QD-cavity system. � is about several �eV.

If the single excess electron lies in the spin state �↑ �, the
L photon feels a hot cavity and gets a phase shift of �h���
after reflection, whereas the R photon feels the cold cavity
and gets a phase shift of �0���. Conversely, if the electron
lies in the spin state �↓ �, the R photon feels a hot cavity and
get a phase shift of �h��� after reflection, whereas the L
photon feels the cold cavity and gets a phase shift of �0���.
We call this phenomenon giant circular birefringence �GCB�,
which results in giant Faraday rotation �GFR� of linearly
polarized light. Both GCB and GFR are induced by a single
electron spin due to cavity QED and the optical spin selec-
tion rule of X− transitions. GFR provides a quantum non-
demolition measurement of a single electron spin �see Fig.
1�, whereas GCB could be used to make a photon-spin en-
tangling gate. The reflection operator can be written as

r̂��� = �r0����ei�0��R��R� � �↑��↑ � + �L��L� � �↓��↓ ��

+ �rh����ei�h��L��L� � �↑��↑ � + �R��R� � �↓��↓ �� .

�3�

For �r0����
1 and �rh����
1 as discussed above �or for
balanced reflectance �rh����= �r0�����, the reflection operator

can be simplified as r̂���= �r0����ei�0Û����, where Û���� is
the phase-shift operator defined as

Û���� = ei����L��L�� �↑��↑�+�R��R�� �↓��↓��, �4�

where ��=�h−�0.
Unless otherwise specified, we set ��=� /2 by adjusting

�−�c�� /2 in this paper. Before showing that this photon-
spin entangling gate could be used to generate multiphoton
entanglement, we discuss some conditions to apply the phase
operator: �1� Numerical calculations show that ��=� /2 is
achievable when g
1.5� if ���s. This condition can be
experimentally achieved as discussed above. �2� The photon
pulse bandwidth �� should be much less than the cavity-
mode broadening �. This allows the frequency detuning ��
−�c� to be precisely set and consequently the phase shift ��
to be well defined. The photon pulse shape then remains
unchanged after reflection. This demands that
���� /����0

���� /2, which is satisfied when ���� /2,
where �0 is the central frequency of the photon pulse. This
kind of single-photon pulses can come from QD single-
photon sources26–28 �the photon indistinguishability is not
necessarily required as discussed below� or from nanosecond
laser pulses. �3� Finally we require good mode matching be-
tween the traveling photons and the cavity as this will mini-
mize the photon loss. However, we think this loss has the
same effect on both the cold cavity and the hot cavity, so

(a)
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00 +450

(b)
ain aout

00 -450

FIG. 1. Schematic of a quantum nondemolition measurement of
a single electron spin based on giant optical Faraday rotation. To
realize an ideal quantum measurement, the Faraday rotation angle is
tuned to be �45° �corresponding to a phase shift ��= �� /2� by
setting �−�c� �� /2.
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�r0����= �rh���� still holds and the phase operator Û���� still
works but with reduced gate success probability due to the
photon loss.

III. PHOTON ENTANGLER

In Fig. 2, photon 1 in the state ��ph�1=�1�R�1+�1�L�1 and
photon 2 in the state ��ph�2=�2�R�2+�2�L�2 are input into the
cavity in sequence.29 Both photons have the same frequency.
The electron spin in the QD is prepared in a superposition
state ��s�= 1

2
��↑ �+ �↓ �� and the phase-shift operator for the

QD-cavity system is described by Eq. �4� with ��=� /2.
After reflection, the photon states become entangled with the
spin state, and the corresponding state transformation is

��1�R�1 + �1�L�1� � ��2�R�2 + �2�L�2� � ��↑� + �↓�� →
Û��/2�

��↑�

− �↓����1�2�R�1�R�2 − �1�2�L�1�L�2� + i��↑� + �↓��

��1�2�R�1�L�2 + �2�1�L�1�R�2� . �5�

By applying a Hadamard gate on the electron spin �e.g.,
using a � /2 microwave pulse�, the two spin superposition
states can be rotated to the states �↑ � and �↓ �. Now the
electron-spin states can be measured by the GFR-based
quantum nondemolition method shown in Fig. 1. Photon 3 in
the state ��R�3+ �L�3� /2 is input into the cavity �photon 3 has
the same frequency as photons 1 and 2� �Ref. 30�; after re-
flection, the total state for the three photons and one spin
becomes

��R�3 + i�L�3��↑���1�2�R�1�R�2 − �1�2�L�1�L�2�

− ��R�3 − i�L�3��↓���1�2�R�1�L�2 + �2�1�L�1�R�2� . �6�

The output state of photon 3 can be measured in orthogo-
nal linear polarizations. If the photon 3 is detected in the
�R�3+ i�L�3 state �45° linear�, so the electron spin is definitely
in the state �↑ �, and we project Eq. �6� onto an entangled
photon state.

��12
ph� = �1�2�R�1�R�2 − �1�2�L�1�L�2. �7�

On detecting the photon 3 in the �R�3− i�L�3 state �−45° lin-
ear�, so the spin is definitely in the state �↓ �, and we project
Eq. �6� onto another entangled photon state

��12
ph� = �1�2�R�1�L�2 + �2�1�L�1�R�2. �8�

On setting the coefficients �1,2 and �1,2 to 1 /2, we get
maximally entangled photon states.

Although photons 1 and 2 never meet before, each of
them gets entangled with the electron spin after sequentially
interacting with the spin. The spin measurement then
projects the two photons into entangled states. This
entanglement-by-projection scheme, well known in mesos-
copic systems,31 does not require photon indistinguishability
or photon interference as demanded by other schemes using
photon mixing on a beam splitter.9,10 For instance, we could
even generate polarization entanglement between photons
with different pulse length or different arrival time. The
arrival-time difference between photons could be any time
shorter than the electron-spin coherence time in QDs, which
is ideal for quantum relay type applications. Recent experi-
ments have shown that GaAs or In�Ga�As single QDs have
long electron-spin coherence time �T2��s�,32 which is lim-
ited by the spin-relaxation time �T1�ms�.33 Due to the spin
decoherence at time t �t�T1�, the density matrix of the elec-
tron spin in the initial state ��s�= 1

2
��↑ �+ �↓ �� becomes

��t� = � 1/2 e−t/T2/2
e−t/T2/2 1/2 � , �9�

which represents a spin-mixed state. As a result, the en-
tanglement fidelity with respect to Eq. �7� or �8� becomes

F = �1 + e−t/T2�/2, �10�

which decreases with t as shown in Fig. 3�a�. Therefore high-
fidelity photon entanglement can only be achieved when the
time interval between two photons is much shorter than the
spin-coherence time �T2��s� in the QD.

The QD spin eigenstate can be prepared, for example, by
optical pumping and/or optical cooling.18,34 From the spin
basis state, there are two ways to get the spin superposition
state: either via spin-flip Raman transitions18 or by perform-
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LR 11 βα + LR 22 βα +
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FIG. 2. A proposed scheme to generate polarization entangle-
ment between independent photons via a single electron spin con-
fined in a QD. 1.5 2.0 2.5 3.0 3.5 4.0
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FIG. 3. �a� Entanglement fidelity vs the time interval between
two photons. T2 is the QD spin-coherence time. �b� Entanglement
fidelity vs the coupling strength without side leakage �solid� and
with side leakage included �dotted�. We take g /�=2.4 and � /�
=0.1, which are experimentally achievable �see text�. The curves
are cut off for g�1.5� as �h���−�0���= �� /2 cannot be
achieved in this regime.
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ing single-spin rotations using nanosecond electron spin
resonance �ESR� microwave pulses.32 Recently, ultrafast op-
tical coherent control of electron spins has been reported in
semiconductor quantum wells on femtosecond time scales
and in semiconductor QDs on the picosecond time scales,35

which are much shorter than the QD spin-coherence time
�T2��s�. This allows ultrafast � /2 spin rotation required in
our scheme.

If we neglect any other photon loss, such as mode mis-
matching, diffraction, and inefficient detection, our scheme is
deterministic and scalable. For example, we could create
GHZ states: first entangle photons 1 and 2 by interacting
with the electron spin in its initial state ��s�= 1

2
��↑ �+ �↓ ��

and then measuring the spin state. After setting the electron
spin back to its initial state, we could entangle photons
2 and 3 in the same way. Now photons 1, 2, and 3 are in
one of tripartite GHZ states ��123�
= ��D�1�D�2�D�3� �D̄�1�D̄�2�D̄�3� /3 depending on spin-
measurement results �all coefficients �’s and �’s are set to
1 /2�. Following this way, arbitrary N-photon GHZ states
could be produced deterministically. Compared with other
GHZ schemes, our scheme is not limited by the brightness
and photon indistinguishability of entangled photon-pair
sources.11 If we sequentially entangle pairs of photons by
repeating the above single-spin measurement scheme, which
leads to Eqs. �7� and �8�, we can also generate cluster
states.36

If the cavity side leakage is neglected, then our entangle-
ment scheme can achieve unity success probability and near-
unity fidelity in the strong-coupling regime �see Fig. 3�b�� as
�rh����
1 and �r0����
1. However, this is a challenge for
QD-micropillar cavities although significant progress has
been made.22 If the cavity side leakage �s is taken into ac-
count, the entanglement fidelity with respect to the entangled
state described by Eq. �8� becomes

F =
1

1 +
1

4
� �r0����

�rh����
−

�rh����
�r0����	2

, �11�

which is generally less than one �the coefficients �1,2 and
�1,2 are set to 1 /2�. However there can be a point where we
can achieve unity fidelity as �r0����= �rh���� �see Fig. 3�b�
dotted line�. The reflectance at this point is not in unity so the
gate success probability is reduced �82% when �s=0.05��.
However, note that �r0����� �rh���� does not affect the en-
tanglement fidelity with respect to the entangled state de-
scribed by Eq. �7� and it remains in unity even when �s�0.
By performing the single-qubit flip operation on photon 1 or
2, Eq. �7� can be transformed to Eq. �8�.

IV. SUMMARY

In conclusion, we have proposed a deterministic scheme
to generate polarization photon entanglement using a
charged QD inside a microcavity based on giant circular bi-
refringence and giant Faraday rotation. This scheme could be
extended to generate multiphoton entangled states including
GHZ and cluster states. With the proposed photon-spin en-
tangling gate, we could also implement a deterministic
photon-spin quantum interface37 and a deterministic quantum
controlled-NOT gate.38 Therefore we could make all building
blocks required for solid-state quantum networks including
quantum memories, quantum repeaters, and various quantum
logic gates. We believe this work opens an avenue in quan-
tum information science.
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