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We calculate the magnetic-field and temperature dependence of all quantum corrections to the ensemble-
averaged conductance of a network of quantum dots. We consider the limit that the dimensionless conductance
of the network is large, so that the quantum corrections are small in comparison to the leading, classical
contribution to the conductance. For a quantum dot network the conductance and its quantum corrections can
be expressed solely in terms of the conductances and form factors of the contacts and the capacitances of the
quantum dots. In particular, we calculate the temperature dependence of the weak localization correction and
show that it is described by an effective dephasing rate proportional to temperature.
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I. INTRODUCTION

The low-temperature conductivity of disordered metals or
semiconductors is dominated by the elastic scattering of
electrons off impurities and defects. While the conductivity
is determined by Drude-Boltzmann theory for not too low
temperatures, quantum corrections to the conductivity be-
come important at temperatures low enough that the elec-
tronic phase remains well defined over distances large in
comparison to the elastic mean-free path.1–3 One usually dis-
tinguishes two quantum corrections: the weak localization
correction and the interaction correction.4–6 The former is
caused by the constructive interference of electrons traveling
along time-reversed paths, whereas the interaction correction
can be understood in terms of resonant scattering off Friedel
oscillations near impurities.7,8

Although they are small in comparison to the Drude con-
ductivity, the quantum corrections are important because
they strongly depend on temperature and an applied mag-
netic field, whereas the Drude conductivity does not �as long
as impurity scattering is the dominant source of scattering�.
Theoretically, the temperature and magnetic-field depen-
dences of the corrections can be expressed in terms of the
sample’s diffusion constant �or, equivalently, the elastic
mean-free path�, which can be obtained independently from
a measurement of the Drude conductivity. The availability of
quantitative theoretical predictions has made a detailed com-
parison between theory and experiment possible.9–11

The same quantum corrections also exist for a “quantum
dot,” a conductor coupled to electron reservoirs via artificial
constrictions �e.g., tunnel barriers or point contacts�, such
that the conductance of the device is dominated by the con-
tacts and not by scattering off impurities or defects inside the
sample. The latter condition is satisfied if the product ETh� of
the dot’s “Thouless energy” and its density of states is much
larger than the dimensionless conductance of the contacts
connecting the dot to source and drain reservoirs. �The Thou-
less energy is the inverse of the time needed for ergodic
exploration of the quantum dot.�

In this paper we consider “open” quantum dots, which
have contact conductances larger than the conductance quan-

tum e2 /h. Because transport through a quantum dot is domi-
nated by the contacts, it is described by the sample’s conduc-
tance, not its conductivity. The quantum corrections then
pertain to the conductance after averaging over an ensemble
of quantum dots that differ, e.g., in their shape or precise
impurity configuration.

While the magnetic-field dependence of quantum correc-
tions to the ensemble-averaged conductance is in apparent
agreement with the theory,12 the situation regarding the tem-
perature dependence is more complicated and no good agree-
ment has been reported to date. Theoretically, the tempera-
ture dependence of the weak localization correction to the
conductance of a quantum dot is described by means of a
“dephasing rate” ��. For a quantum dot, one expects

�� = cT2/ETh
2 � , �1�

where T is the temperature and c is a numerical constant that
depends on the dot’s size and shape.13–15 The proportionality
constant c cannot be measured independently, however,
which is an important difference with the case of a diffusive
conductor. The absence of a separate method to determine
this constant poses a significant difficulty when comparing
theory and experiment. A second difficulty is the lack of a
direct theory of the temperature dependence of weak local-
ization. Instead, the available theoretical descriptions employ
a phenomenological description16–21 and match the dephas-
ing rate to Eq. �1�, from which the temperature dependence
of weak localization can be obtained.

In this paper, we study the quantum corrections to the
conductance in a network of quantum dots or “quantum
circuit”22 �see Fig. 1 for an example of a quantum dot net-
work with ND=3 dots�. Replacing a single quantum dot by a
network solves both difficulties mentioned above: A quantum
dot network allows a calculation of the complete temperature
dependence of the quantum corrections to the conductance
without the need of an intermediate step involving a phe-
nomenological dephasing rate and without parameters that
cannot be measured independently. The relevant parameters
in a quantum dot network are the conductances and form
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factors of the contacts in the network and the capacitances of
the quantum dots.23

Our main result is an expression for the ensemble average
of the dimensionless conductance,

G =
dse

2

h
g , �2�

where ds=1 or 2 in the absence or presence of spin degen-
eracy, respectively. The result becomes exact in the limit that
the contact conductances are much larger than the conduc-
tance quantum e2 /h,

�g� = gcl + �gWL + �gint,1 + �gint,2. �3�

Here gcl is the “classical” conductance that one obtains from
Drude-Boltzmann theory, while �gWL, �gint,1, and �gint,2 are
three quantum corrections to gcl. Explicit expressions for gcl

and the three quantum corrections in terms of the contact
conductances and the capacitances of the quantum dots in the
network, as well as the precise conditions for the validity of
Eq. �3�, will be given in Sec. II below. The correction �gWL

is the weak localization correction. It is the only quantum
correction that is affected by the application of a magnetic
field. The remaining two corrections arise from electron-
electron interactions. The first interaction correction �gint,1

represents a nonlocal correction to the conductance that ex-
ists for networks of two or more quantum dots only.24–26 It is
the counterpart of the Altshuler-Aronov correction in the
theory of disordered conductors. The second correction,
�gint,2, describes the renormalization of the contact conduc-
tances by the interactions. It is usually referred to as �dy-
namical� Coulomb blockade, an effect that is well known
from the theory of transport through tunnel junctions in se-
ries with a high impedance or quantum dots with tunneling
contacts.27–39 Its counterpart in the theory of disordered con-
ductors is the Altshuler-Aronov correction to the tunneling
density of states.40

The fact that the temperature dependence of quantum cor-
rections in a quantum dot network does not depend on details
of individual dots has its origin in the different form of the
relevant electron-electron interaction modes in a quantum
dot network and in a single dot. In a single quantum dot, the
dominant contribution to the electron-electron interaction is
the uniform mode, the strength of which is set by the dot’s
capacitance. Apart from a possible renormalization of the
contact conductances, �gint,2, the uniform mode has no effect

on the quantum correction to the dot’s conductance.36,38,39,41

In particular, the weak localization correction �gWL is unaf-
fected by the interaction and the nonlocal interaction correc-
tion �gint,1 vanishes. Instead, electron-electron interactions
determine �gWL and �gint,1 in a single quantum dot through
subdominant nonuniform interaction modes, which are
known to depend on the precise sample details.13,42 For a
quantum dot network, on the other hand, there exist interac-
tion modes that are uniform inside each dot but not across
the full network. With such interaction modes, all three in-
teraction corrections �gWL, �gint,1, and �gint,2 are generically
nonzero and temperature dependent. Moreover, because
these modes are uniform inside each quantum dot, their
properties depend on the contacts between the dots and on
the dot capacitances only, not on the precise geometry of
each dot separately. It is this essential feature that makes a
quantum dot network an ideal paradigm for studying the ef-
fect of electron-electron interactions on quantum transport in
finite-size systems.

Separate aspects of the problem we address here have
been considered before. Weak localization in single quantum
dots without interactions has been studied by various
authors,43–52 as well as the effect of the uniform interaction
mode on the conductances of the contacts connecting the dot
to the electron reservoirs27–39 �see Ref. 41 for a discussion of
a comparable effect involving spin-dependent interactions in
the quantum dot�. Also, while it is known that the uniform
interaction mode has no effect on weak localization because
a spatially uniform fluctuating potential affects phases of
time-reversed trajectories in the same way,38,39 the uniform
interaction mode can suppress interference contributions to
other observables if the quantum dot is part of an
interferometer.53–55

Weak localization in networks of quantum dots, but with-
out interactions, was considered by Argaman46,47 for dots
connected by ideal contacts and by Campagnano and
Nazarov56 for dots connected by arbitrary contacts. Golubev
and Zaikin25 calculated the interaction corrections �gint,1 and
�gint,2 for a linear array of quantum dots, as well as the weak
localization correction for noninteracting electrons �but with
a phenomenological dephasing rate�.57 In a recent publica-
tion, the same authors also considered the full temperature
dependence of weak localization in the special case of a
double quantum dot �a network with ND=2 quantum dots�
with tunneling contacts58 and reported that electron-electron
interactions suppress weak localization even at zero tempera-
ture, a conclusion that contradicts the common wisdom that
there is no dephasing from electron-electron interactions at
zero temperature.1,3

Weak localization and interaction corrections have also
been considered for networks of diffusive metallic wires.59,60

Large arrays of quantum dots connected by tunneling con-
tacts further appear in the study of granular metals.61 Be-
loborodov and co-workers considered the interaction correc-
tions �gint,1 and �gint,2 for a granular metal24,62–65 but
accounted for weak localization and its temperature depen-
dence only via a phenomenological dephasing rate and a
renormalized diffusion constant. A microscopic theory of the
temperature dependence of weak localization in granular
metals was given by Blanter et al.66 in the high-temperature

1

3

2

FIG. 1. An example of a quantum dot network with ND=3
quantum dots. The conductance of the network is dominated by the
conductances of the contacts between the dots. We assume that all
dots in the network are open, i.e., all contact conductances are much
larger than the conductance quantum e2 /h.
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limit. Our present analysis �as well as that of Ref. 25� is for
contacts of arbitrary transparency and contains contributions
to weak localization and to the interaction correction to the
conductance that are absent in a network where all contacts
are tunneling contacts. Our results agree with the literature
wherever applicable, except for the zero-temperature limit of
the weak localization correction �gWL, where we find that
weak localization is unaffected by electron-electron interac-
tions, in contrast to Ref. 58.

The remainder of our paper is organized as follows. In
Sec. II we introduce the relevant parameters needed to de-
scribe the quantum dot network, formulate our main assump-
tions, and present our main result, an expression for the
ensemble-averaged conductance and its quantum corrections.
In Sec. III we motivate our result for the temperature depen-
dence of the weak localization correction using semiclassical
arguments. In Sec. IV we then turn to a fully quantum-
mechanical calculation of the conductance and its quantum
corrections using random matrix theory. We specialize to the
simplest network, a double quantum dot, in Sec. V and dis-
cuss the origin of the difference between our result and Ref.
58 for the zero-temperature limit of weak localization. We
conclude in Sec. VI.

II. DEFINITION OF THE PROBLEM AND MAIN RESULTS

A. Network of quantum dots

We consider a network of ND quantum dots coupled to
two electron reservoirs. A schematic drawing of a network is
shown in Fig. 1. In this section we introduce the relevant
parameters to describe the quantum dot network and summa-
rize our main results.

The quantum dots are connected to each other and to
source and drain electron reservoirs via point contacts. The
dots will be labeled by an index i=1, . . . ,ND; the reservoirs
are labeled by the index a=1,2. The contact between dots i
and j is described by its dimensionless conductance gij �per
spin direction� and its form factor f ij. Both gij and f ij are
defined in terms of the transmission matrix tij of the contact,

gij = tr tijtij
† , f ij = tr�tijtij

† �2. �4�

Form factors are related to Fano factors � often encountered
in the literature via �ij = �gij − f ij� /gij. The dimensionless con-
ductances and form factors are symmetric, gij =gji and f ij
= f ji, i , j=1, . . . ,ND. Spin degeneracy will be explicitly taken
into account via the parameter ds=1,2.

Similarly, the contacts between the ith quantum dot and
reservoir a, a=1,2, are described by a dimensionless con-
ductance gia� =gai� and a form factor f ia� = fai� , which are related
to the transmission matrix tia� of these contacts as

gia� = tr tia� tia�
†, f ia� = tr�tia� tia�

†�2. �5�

For ballistic contacts one has f =g; for tunneling contacts one
has f �g. Throughout we assume that all conductances are
large,

gij,gia� , � 1, i, j = 1, . . . ,ND, a = 1,2. �6�

�One may replace this condition by the less strict require-
ment that each quantum dot be well connected to one of the

two reservoirs, such that the regime of strong Coulomb
blockade is avoided.� For future use, we arrange the conduc-

tances and form factors in ND	ND matrices g̃ and f̃ with
elements

g̃ij =��a=1

2
gaj� + �k�i

ND gik, i = j

− gij , i � j ,
� �7�

f̃ i j =��a=1

2
faj� + �k�i

ND fik, i = j

− f ij , i � j .
� �8�

The quantum dots are assumed to be disordered or ballis-
tic chaotic, with density of states �i per spin degree of free-
dom and Thouless energy ETh,i, i=1, . . . ,ND. The Thouless
energy ETh,i=
 /�erg,i, where �erg,i is the time for ergodic ex-
ploration of the ith quantum dot. If the electron motion is
diffusive inside each quantum dot with diffusion constant D,
ETh,i�D /Li

2, where Li is the linear size of dot i. �Our defi-
nition, while common in the literature, differs from some
references where ETh,i is the inverse of the dot’s dwell time.�
We assume

ETh,i�i � g̃ii, i = 1, . . . ,ND, �9�

so that random matrix theory can be used to describe the
electronic states in the quantum dot network. An external
magnetic field is described by means of the dimensionless
numbers,

gH,i = ETh,i�i

�i
2

�0
2 , i = 1, . . . ,ND, �10�

where �i is the magnetic flux through the ith quantum dot
and �0=hc /e is the flux quantum. In order to simplify the
notation, we arrange the densities of states �i and the param-
eters gH,i in diagonal ND-dimensional matrices �̃ and g̃H,

�̃ij = �i�ij, �g̃H�ij = gH,i�ij, i, j = 1, . . . ,ND. �11�

Corrections to the conductance that depend on the magnetic
field will only be relevant where gH,i is of order g̃ii or less,
otherwise they will be fully suppressed. In that parameter
range, the flux through the insulating regions between the
quantum dots is much smaller than �0, so that the corre-
sponding Aharonov-Bohm phases can be neglected.

Inequality �9� also implies that the electron-electron inter-
action in each dot is well screened.42 Hence, the electron-
electron interaction couples to the total charge qi=eni of each
dot only. Such an interaction is described by means of ca-
pacitances Cij for the capacitive coupling between dots �if i
� j� and for each dot’s self-capacitance �if i= j�. Again, we

arrange the capacitances into an ND-dimensional matrix C̃,

C̃ij =��k=1

ND Cik, i = j

− Cij , i � j .
� �12�
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For metallic dots, one has the inequality

C̃ii/e2 � �i, i = 1, . . . ,ND. �13�

B. Quantum corrections to the conductance

Our main result is a calculation of the ensemble-averaged
conductance �G�= �dse

2 /h��g� of the quantum dot network as
a function of temperature,

�g� = gcl + �gWL + �gint,1 + �gint,2,

where gcl is the classical conductance of the network and
�gWL, �gint,1, and �gint,2 are corrections. The average conduc-
tance is calculated using the following limiting procedure for
the parameters of the network:

�1� We first take limit �9� needed for the applicability of
random matrix theory while keeping the ratios �i /� j and T /�i
as well as the gH,i fixed, i , j=1, . . . ,ND.

�2� We then take limit �6� of large contact conductances
while keeping the ratios gij /gik, gij /gH,i, and gij /gia� fixed,
i , j ,k=1, . . . ,ND, a=1,2.

�3� Finally, we simplify our results using inequality �13� if
possible.
In all three limiting steps, the number ND of dots in the
network is kept constant. Keeping the ratio T /�i fixed in the
first limiting step eliminates interaction corrections from
nonuniform interaction modes inside the quantum dots 	see
Eq. �1� above
. In the second limiting step, we do not make
any assumptions about the temperature, thus allowing for the
full range of temperature-dependent effects that can be de-
scribed within random matrix theory. We note that, while the
classical conductance gcl diverges in this limiting procedure,
this divergence does not affect the temperature or magnetic-
field dependence of �g� because gcl does not depend on tem-
perature or magnetic field. Corrections not included in Eq.
�3� are either small in limit �6� of large contact conductances
or small in limit �9� used to justify the use of random matrix
theory.

The leading term gcl in Eq. �3� reads

gcl = �
i,j=1

ND

g1i� �g̃−1�ijgj2� = g1·� g̃··
−1g·2� , �14�

where, in the last expression of Eq. �14�, we have written “ ·”
to denote indices in adjacent factors that are summed over as
in matrix multiplication 	compare with the second expression
of Eq. �14�
. This shorthand notation will be employed
throughout the text.

The correction �gWL is the weak localization correction to
the ensemble-averaged conductance. It can be distinguished
from the remaining two corrections �gint,1 and �gint,2 because
�gWL depends on an applied magnetic field, whereas �gint,1

and �gint,2 do not. We find

�gWL = 2 �
i,j=1

ND

c̃ijg1·� �g̃·i
−1 − g̃·j

−1��g̃ − f̃�ijg̃j·
−1g·2�

+ �
i=1

ND

c̃ii�g1·� g̃··
−1 f̃ ·i − f1i� �g̃i·

−1g·2�

+ �
i=1

ND

c̃iig1·� g̃·i
−1� f̃ i·g̃··

−1g·2� − f i2� �

− �
i,j=1

ND

f̃ ijc̃j jg1·� g̃·i
−1g̃i·

−1g·2� , �15�

where the ND	ND matrix c̃ is the counterpart of the “coop-
eron” in the theory of weak localization in disordered con-
ductors. For the quantum dot network, c̃ reads

c̃ij = �
k=1

ND 1



�k
�� + �H + ���ik,jk

−1 , �16�

where �, �H, and �� are rank-four tensors,

�ik,jl =
1

2

�i
g̃ik� jl +

1

2

� j
�ikg̃jl,

��H�ik,jl =
1

2

�i
g̃H,ik� jl +

1

2

� j
�ikg̃H,jl,

����ik,jl =
4
T

ds

�g̃ii

−1 + g̃jj
−1 − 2g̃ij

−1��ik� jl. �17�

The terms �H and �� describe the suppression of weak lo-
calization by a magnetic field and electron-electron interac-
tions, respectively. In the limit of low temperatures ��=0
and Eq. �16� simplifies to

c̃ij = �g̃ + g̃H�ij
−1. �18�

For high temperatures ����ii,j j diverges 	other elements are
zero because of the Kronecker deltas in Eq. �17�
, except for
the diagonal elements with i= j. Hence, one finds

c̃ij � c̃ij
d = �g̃d + g̃H�ij

−1, �19�

where g̃ij
d is the diagonal part of the matrix g̃, g̃ij

d = g̃ij�ij. This
is the contribution to the weak localization correction that
arises from self-returning electron trajectories that reside in-
side one quantum dot only and, hence, are unaffected by
dephasing from electron-electron interactions.66

The first interaction correction �gint,1 is

�gint,1 =
2


ds
� d�
 �

��
� coth

�

2T
�

	 �
�,�=1

ND

�
k,l=1

ND

Im	���2
i�g̃��
−1 − �̃��

−1 ���

	�g̃ − 2
i�̃���k
−1�g̃ − 2
i�̃��kl�g̃ − 2
i�̃���l

−1

	g1·�g̃·�
−1 − g̃·k

−1��g̃l·
−1 − g̃�·

−1�g·2� 
 . �20�
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The second interaction correction �gint,2 represents the renor-
malization of the conductances between the quantum dots
and between the dots and the reservoirs as a result of the
electron-electron interactions,

�gint,2 = �
j=1

ND

�
a=1

2
�gcl

�gaj�
�gaj� + �

j�k

ND �gcl

�gjk
�gjk. �21�

The interaction corrections �gia� and �gij exist for nonideal
contacts with f ij �gij or f ia� �gia� only, i , j=1, . . . ,ND, a
=1,2,

�gaj� = − �gaj� − faj� �� d�

�

 �

��
� coth

�

2T
�Re �z̃ j j ,

�gjk = − �gjk − f jk�� d�

�

 �

��
� coth

�

2T
�

	Re��z̃ j j + �z̃kk − 2�z̃ jk� , �22�

where �z̃ is the difference of the network’s dimensionless
impedance matrices with and without interactions,

�z̃ = �dsg̃ − 2
i�C̃/e2�−1 − �dsg̃ − 2
i�ds�̃�−1. �23�

The interaction correction �gint,1 was obtained previously
by Golubev and Zaikin25 for a linear array of quantum dots
and by Beloborodov et al.24 in the context of a granular
metal. It is the counterpart of the Altshuler-Aronov correc-
tion in disordered metals, where it arises from the diffusive
dynamics of the electrons. Although the electron dynamics is
not diffusive in a quantum dot network, it is nonergodic,
which is sufficient for this interaction correction to appear.
�The exception is a quantum dot network consisting of a
single quantum dot only, for which the electron motion is
ergodic. Indeed, one verifies that �gint,1=0 if ND=1, in
agreement with Refs. 25, 36, 38, and 39.� A semiclassical
calculation of �gint,1 for the special case of a double quantum
dot with ballistic contacts can be found in Ref. 26.

For the case of a single quantum dot, the renormalization
of the contact conductances �gint,2 or “dynamical Coulomb
blockade” was obtained previously in Refs. 33–39. The
renormalization of the contact conductances in the quantum
dot network is essentially the same as in the case of a single
quantum dot or a single tunnel junction coupled to a high-
impedance electrical environment—in both cases the change
in the contact conductance is proportional to the factor
�g− f�—the only difference being that the impedance z is
replaced by the impedance matrix z̃ in the case of the quan-
tum dot network.25 The same conclusion was reached for the
interaction correction in an array of quantum dots with tun-
neling contacts in the context of transport through a granular
metal.24,62–65

Equations �3�–�23� provide a general solution for the
ensemble-averaged conductance and its quantum corrections
in an arbitrary quantum dot network for arbitrary tempera-
ture. These expressions can be simplified only by specializ-
ing to a particular quantum dot network. In Sec. V we ana-
lyze these expressions for the case of a double quantum dot,
a network consisting of two quantum dots.

Although it is not possible to proceed quantitatively with-
out specializing to a particular network, we can compare the
sizes of these three quantum corrections and their typical
temperature dependences. For the limiting procedure taken
here—see the discussion following Eq. �3�—the relevant
temperature scale for dephasing of the weak localization cor-
rection is66

T� = 
ds max�g,gH�/�D, �24�

where

�D � 
�/g �25�

is the typical dwell time for the network. �Here g and gH are
shorthand notations for typical values of gij or gH,i in the
network, respectively.� For the interaction corrections �gint,1

and �gint,2, the relevant temperature scales are 
 /�D and the
inverse charge-relaxation time


/�c � e2g/C . �26�

	In a more precise analysis one needs to identify ND dwell
times and ND charge-relaxation times for a network consist-
ing of ND quantum dots �see Sec. V for an explicit calcula-
tion for ND=2�.
 Since, typically, C /e2��, the charge-
relaxation time and the dwell time satisfy the inequality

�c � �D. �27�

With these definitions, we find the order of magnitude of
the weak localization correction �gWL to be

�gWL � �gWL
d +

�gWL
od

max�1,T/T��
, �28�

where �gWL
d and �gWL

od are constants of order min�1,g /gH�.
Similarly, for interaction corrections we find

�gint,1 � min�1,
/T�D� , �29�

�gint,2 � �ln	max��cT/
,�c/�D�
 if T � 
/�c


/T�c if T � 
/�c,
� �30�

independent of the magnetic field. All three quantum correc-
tions need to be taken into account for a complete descrip-
tion of the temperature and magnetic-field dependence of the
conductance of a quantum dot network. In particular, in order
to correctly describe the temperature dependence of �g� for
T�
 /�D, �gint,1 cannot be neglected with respect to �gint,2,
in spite of the fact that �gint,2 is larger than �gint,1 by �at least�
a large logarithmic factor ln��D /�c�.

The temperature dependence of Eq. �28� implies a
dephasing rate that is linear in temperature. A linear tempera-
ture dependence of the dephasing rate was obtained previ-
ously by Blanter et al.66 in the context of a granular metal
and by Seelig and Büttiker53 for a single quantum dot em-
bedded in one arm of an interferometer. In both cases, the
linear temperature dependence of the dephasing rate arose
because the fluctuations of the electric potential can be con-
sidered classical, similar to the situation encountered in one-
dimensional and two-dimensional disordered conductors.67
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As we will discuss in Secs. III and IV, the same mechanism
is responsible for the linear temperature dependence of the
dephasing rate in the quantum dot network.

In Sec. III we describe a semiclassical derivation of the
weak localization correction and its temperature dependence
	Eq. �15� above
. A full quantum-mechanical calculation of
all three corrections to the conductance is given in Sec. IV.
We apply the general results presented here to the specific
case of a double quantum dot in Sec. V.

III. WEAK LOCALIZATION: SEMICLASSICAL
CONSIDERATIONS

In this section, we give a semiclassical argument for the
temperature dependence of the weak localization correction
to the conductance of a quantum dot network. These argu-
ments provide a semiclassical interpretation of the fully
quantum-mechanical calculations of Sec. IV.

Weak localization appears because of constructive inter-
ference of time-reversed trajectories. This interference leads
to a small increase of the probability Pret that an electron
returns to its point of origin. Following the standard
arguments,2,3 Pret is calculated as a square of the return am-
plitude which, in turn, is written as a sum of amplitudes A�

over all returning paths �. �These paths are classical paths in
ballistic conductors48,51 and quantum diffractive paths in
conductors with impurity scattering.� The quantum correc-
tion to Pret then follows from interference between a path �
and its time-reversed �̄. Since the length of the self-returning
path is arbitrary, the weak localization correction to the dc
conductance is proportional to the time integral of the inter-
ference correction to the return probability, known as the
cooperon in the diagrammatic theory of weak localization.2,3

The counterpart of the cooperon for the quantum dot network
is the quantity

c̃ij �
1

�2

�2�i� j
�
�

A��A�̄��, �31�

where the sum is over all trajectories � that originate in dot
j and end in dot i and �̄ is the time reversed of � �see Fig. 2�.
�Note that the return probability involves the diagonal ele-
ments c̃ii of the cooperon matrix only. We have included
nondiagonal elements in Eq. �31� above in view of the dis-
cussion of interaction effects below. Nondiagonal elements
c̃ij with i and j in adjacent dots also appear for the descrip-

tion of weak localization in a network of quantum dots with
tunneling contacts 	see Eq. �15� above
.�

At zero temperature and without a magnetic field, A�̄

=A�. We may then calculate c̃ij using that �A��2 is the prob-
ability that an electron propagates along trajectory �. Hence

c̃ij =
1

2

�i
�

0

�

d�Pij��� , �32�

where Pij��� is the probability that an electron in dot j is
found in dot i after time �. In Eq. �32� we canceled a factor
2

� j in the denominator against the phase-space volume of
the jth quantum dot. For a quantum dot network, Pij��� can
be expressed in terms of a rate matrix �̃,

Pij��� = �e−�̃��ij, �̃ = g̃/�2

�̃� . �33�

Integrating over time, we then find

c̃ij = g̃ij
−1. �34�

The interference between a path � and its time reversed is
suppressed if time-reversal symmetry is broken by a mag-
netic field because a magnetic field changes the phases of A�

and A�̄ in opposite ways. Interference is also suppressed be-
cause of electron-electron interactions at a finite temperature.
Interactions cause the electrons to experience a time-
dependent potential ��r� , t�, which modifies the phase of A�

and A�̄ in different ways if the trajectories � and �̄ are in
different dots at the same time t.67 For a network of quantum
dots, the fluctuating potential � is uniform inside each dot,
so that we can write ��j , t�, where j=1, . . . ,ND is the index
labeling the quantum dots in the network. For each ampli-
tude A� one then has67

A�	�
 → A�	0
exp�i�
0

t�

�	j��t�,t
/
� , �35�

where t� is the duration of the path �, j��t� the index of the
quantum dot corresponding to the position of path � at time
t, and A�	0
 the return amplitude in the absence of the po-
tential �.

For a quantum dot network, one may consider � as a
classical fluctuating potential. �This will be verified in the
exact quantum-mechanical calculation of Sec. IV B below.�
Its fluctuations are given by the fluctuation-dissipation
relation,68

���i,t���j,t��� =� d�

2

e−i��t−t��/
2T

�
Im	Lij

R���
 , �36�

where the response function Lij
R��� describes the �linear�

change ��i /e of the electric potential in the ith quantum dot
to a change �qj =e�nj of the charge in the jth quantum dot,

��i��� = − Lij
R����nj��� . �37�

ᾱ

α

FIG. 2. �Color online� Schematic drawing of a trajectory � and
its time-reversed �̄ that contribute to the cooperon propagator c̃.
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For the quantum dot network, one has

Lij
R��� = − 	C̃/e2 + ds��̃−1 − 2
i�g̃−1�−1
ij

−1, �38�

where the matrices C̃, �̃, and g̃ were defined in Sec. II above.

Typically, C̃ii /e2��i, g̃ii / ���, and we can replace Eq. �38� by

Lij
R��� =

1

ds
�2
i�g̃−1 − �̃−1�ij . �39�

Using this expression for Lij
R���, we find that Eq. �36� sim-

plifies to

���i,t���j,t��� =
4

T

ds
g̃ij

−1��t − t�� . �40�

In order to find the effect of the fluctuating potential on
the cooperon propagator c̃ij, we separate the contributions
from trajectories � of duration t� smaller and larger than 2d�,
where d� is a time interval sufficiently short that the net
phase shift from the fluctuating potential in the exponent in
Eq. �35� is small �see Fig. 3�. We also take d� much shorter
than the dwell time in a single quantum dot, so that Pij�d��
=�ij − �̃ijd� 	see Eq. �33� above
. For trajectories of duration
t��2d� we consider the initial and final segments of dura-
tion d� separately. Recognizing that the contribution from
the intermediate segments of duration t�−2d� can again be
expressed in terms of c̃, and using Eq. �40� to average over
the fluctuating potentials, we then find

c̃ij =
2d�

2

�i
�ij + �

k,l=1

ND

��ik − �̃kid���� jl − �̃ljd��c̃kl

− �
k,l=1

ND

��̃H,ik + �̃H,jl + �̃�,ij��ik� jlc̃kld�

= c̃ij +
d�



�i
�ij − �� + �H + ���ik,jlc̃kld� �41�

up to corrections of order d�2. Here

�̃H,ij =
gH,i

2

�i
�ij ,

�̃�,ij =
4
T

ds

�g̃ii

−1 + g̃jj
−1 − 2g̃ij

−1� , �42�

�ik,jl= �̃ki� jl+�ik�̃lj, ��H�ik,jl= �̃H,ik� jl+�ik�̃H,jl, and ����ik,jl
= �̃�,ij�ik� jl 	cf. Eq. �17� above
. Solving this equation for c̃,
we arrive at Eq. �16� of Sec. II.

It is worthwhile to point out that the temperature depen-
dence of weak localization is caused by processes that in-
volve the exchange of energy quanta small in comparison to
the temperature. Such processes are commonly referred to as
“dephasing,” in contrast to more general inelastic processes
which lead to a broadening of the electronic distribution
function.1,3 In this sense, interaction effects in the quantum
dot network differ from those in a single quantum dot, where
weak localization is suppressed by inelastic processes that
involve a large energy transfer.13,14 Indeed, the characteristic
energy exchanged in the electron-electron interactions scales
with the inverse of the dwell time 
 /�D in each quantum
dot—an observation that is closely related to the uniformity
of the interaction potential inside a quantum dot. The number
of quanta exchanged along a typical trajectory is too small to
lead to a significant broadening of the distribution
function—in that sense transport in a quantum dot network is
always quasielastic—although the exchange of a single
quantum is sufficient to suppress the interference from time-
reversed trajectories.

The semiclassical arguments of this section relied on the
treatment of ��r� , t� as a classical fluctuating potential. In this
respect, we follow earlier works on quantum dots by Seelig
and Büttiker53 and on granular metals by Blanter et al.66 This
approach was taken originally by Altshuler et al.67 for
dephasing in quasi-one-dimensional and two-dimensional
disordered metals. In Sec. IV, we confirm the validity of this
approach in the present context by performing a fully
quantum-mechanical calculation of the weak localization
correction to first order in the interaction propagator L. The
calculation of Sec. IV shows that the potential fluctuations
are essentially classical if T�
 /�D, where �D is the �typical�
dwell time in a quantum dot in the network. Since 
 /�D is
much smaller than the relevant temperature scale T� for the
suppression of the weak localization correction by electron-
electron interactions 	cf. Eq. �24� of Sec. II
, this proves the
validity of our approach for all temperatures of interest.

IV. QUANTUM-MECHANICAL CALCULATION

A. Random matrix formulation

We consider a network of ND chaotic quantum dots
coupled to electron reservoirs. The Hamiltonian of the entire
system is written as

Ĥ = Ĥ0 + Ĥint, �43�

where Ĥ0 describes the electrons inside the quantum dots or
inside leads without taking into account their interactions

and Ĥint describes the electron-electron interactions. We

write the noninteracting Hamiltonian Ĥ0 as a sum of three
terms,

= + j

t − 2dτ

i

dτ
l

k
dτ

j
ii

α

ᾱ
j

t < 2dτ

FIG. 3. �Color online� Calculation of the cooperon propagator
for a network of quantum dots. A trajectory � originating in dot j
and ending in dot i and duration t is separated into two segments of
duration d� and a remaining segment of duration t−2d� if 2d�� t.
A self-consistent equation for c̃ij is obtained by considering the
combined effect of escape, the magnetic field, and the fluctuating
potential to first order in d�.
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Ĥ0 = ĤD + ĤDL + ĤL, �44�

where ĤD and ĤL describe the electrons inside the quantum

dot network and inside the leads, respectively, whereas ĤDL
describes the coupling between the quantum dots and the
leads. We now describe each of the three terms contributing

to Ĥ separately.
Linearizing the electronic spectrum around the Fermi en-

ergy inside the leads, we have

ĤL = �
a=1,2

�
j=1

Na � dk

2

va,jk�̂a,j

† �k��̂a,j�k� , �45�

where the index a=1,2 labels leads connecting to the left

and right electron reservoirs. The operators �̂a,j
† �k� and

�̂a,j�k� are for electrons in scattering states at wavenumber k
�measured with respect to the Fermi wavenumber� and trans-
verse mode j. The total number of propagating modes in the
leads connecting to reservoir a is Na, a=1,2. 	If a reservoir
is coupled to more than one lead, the summation over the
index j represents a sum over the transverse modes in all
leads connected to the given reservoir.
 Finally, va,j is the

Fermi velocity of electrons in mode j. The current operator Îa
reads

Îa = e�
j=1

Na

va,j��̂a,j+
† �̂a,j+ − �̂a,j−

† �̂a,j−�, a = 1,2, �46�

where

�̂a,j� =� dk

2

e�ik��̂a,j�k�, a = 1,2, �47�

and ��0 is a positive infinitesimal.
We use random matrix theory to describe the quantum

dots. Following standard procedures, the electron operators
in each quantum dot are represented by an Mj-component

vector �̂ j, where the index j=1, . . . ,ND labels the quantum
dots in the network and Mj is the dimension of the subspace

corresponding to the dot with index j. The Hamiltonian ĤD
then reads

ĤD = �
i=1

ND

�
�,�=1

Mi

�̂i,�
† Hi,���̂i,� + �

i�j
�
�,�

��̂i,�
† Vij,���̂ j,� + h.c.� .

�48�

Here the elements Hi,�� of the Mi-dimensional matrices Hi
are random numbers taken from a Gaussian distribution with
zero mean and with variance,

�Hi,��Hi,��� = �Hi,��Hi,��
� � =

�i

Mi
������ +

�i�

Mi
������.

�49�

The parameters �i and �i� are related to the density of states
�i and magnetic flux �i in each quantum dot,42 i
=1, . . . ,ND,

�i =
Mi

2


2�i
2 , �i� =

Mi
2


2�i
2
1 −

ETh,i�i�i
2

4Mi�0
2 � , �50�

where �0 the flux quantum and ETh,i is the Thouless energy
of the ith quantum dot. Further, in Eq. �48�, the Mi	Mj
matrices Vij are related to the transmission matrices tij of the
contact between dots i and j,

tij = 2
Vij��i� jMiMj�1/2�MiMj + 
2�i� jVij
† Vij�−1. �51�

The Hamiltonian HDL describing the coupling between the
dots and the leads reads

ĤDL = �
a=1

2

�
j=1

Na

�
i=1

ND

�
�=1

Mi � dk

2

	�̂i,�

† Wia,�j�̂a,j�k� + H.c.
 ,

�52�

where the Ni	Na matrices Wia=Wai
† are related to the trans-

mission matrices tia of the contact between the ith quantum
dot and reservoir a,

tia = 2
Wia��a�iMi�1/2�Mi + 
2�i�a
1/2WaiWia�a

1/2�−1,

�53�

with a=1,2 and �a an Na-dimensional matrix with elements
��a�ij =�ij�2

va,j�−1. The dimensionless conductance gij and
form factor f ij of the contact between dots i and j are defined
in terms of the transmission matrix tij as in Eq. �4�. Similarly,
the dimensionless conductance gia� =gai� and form factor f ia�
= fai� between the dots and the two electron reservoirs are
defined in terms of tia� as in Eq. �5�.

For the electron-electron interaction we take density fluc-
tuations inside each dot to be well screened, so that the in-
teraction couples to the total charges of the dots only,

Ĥint = �
i,j

e2

2
n̂i	C̃−1
ijn̂j, n̂i = �

�=1

Mi

�̂i,�
† �̂i,�, �54�

where the capacitance matrix C̃ was defined in Eq. �12�
above. The corresponding interaction Hamiltonian for a
single quantum dot is known as “universal interaction
Hamiltonian.”42

Evaluating the conductance g of the quantum dot network
and its leading interaction corrections using the Kubo for-
mula, one finds

G =
dse

2

h
g, g = g0 + �gdeph + �gint, �55�

where g0 is the conductance in the absence of interactions

�i.e., for Hamiltonian Ĥ0� and �gdeph and �gint are interaction
corrections. �The reason for the separation between �gdeph

and �gint is that these two corrections have different tempera-
ture dependences, as will become apparent later.� Denoting
with “ ·” adjacent indices to be summed over 	as in Eq. �14�
,
the three terms in Eq. �55� read
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g0 = 4
2� d�	− ��f���
tr �1W1·G··
R���W·2�2W2·G··

A���W·1, �56�

and the interaction corrections �gdeph and �gint are

�gdeph = 4
2� d�� d�

2

	− ��f���
�coth��/2T� + tanh	�� − ��/2T
� �

i,j=1

ND

Im	Lij
R���


	tr��1W1·G·i
R���Gij

R�� − ��Gj·
R���W·2�2W2·G··

A���W·1 + �1W1·G··
R���W·2�2W2·G·i

A���Gij
A�� − ��Gj·

R���W·1

+
1

2
�1W1·G·i

R�� − ��Gi·
R���W·2�2W2·G·j

A���Gj·
A�� − ��W·1 +

1

2
�1W1·G·i

R���Gi·
R�� − ��W·2�2W2·G·j

A�� − ��Gj·
A���W·1� ,

�57�

�gint = 4
2� d�� d�

2

	− ��f���
tanh	�� − ��/2T
 �

i,j=1

ND

Im�Lij
A���

	tr	�1W1·G·i
R���Gij

R�� − ��Gj·
R���W·2�2W2·G··

A���W·1 + �1W1·G··
R���W·2�2W2·G·i

A���Gij
R�� − ��Gj·

A���W·1
� . �58�

In these equations Gij
R and Gij

A denote the retarded and ad-
vanced Green’s functions of the network of quantum dots

without the electron-electron interaction Hamiltonian Ĥint.
These are matrices of dimension Mi	Mj, which are the so-
lution of

�� − Hi + i
�
a=1

2

Wia�aWai�Gii
R��� + Vi·G·i

R��� = 1i,

�� − Hi − i
�
a=1

2

Wia�aWai�Gii
A��� + Vi·G·i

A��� = 1i, �59�

with 1i the Mi	Mi unit matrix. Finally, Lij
R��� and Lij

A���
=Lij

R���� represent the 	random-phase approximation �RPA�

screened interaction propagator 	see Eq. �38� above
.

It remains to calculate the ensemble average of the con-
ductance G for the ensemble of Hamiltonians described by
Eq. �49� above. This is the subject of Sec. IV B.

B. Average over random Hamiltonian

The average over the random matrices Hi is performed
using a variation of the impurity diagrammatic technique.69

This technique has been applied for various transport and
thermodynamic properties of chaotic quantum dots without
electron-electron interactions.50,70–72 Below we present its
generalization to arbitrary networks.

1. Average Green’s function

We first discuss the calculation of the ensemble average of
the Green’s function, �Gij

R���� and �Gij
A����. Following the

diagrammatic rules laid out in Fig. 4 and keeping diagrams

in the noncrossing approximation only,73 i.e., diagrams with-
out crossing double lines, one finds that the ensemble-
averaged Green’s function �Gij

R���� satisfies the Dyson equa-
tion,

�Gij
R���� = G0

R���ij + �
k

G0
R���ik�k�Gkj

R ���� , �60�

where the self-energy �k is

a)

b)

α βα β γ δ γ δ
λ′λ

Σ

〈HαβHγδ〉

Σ

= +

=

+. . .

+. . .++

=

c)

= +

+

+

FIG. 4. �a� Diagrammatic rules for the ensemble average using
random matrix theory. The weight factors depend on the symmetry
present: ��=� in the presence of time-reversal symmetry, while ��
is reduced in the presence of a weak magnetic field and ��=0 where
time-reversal symmetry is fully broken. �b� Expansion of the full
matrix propagator in terms of single propagators 1 / ��+ i
�WW†�,
depicted by single lines, and the matrix elements H��, depicted by
two open circles. �c� Dyson equation for the self-energy �.
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�k
R��� =

�k

Mk
tr�Gkk

R ���� , �61�

and G0
R��� is the solution of Eq. �59� with Hi=0. Combining

Eqs. �60� and �61� gives a self-consistent equation for �R. In
the limit Mi�gi1� +gi2� +� j�igij, one finds

�Gij
R���� = �Gji

A����† = −
i


Mi + �i
�̃ij −� 
2�i� j

4MiMj
tij

+



2Mi
2

�i� − i tr

�i

Mi + �i
��̃ij , �62�

where �̃ij and tij are given in Eqs. �11� and �51� above and �i
is an Hermitian Mi	Mi matrix,

�i = 
2�i�
k�i

ND 1

Mk
Vik�kVki + 
2�i�

a=1

2

Wia�aWai. �63�

2. Classical conductance

To leading order in the average number N of transmitting
channels per dot, the calculation of the average conductance
involves the calculation of geometric series involving the
ensemble-averaged Green’s functions. Diagrammatically,
these geometric series correspond to “ladder diagrams,” as
shown in Fig. 5. Such ladders are the equivalent of the
“diffuson” propagator in diagrammatic perturbation theory.
The building block of the geometric series is

tr�Gij
R�����Gji

A����� =

2�i

2

Mi
�ij −


2�i� j

4MiMj
	g̃ − i2
�� − ����̃
ij ,

where g̃ij was defined in Eq. �7� above. Summing the geo-
metric series in Fig. 5�a� then gives the diffuson matrix

Dij��,��� =
2Mi


�i
	g̃ − i2
�� − ����̃
ij

−12Mj


� j
. �64�

For the calculation of the mean conductance one also
needs a trace that involves the lead indices,

Dia� = 
�a tr	Wai�Gii
R��Gii

A�Wia
 = 
�i

gai�

4Mi
, a = 1,2.

�65�

Combining everything as depicted in Fig. 6�a�, we then find
the leading conductance of the system

�g� = g1·� �g̃−1�··g·2� ,

which is Eq. �14� of Sec. II.

3. Weak localization correction

The above calculation gives the conductance to leading
order in g. A correction to subleading order in g is given by
a class of diagrams that contains a maximally crossed ladder,
as shown in Fig. 5�b�. These contributions are analogous to
the cooperon contributions in diagrammatic perturbation
theory.1 The summation of the geometric series promotes the
contribution to be of order 1 /N instead of 1 /M, as is the
naive expectation for diagrams that contain one crossed line.

In contrast to the diffuson propagator discussed above, the
cooperon propagator is sensitive to magnetic flux. Proceed-
ing as before, we find

Cij��,��� =
2Mi


�i
	g̃H + g̃ − 2
i�̃�� − ���
ij

−12Mj


� j
, �66�

with gH defined in Eq. �10�. For the calculations below, we
also need geometric series of Green’s functions of the same
type. These read

Cij
RR��,��� = Cij

AA��,���� =
1

16
2�i� j
�	8Mi + g̃H,ii + g̃ii

− i2
�� + ����i
�ij − g̃ij�1 − �ij�� . �67�

� � �

� � �
a)

b)

+...

+...

= +

+ +

+ +

+

= +...

=

FIG. 5. �a� Diffuson ladder and �b� cooperon ladder.

� �� �
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b)
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A
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R
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FIG. 6. �a� Diagrammatic representation of the leading contri-
bution gcl to the ensemble-averaged conductance �g�. 	�b�–�e�
 Dia-
grams contributing to the weak localization correction �gWL. �f�
Definition of the Hikami-box used in �c�– �e�.
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Cooperon ladders give a correction to the self-energy ap-
pearing in the calculation of the average Green’s function, as
depicted in Fig. 7. Calculation of the self-energy correction
��i to leading order in g /M then gives

��i =
�i

Mi
tr	�Gii

R��Cii
RR�Gii

R� + ��i��Gii
R�
 =

i

4
�i
. �68�

As this contribution is already small as 1 /M, one may ne-
glect the effect of a weak magnetic field on this term. The
self-energy correction �� affects the diffuson ladders as D
→D+�D, with

�Dij = −

2�i

2

2Mi
2 �ij . �69�

This contribution is depicted in Fig. 6�b�.
In the diagrams for the weak localization correction to the

conductance, the cooperon and diffuson propagators are con-
nected in a so-called “Hikami box.”74 In our diagrammatic
analysis the analog of a Hikami box is depicted in Fig. 6�f�.
We consider the general case of a Hikami box with four
energy arguments. We write �1 ��1�� for the energy argument
of the retarded �advanced� matrix propagator on the left side
and �2 ��2�� for the energy argument of the retarded �ad-
vanced� propagator on the right. For the calculation of the
weak localization correction one only needs the case of equal
arguments, �1=�1�=�2=�2�. For dephasing and interaction
corrections, some arguments differ. Explicit calculation
shows that the Hikami box depends on the combination �
=�1�−�1+�2�−�2 only. Hence we write Bij,kl���, where the
indices i and j refer to the left and right �diffuson� ladders
and the indices k and l refer to the bottom and top �cooperon�
ladders.

The calculation is essential but technical; we outline it in
the Appendix. The Hikami box Bij,kl��� is zero except where
at most two different indices appear,

Bij,kl��� =

4�i� j�k�l

16MiMjMkMl
	2
i�i��ij� jk�kl − �ij�kl f̃ ik

+ ��ik�il + � jk� jl� f̃ i j + ��ij�ki + �ij�li� f̃ kl

+ ��il� jk + �ik� jl��g̃ij + g̃H,ij − f̃ i j�
 . �70�

For the evaluation of the weak localization correction, one
also needs to consider Hikami boxes that are connected to
the leads, not only to diffuson propagators inside the quan-
tum dot network. The two contributions of this type are de-
picted in Figs. 6�c� and 6�d�. They are

Baj,j j� = Bja,j j� = −

3� j

3

16Mj
3 faj� . �71�

Combining everything, we have �see Fig. 6�

�gWL = 4D1·� D··�D··D··D·2� + 4 �
i,j=1

ND

Cij	D1·� D··B·2,ji� + B1·,ji� D··D·2�

+ D1·� D··B··,ji�0�D··D·2� 
 , �72�

where Dia� =Dai� was defined in Eq. �65� above and we have
suppressed superscripts as well as inconsequential energy ar-
guments of DRA�� ,��, CRA�� ,�� 	cf. Eqs. �64� and �67�
. The
four terms correspond to the four diagrams �b�–�e� of Fig. 6.
Substituting our results for the Hikami box B, the cooperon
and diffuson propagators C and D, and the interaction propa-
gator L, we arrive at Eq. �15� of Sec. II, with the zero-
temperature cooperon c̃= �g̃+ g̃H�−1.

So far we have not taken into account electron-electron
interactions. To lowest order in perturbation theory in the

interaction Hamiltonian Ĥint, the dominant interaction cor-
rection to weak localization comes from �gdeph in Eq. �57�.
The corresponding diagrams are depicted in Fig. 8. We now
calculate that correction. This interaction correction is non-
zero only if both interaction vertices appear inside the coop-
eron propagator. �This is why this interaction correction does
not affect the leading contribution g0 to the conductance.�

To calculate the interaction correction, one notices that the
interaction vertices are “dressed,” as is shown in Fig. 9. For

� �

δΣ

δ〈G〉
δΣ= +

=

FIG. 7. Dyson equation for corrections to �Gii� due to the pos-
sibility of cooperon like ladders in the time-reversal symmetric
case. Double hatching indicates a retarded-retarded or advanced-
advanced pairing. These ladders are parametrically small and for
that reason can also not extend across multiple dots.
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R ǫ-ω,
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R R R
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A A A

ω

ǫ, RR
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FIG. 8. �Color online� Diagrams for the first-order dephasing
correction. Diagrams depicted in �b� and �c� as well as in �e� and �f�
are weighed with a factor 1/2, in line with Eq. �57�. Together �a�–�c�
constitute the correction to the diffuson propagator, which cancels
to leading order. Hence the only relevant contributions are the cor-
rections to the cooperon in �d�–�f�. In both cases, complex-
conjugate contributions exist which are obtained by placing the ver-
tices on the opposite matrix propagation lines.

TEMPERATURE AND MAGNETIC-FIELD DEPENDENCE OF… PHYSICAL REVIEW B 78, 125313 �2008�

125313-11



this case energy arguments may be neglected, as they lead to
corrections small in g /M. Labeling the dot in which the in-
teraction takes place by the index �, the dressed interaction
then reads

I�,ij
R = �I�,ij

A �� = tr	�Gii
R��1 + tr	�Gii

R��Gii
R�
Dii

RR��Gii
R��Gii

A�
��i��j

=

�i

2Mi
�− i2
�̃ij��i�


�i

2Mi
, �73�

where

Dij
RR��,��� = Dij

AA��,����

=
1

16
2�i� j
�	8Mi + g̃ii − i2
�� + ����i
�ij

− g̃ij�1 − �ij�� . �74�

The interaction correction �C to the equal-energy cooperon
propagator C�� ,�� then becomes

�Cij =� d�� d�

2

	− ��f���
�coth��/2T� + tanh	�� − ��/2T
�

	 �
�,�=1

ND

Im	L��
R ���


		Ci·��,��I�,··
R C··�� − �,��I�,··

R C·j��,��

+ Ci·�� − �,��I�,··
A C··�� − �,� − ��I�,··

R C·j��,� − ��

+ c.c.
 . �75�

Performing the energy integration and passing to dimension-
less propagators, we then find

�cij =� d�

2


�

2T sinh2��/2T� �
�,�=1

ND

Im	4
2����L��
R ���


	��g̃ + g̃H + i2
��̃�i�
−1�g̃ + g̃H���

−1 �g̃ + g̃H − i2
��̃��j
−1

− �g̃ + g̃H�i�
−1�g̃ + g̃H + i2
��̃���

−1 �g̃ + g̃H��j
−1

+ �g̃ + g̃H − i2
��̃�i�
−1�g̃ + g̃H���

−1 �g̃ + g̃H + i2
��̃��j
−1

− �g̃ + g̃H�i�
−1�g̃ + g̃H − i2
��̃���

−1 �g̃ + g̃H��j
−1� . �76�

Let us now inspect the integral in Eq. �76�. The term
between brackets �¯� is proportional to �−2 if ��
 /�D,
where 
 /�D�g /� is the inverse dwell time of a dot in the
network. Since Im LR����� for ��
 /�D, one thus con-
cludes that the integral in Eq. �76� converges at �
�min�
 /�D ,T�. We focus on the regime T�
 /�D, in which
the convergence is at ��
 /�D. In this regime the inequality
��T is obeyed for all frequencies � contributing to the
integral, so that all relevant interaction modes that contribute
to dephasing can be described using the classical fluctuation-
dissipation theorem. Indeed, one verifies that in this regime
the first-order interaction correction 	Eq. �76�
 agrees with
the interaction correction to c̃ obtained in the semiclassical
framework of Sec. III, taken to first order in the interaction
propagator L.

��
ω

= +

R RRRR R

ǫ-ωǫ

FIG. 9. �Color online� Renormalization of the interaction vertex
by ladder diagrams involving Green’s functions of the same type
�retarded-retarded or advanced-advanced�.
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FIG. 10. �Color online� Dyson equation for the cooperon ob-
tained by perturbation theory in the high-temperature limit. The
hatched boxes indicate noninteracting cooperon ladders, while gray
shading indicates that interactions are taken into account. Wiggly
lines indicate the equal-time interaction propagator, which can ei-
ther connect back to the same propagation line or to the opposite
time-reversed one.
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FIG. 11. �Color online� Diagrams contributing to �gint. The Hikami box is defined in Fig. 6.
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Estimating the magnitude of the first-order correction �c̃ij

for T�
 /�D, we find that �c̃ij � c̃ijT /T�, where T��
g /�D
	see Eq. �24� above
. This observation has two conse-
quences: First, it implies that the regimes of validity of first-
order perturbation theory and the semiclassical approach of
Sec. III overlap: Both approaches are valid if 
 /�D�T
�T�. Second, it implies that interactions give no significant
correction to the weak localization correction �gWL if T
�
 /�D, so that we may ignore the difference between the
fully quantum-mechanical interaction correction �c̃ij of Eq.
�76� and the semiclassical result in the low-temperature re-
gime T�
 /�D within the limiting procedure outlined in Sec.
II. �Both approaches give essentially no interaction correc-
tion to weak localization at these temperatures.� When com-
bined, these two observations justify the semiclassical con-
siderations of Sec. III, as well as the expressions �15�–�17�
for the weak localization correction �gWL that followed from
these considerations.

For completeness, we mention that the full temperature
dependence of �gWL can also be obtained from diagrammatic
perturbation theory. Following the above arguments, in the
limit T�
 /�D all factors coth�� /2T�+tanh��−�� /2T ap-
pearing in the calculation may be replaced by 2T /�, irre-
spective of the value of �. This considerably simplifies the
calculation, and the m interaction propagators that appear in
mth order in perturbation theory may then be placed inde-
pendently of each other along the cooperon ladder. Using Eq.
�39� for the interaction propagator and writing the cooperon
ladders �without interaction corrections� in an integral form
similar to Eq. �32�,

�g̃ + g̃H + 2
i��̃�−1 = �2

�̃�−1�
0

�

d�e−�̃�−i��, �77�

one may perform the frequency integrations. The resulting
expression consists solely of time integrations with instanta-
neous interactions. The remaining combinatorial problem
leads to a Dyson equation of the form shown in Fig. 10. Here
the first term on the right-hand side is the noninteracting
cooperon c̃kl= �g̃+ g̃H�kl

−1 and the six other terms are obtained
by different placements of the interaction propagators. 	Note
that where beginning and end are on the same Green’s func-
tion line, an additional weight of 1/2 arises from a factor
�0

�d�����=1 /2.
 Adding the six different contributions gives
a vertex proportional to �4
T /ds
��g̃mm

−1 + g̃nn
−1−2g̃mn

−1 �, so that
one arrives at the Dyson equation

c̃kl = �g̃ + g̃H�kl
−1 − �

m,n=1

ND

	�� + �H�−1��
km,lnc̃mn, �78�

where �, �H, and �� are rank-four tensors whose definition
is given below Eq. �17�. With a little algebra one verifies that
Eq. �78� is equivalent to the result 	Eq. �16�
 derived using
semiclassical arguments.

Equation �76� can also be used to calculate the magnitude
of energy quanta � exchanged with the fluctuating electro-
magnetic field in the quantum dots. Hereto, we note that the
sum of the second and fourth terms between brackets �¯� in
Eq. �76� is proportional to �minus� the probability p1��� for
emission or absorption of a photon along the electron’s tra-
jectory, so that

p1��� =
1

g1·� g̃··
−1g·2�

�
�,�=1

ND �

2
T sinh2 �/2T
Im	4
2����L��

R ���
Re	g1·� g̃·�
−1�g̃ + i2
��̃���

−1 g̃�·
−1g·2� 


=
16T
2

g1·� g̃··
−1g·2�

�
�,�=1

ND

��g̃��
−1 �� Re	g1·� g̃·�

−1�g̃ + i2
��̃���
−1 g̃�·

−1g·2� 
 , �79�

where, in the second equality, we took the limit T�
 /�D.
The probability that one inelastic-scattering event of arbi-
trary frequency occurs is P1=�d�p1���. Equation �79� is
valid as long as P1�1, so that first-order perturbation theory
is sufficient.

From Eq. �79� we conclude that the energy of photons that
are emitted or absorbed is limited by min�
 /�D ,T�. The tem-
perature T� at which the interaction correction to weak lo-
calization becomes relevant is the temperature at which the
probability that at least one energy quantum is exchanged
becomes of order unity. However, the typical exchanged en-
ergy remains of order 
 /�D for all temperatures. This implies
that the broadening of the distribution function by inelastic
processes is parametrically smaller than the temperature T by
a factor 1 /g�1. Transport in the quantum dot network is

thus quasielastic for all temperatures. �Inelastic processes be-
come relevant only if T�ETh,ig

1/2, where ETh,i is the Thou-
less energy of an individual quantum dot.�

4. Interaction corrections to the conductance

The relevant diagrams for the interaction correction to the
conductance �gint are shown in Fig. 11. These diagrams do
not involve cooperon propagators. The diagram shown in
Fig. 11�a� is analogous to the ones we have already encoun-
tered in calculating the �first-order� dephasing correction to
weak localization. It gives an interaction correction to the
diffuson propagator D�� ,�� that depends on the frequency �
of the interaction propagator,
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�D��,ij����a� = Di·��,��I�,··
R D··�� − �,��I�,··

R D·j

= −
4Mi��

�i
g̃i�

−1�g̃ + i2
��̃���
−1 g̃�j

−14Mj��

� j
.

�80�

�The frequency � will be integrated over in the final expres-
sion.� For the remaining diagrams, we need to consider an
interaction vertex that connects an advanced and a retarded
Green’s function. Such an interaction vertex is dressed by a
diffuson propagator, which allows the interaction vertex to
be placed in a dot different from the one that appears at the
outer end of the dressed interaction vertex,

Ĩ�,i��� = ��i + �
k

Dik�� − �,��tr�Gk�
A �����G�k

R �� − ���

=
4Mi��

�i
�g̃ + i2
��̃�i�

−1. �81�

With this interaction vertex, the diagrams of Figs.

11�b�–11�d� �without the outer diffuson ladders� can be rep-
resented by Hikami boxes Bij,kl��� and Baj,kl� of Eqs. �70� and
�71� but with gH→0 because no cooperon ladders are in-
volved. Combining the contributions to the interaction cor-
rection we find

�gint = − 4� d�

2


 �

��
� coth

�

2T
��

��

ND

�
k,l=1

ND

Im�L��
A ���D1·� �D��,··����a�D·2�

+ L��
A ���Ĩk�Ĩl�	B1l,·k� D··D·2� + D1·� D··B·l,2k� + D1·� D··B·l,·k���D··D·2� 
� . �82�

Expressing the propagators in terms of the matrices g̃ and f̃ ,
we find that �gint naturally separates into two contributions,
which are given by Eqs. �20�–�22� of Sec. II. Both correc-
tions are small for all temperatures, and it is not necessary to
consider higher-order contributions involving more than one
interaction propagator L.

V. APPLICATION TO DOUBLE QUANTUM DOT

We now apply the theory of Secs. III and IV to the case of
a double quantum dot. There are two cases of interest: a
linear configuration, in which each dot is coupled to one
reservoir 	see Fig. 12�a�
 and a side-coupled configuration, in
which both reservoirs are connected to the same quantum dot
	see Fig. 12�b�
.

A. Linear configuration

The conductance matrix for the linear double quantum dot
reads

g̃ = 
g11� + g12 − g12

− g12 g22� + g12
� , �83�

where g11� and g22� are the dimensionless conductances of the
contacts connecting the two dots to the reservoirs and g12 is
the dimensionless conductance of the contact between the

two dots 	see Fig. 12
. The form-factor matrix f̃ has a similar
structure, with g11� , g22� , and g12 replaced by f11� , f22� , and f12,
respectively. The classical conductance of the system is Gcl
= �dse

2 /h�gcl, with

gcl
−1 = g11�

−1 + g22�
−1 + g12

−1 �84�

	see Eq. �14� of Sec. II
.

1. Weak localization

The zero-temperature weak localization correction to the
conductance �GWL= �dse

2 /h��gWL follows from substitution
of the zero-temperature cooperon c̃�0� of Eq. �18� into Eq.
�15�,

�gWL

gcl
2 = −

f11� /g11�
2 + f12/g12

2

g11� + gH,1 + g12 − g12
2 /�g22� + gH,2 + g12�

−
f22� /g22�

2 + f12/g12
2

g22� + gH,2 + g12 − g12
2 /�g11� + gH,1 + g12�

−
2�g12 − f12�/g12

�g11� + gH,1 + g12��g22� + gH,2 + g12� − g12
2 .

�85�

Here gH,2 and gH,1 are dimensionless numbers describing the
effect of an applied magnetic field 	see Eq. �10�
. The limit
of zero magnetic field gH,2=gH,1=0 agrees with the result

a) b)

ν1
g′11

C12

g12

ν2

C11 C22

ν1

ν2

g12

g′12

C12

C11

g′11g′22

C22

FIG. 12. Schematic drawings of two double quantum dots. Panel
�a� shows a linear configuration; panel �b� shows a side-coupled
configuration.

JOERN N. KUPFERSCHMIDT AND PIET W. BROUWER PHYSICAL REVIEW B 78, 125313 �2008�

125313-14



obtained previously by Golubev and Zaikin.57 The high-
temperature limit �gWL,d of the weak localization correction
is found by taking the diagonal contribution c̃d of Eq. �19�
for the cooperon propagator,

�gWL,d

gcl
2 = −

f11� /g11�
2 + f12/g12

2

g11� + gH,1 + g12
−

f12/g12
2 + f22� /g22�

2

g22� + gH,2 + g12
. �86�

Note that ��gWL,d�� ��gWL�. The remainder of the weak lo-
calization correction, �gWL−�gWL,d, is temperature depen-
dent because of dephasing from electron-electron interac-
tions. Taking the temperature-dependent cooperon from Eq.
�16�, we find that the temperature dependence of the full
matrix c̃�T� is encoded in a single scalar function f�T�,

c̃�T� = c̃�0� − 	c̃�0� − c̃d
f�T� . �87�

Equation �87� immediately implies that

�gWL�T� = �gWL,d + 	�gWL�0� − �gWL,d
	1 − f�T�
 , �88�

where �gWL�0� and �gWL,d are given in Eqs. �85� and �86�,
respectively. In the regime where temperature is large
enough for dephasing effects to give a sizable correction to
the weak localization correction to the conductance, we ob-
tain f�T� from Eq. �16�,

f�T� =
T

T� + T
, �89�

with

T�

ds
=


��1 + �2��g11� g22� + g11� g12 + g22� g12�
4
�+�−�g11� + g22� �

. �90�

Here �1 and �2 are the �classical� dwell times of the two dots
modified for the presence of a magnetic field,

�1 =
2

�1

g11� + gH,1 + g12
, �2 =

2

�2

g22� + gH,2 + g12
, �91�

whereas �� are time scales representing the relaxation of
symmetric �+� or antisymmetric �−� charge configurations in
the double dot,

1

��

=
1

2�1
+

1

2�2
�

1

2
�
 1

�1
−

1

�2
�2

+
g12

2


2
2�1�2
. �92�

It is instructive to compare Eq. �89� with the expression
for f�T� obtained in first-order perturbation theory,

f�T� =� d�

2


�/2T

sinh2��/2T�

	
2�2

�1 + �2�+
2/
2��1 + �2�−

2/
2�
�+

3�−
3


4�1�2

	Im	L11
R ��� + L22

R ��� − 2L12
R ���
 . �93�

The integral in Eq. �93� converges for frequencies � /
 of
order ��

−1. For these frequencies, we may neglect the capaci-
tance C in the expression for the interaction propagator L
since C /e2��. The resulting frequency integration yields

f�T� =
2
T�+�−

3
��+ − �−�
T

T�

	F1�2
T�−/
� − F1�2
T�+/
�
 ,

�94�

where

F1�x� =
3

x2�1

x
�2��
1

x
� − x2� − 2� , �95�

and �� is the derivative of the digamma function. With the
asymptotic behavior of F1�x�,

F1�x� = �1 −
1

5
x2 +

1

7
x4 + ¯ , x � 1

3

x
−

6

x2 +

2

x3 + ¯ , x � 1,� �96�

we identify three different regimes for the temperature de-
pendence of the dephasing correction:

f�T� =
1

15
�+�−��+ + �−�
2
T



�3 T

T�

�97�

if T�
 /�+,

f�T� =
2
T�−

3


T

T�

�98�

if 
 /�+�T�
 /�−, and

f�T� = T/T� �99�

if 
 /�−�T, where T� is given by Eq. �90� above. The inter-
mediate temperature regime exists only if �+��−. A compari-
son of Eq. �99� with Eqs. �89� shows that the two expressions
for f�T� agree in the temperature regime 
 /�−�T�T�

where both expressions are valid. It is in this temperature
regime that the factor �� /2T� /sinh2�� /2T� in Eq. �93� can
be approximated by 2T /�, which is the appropriate weight
appearing in the classical fluctuation-dissipation theorem.

It should be noted that the low-temperature corrections
	Eqs. �97� and �98�
 result in contributions to the conduc-
tance of order O�1 /g�. Such contributions are beyond the
accuracy achieved in the limiting procedure outlined in Sec.
II. Further contributions of the same order might be obtained
by calculating, e.g., weak localization corrections to the in-
teraction corrections �gint,1 and �gint,2. For disordered metals
such contributions have been considered explicitly in Ref. 7.

The above equations take a simpler form in the limiting
cases of large and small interdot coupling g12 and of a large
magnetic field. For small interdot coupling g12
�min�g11� ,g22� �, one has

�gWL = −
f11� g12

2 + f12g11�
2

g11�
2�g11� + gH,1�

−
f22� g12

2 + f12g22�
2

g22�
2�g22� + gH,2�

−
2�g12 − f12�g12

�g11� + gH,1��g22� + gH,2�
T�

T� + T
, �100�
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T�

ds
= g11� g22�

�g11� + gH,1��1
−1 + �g22� + gH,2��2

−1

8
2�g11� + g22� �
, �101�

so that only a small part of the total weak localization cor-
rection is temperature dependent. In the limit of a large in-
terdot conductance, g12�max�g11� ,g22� ,gH,1 ,gH,2�, the full
weak localization correction acquires a temperature depen-
dence,

�gWL = −
g22�

2f11� + g11�
2f22�

�g11� + g22� �2�g11� + gH,1 + g22� + gH,2�
T�

T� + T
,

T�

ds
= g12

�g11� + gH,1 + g22� + gH,2���1
−1 + �2

−1�
8
2 . �102�

Finally, in the limit of large magnetic field, gH,1 ,gH,2
�max�g11� ,g22� ,g12�, we have

�gWL = − gcl
2 f11� /g11�

2 + f12/g12
2

gH,1
− gcl

2 f22� /g22�
2 + f12/g12

2

gH,2

− gcl
2 g12 − f12

g12gH,1gH,2

T�

T� + T
, �103�

T�

ds
=

g12

8
2 �gH,1�1
−1 + gH,2�2

−1� . �104�

A special case of two weakly coupled quantum dots �g12
�g11� ,g22� � with tunneling contacts �f11� �g11� , f22� �g22� , f12
�g12� has been considered recently by Golubev and
Zaikin.58 While our calculation agrees with that of Ref. 58 in
the high-temperature regime T�T�, significant differences
appear in the low-temperature limit. In particular, Golubev
and Zaikin found a finite dephasing correction to weak local-
ization at zero temperature, whereas we find no such effect.
A similar discrepancy has been found previously in the con-
text of dephasing from the electron-electron interaction in
disordered metals.7,75 In this case the neglect of recoil effects
in the influence functional approach used by Golubev and
Zaikin has been identified as the cause of the problem.76 This
causes an ultraviolet divergence, which does not appear in
the perturbation theory, where it is avoided by the tanh term
in the factor coth�� /2T�+tanh	��−�� /2T
 that sets the mag-
nitude of the dephasing correction at low temperatures 	see,
e.g., Eq. �57� and Refs. 7 and 76
. �Neglect of recoil amounts
to neglecting the � dependence of the argument of the tanh,
which causes this factor to no longer approach zero at large
frequencies �.� We believe that the discrepancy between our
result and that of Ref. 58 has the same origin.

2. Interaction corrections

The interaction corrections �gint,1 and �gint,2 do not de-
pend on the magnetic field. Hence, the relevant time scales
do not involve gH,1 and gH,2, and we define

�i =
2

�i

gii� + g12

, i = 1,2. �105�

Again, we introduce time scales �� related to �1 and �2 as in
Eq. �92� above. For the first interaction correction �gint,1 we
then find

�gint,1 =
gcl

3

dsg11� g12g22�
� d�
 �

��
� coth

�

2T
�

	Im
��+ + �−�/


�1 + i��+/
��1 + i��−/
�
. �106�

This result was obtained previously in Ref. 26 for the sym-
metric case g11� =g22� , �1=�2 and in Ref. 25 for the case g11�
=g22� =g12, �1=�2. The frequency integral in Eq. �106� can be
evaluated in terms of digamma functions. We have

� d�
 �

��
� coth

�

2T
�Im� 1

�1 + i���/
��1 + i���/
��
=

2


�� − ��
�F2
 


2
T��
� − F2
 


2
T��
�� , �107�

where

F2�x� = ��1 + x� + x���1 + x� �108�

and ��x� is the digamma function.25 From the asymptotic
behavior of F2,

F2�x� = �− � +

2

3
x − 3��3�x2 + ¯ , x � 1

1 + ln x +
1

12x2 + ¯ , x � 1,�
�109�

with � the Euler-Mascheroni constant, we obtain the high-
and low-temperature limits of the interaction correction
�gint,1,

�gint,1 = −
2gcl

3

dsg11� g12g22� �
�+ + �−

�+ − �−
ln

�+

�−
, T � 
/��



��+ + �−�
6T�+�−

, T � 
/��.�
�110�

The second interaction correction �gint,2 is expressed in
terms of interaction-induced shifts �g11� , �g22� , and �g12 to the
conductances g11� , g22� , and g12, respectively 	see Eq. �21�
. In
contrast to the interaction correction �gint,1 considered above,
the frequency integrations needed to calculate �g11� , �g22� , and
�g12 converge only if we account for the finite �nonzero�
capacitances of the quantum dots 	see Eq. �22�
. 	The inte-
gration in Eq. �22� diverges logarithmically if the limit
Cii /e2�i→0 is taken.


Below we give explicit expressions for the case of a sym-
metric double dot only, g11� =g22� =g�, f11� = f22� = f�, �1=�2, and
C=C11=C22. In this case, the logarithmic divergence of the
integration in Eq. �22� is cut off at the inverse of the charge-
relaxation times,
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�c+ =
�+

dse
2�/C

, �c− =
�−

dse
2�/�C + 2C12�

, �111�

and the corrections �g11� =�g22� =�g� and �g12 are found to be

�g� =
g� − f�

dsg�
�
�=�

��

�+
�F2
 


2
T��
� − F2
 


2
T�c�
�� ,

�112�

�g12 =
2�g12 − f12�

dsg12

�+ − �−

�+

	�F2
 1

2
T�−/
� − F2
 1

2
T�c−/
�� . �113�

For the case g�=g12, f�= f12, and C12=0, Eqs. �112� and
�113� agree with results obtained previously in Ref. 25. 	The
result of Ref. 25 differs from Eqs. �112� and �113� if C12
�0 because Ref. 25 includes cross capacitances between
each dot and adjacent reservoir of the same magnitude as the
cross capacitance C12 between the two dots.
 Equation �112�
simplifies to the renormalization of the contact conductance
for a single-quantum dot in the limit g12→�.36,38,39 Again
making use of the asymptotic behavior of the digamma func-
tion, we find that the above expressions simplify to

�g� = −
g� − f�

dsg�

	�
ln

�+

�c+
+

�−

�+
ln

�−

�c−
, T � 
/��

ln
e1+�

2
T�c+
+

�−

�+
ln

e1+�

2
T�c−
, 
/�� � T � 
/�c�





6T�+

 �+

�c+
+

�−

�c−
� , 
/�c� � T ,

�
�114�

�g12 = −
4�g12 − f12�

dsg12

�+ − �−

�+

	�
ln

�−

�c−
, T � 
/��

ln
e1+�

2
T�c−
, 
/�− � T � 
/�c−





6T�c−
, 
/�c� � T .

� �115�

B. Side-coupled quantum dot

For the side-coupled double dot configuration of Fig. 12
the structure of the weak localization correction and the in-
teraction corrections is essentially the same as for the linear
configurations. The classical conductance is

gcl
−1 = g11�

−1 + g12�
−1. �116�

The weak localization correction to the conductance is

�gWL = −
f22� g11�

2 + f11� g12�
2

�g11� + g12� �2�g11� + g12� + g12 + gH,1�

	�1 +
g12

2 	1 − f�T�

�g11� + g12� + gH,1��g12 + gH,2� + g12gH,2

� ,

where f�T�=T / �T�+T�,

T�

ds
=

1

4


�1 + �2

�+�−
g12, �117�

and

�1 =
2

�1

g11� + g12� + gH,1 + g12
, �2 =

2

�2

g12 + gH,2
, �118�

with �� given in terms of �1 and �2 as in Eq. �92�.
Again, it is instructive to compare to what one finds to

lowest order in perturbation theory. The result is identical to
Eq. �94�, where �1 ,�2 and T� are those of the side-coupled
system 	Eqs. �117� and �118�
. Simplified expressions for the
function f�T� in the regimes T�
 /�+, 
 /�+�T�
 /�−, and

 /�−�T are as in Eqs. �97�–�99�.

In the limit of small interdot coupling g12→0 only a very
small fraction of the weak localization correction is tempera-
ture dependent,

�gWL = −
f22� g11�

2 + f11� g12�
2

�g11� + g12� �2�g11� + g12� + gH,1�

	�1 +
g12

2

�g11� + g12� + gH,1�gH,2

T�

T� + T
� ,

T�

ds
=

g12

8
2 	�g11� + g12� + gH,1��1
−1 + gH,2�2

−1
 . �119�

In the opposite limit of a large interdot conductance the en-
tire weak localization correction is temperature dependent. In
this limit there is no difference between the linear and side-
coupled configurations, and one finds that �gWL is given by
Eq. �102� above, with g22� replaced by g12� . Finally, in the
limit of large magnetic fields we find

�gWL = −
g12�

2f11� + g11�
2f22�

�g11� + g12� �2gH,1

1 +

g12
2

gH,1gH,2

T�

T� + T
� ,

T�

ds
=

g12

8
2 �gH,1�1
−1 + gH,2�2

−1� . �120�

With a side coupled quantum dot, the interaction correc-
tion �gint,1 to the conductance vanishes. The interaction cor-
rection �gint,2 coming from the renormalization of the contact
conductances remains. The detailed expressions are rather
lengthy and will not be reported here.
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VI. CONCLUSION

We have calculated the quantum corrections to the con-
ductance of a network of quantum dots, including the full
dependence on temperature and magnetic field. Our results
are valid in the limit that the quantum dot network has con-
ductance g much larger than the conductance quantum, so
that the quantum corrections are small in comparison to the
classical conductance, and in the limit that the electron dy-
namics inside each quantum dot is ergodic. Following the
literature, we separated the quantum corrections into the
weak localization correction �gWL and two interaction cor-
rections �gint,1 and �gint,2. Our results for the interaction cor-
rections agree with previous calculations of �gint,1 and �gint,2

by Golubev and Zaikin25 for a linear array of quantum dots
and are closely related to similar interaction corrections in a
granular metal 	see Ref. 24
. Our result for �gWL agrees with
the literature in the limit of zero temperature56,57 and in the
high-temperature limit,66 but we are not aware of a calcula-
tion of the full temperature dependence of �gWL in the litera-
ture. �The exception is a calculation of �gWL for a double
quantum dot by Golubev and Zaikin58 which, however, gives
an unphysical result in the limit of zero temperature.�

We have formulated our final results in such a way that
the evaluation of quantum corrections for a network of a
relatively small number ND of quantum dots does not require
more than the inversion of an ND-dimensional matrix. All
quantum corrections to the conductance can be expressed in
terms of the interdot conductances, form factors, and the ca-
pacitances only. In principle, these parameters can be mea-
sured independently. This makes a small quantum dot net-
work an ideal model system to compare theory and
experiment, and to unambiguously identify the mechanisms
responsible for dephasing. �Capacitances and form factors
play a role only if the dots are connected via nonideal con-
tacts in which one or more transmission eigenvalues are
smaller than one. For lateral quantum dot networks defined
in semiconductor heterostructures, contacts are typically bal-
listic and the only relevant parameters are the quantized con-
ductances of the contacts between the quantum dots.�

The simplest example of a small quantum dot network is
a “double quantum dot,” which consists of two quantum dots

coupled to each other and to electron reservoirs via point
contacts. Several groups have reported transport measure-
ments on such double dots77–80 or even on triple dots.78

�Double quantum dots also play a prominent role in recent
attempts to achieve quantum computation.81 However, the
dots used in these experiments typically hold one or two
electrons each and cannot be described by random matrix
theory.� Although, in principle, the contact conductances in
lateral double and triple quantum dot networks are fully tun-
able, the experiments of Refs. 77–80 were performed for the
case that the devices are weakly coupled to the source and
drain reservoirs. In that limit, transport is dominated by the
Coulomb blockade. Our theory applies to the opposite re-
gime in which all dots in the network are open, well coupled
to source and/or drain reservoirs. We hope that the availabil-
ity of quantitative theoretical predictions will lead to re-
newed experimental interest in quantum transport through
open quantum dots.
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APPENDIX: HIKAMI-BOX CALCULATION

In this appendix we provide details on the derivation of
Eqs. �70� and �71� of Sec. IV. The explicit expression for the
Hikami box is an essential part of the calculation of the
quantum corrections to the conductance, but we have not
found the explicit expression of Eq. �70�, or its derivation, in
the literature.

We refer to the text surrounding Eq. �70� for the notations
used in this appendix. In general, the Hikami box Bij,kl���
will be nonzero only if the four indices span at most two
adjacent quantum dots. We here show the calculation of
Bii,ii���. There are three contributions to Bii,ii���, which are
shown in Figs. 13 ii,ii �a�-�c�. They read

Bii,ii
�a� ��1,�1�,�2,�2�� = tr	�Gii

R��1���Gii
A��2����Gii

R��2���Gii
A��1���


=

4�i

4

Mi
3 �1 +

i
�i��1 − �1� + �2 − �2��
2Mi

+ tr�− 2�i�Mi − �i�
�Mi + �i�3 +

�i
4

Mi�Mi + �i�4�� , �A1�

Bii,ii
�b� ��1,�1�,�2,�2�� = �tr	�Gii

R��1���Gii
A��2����Gii

R��2��
�Cii
RR��1,�2��tr	�Gii

R��1���Gii
R��2���Gii

A��1���
�

= −

4�i

4

2Mi
3�1 +

g̃ii − g̃H,ii + i2
�3�1 − 2�1� + 3�2 − 2�2��
8Mi

+
1

Mi
tr��i

3 − 3Mi
2�i

�Mi + �i�3 �� , �A2�

Bii,ii
�c� ��1,�1�,�2,�2�� = �tr	�Gii

R��1���Gii
A��2����Gii

A��1���
�Cii
AA��2�,�1���tr	�Gii

A��2����Gii
R��2���Gii

A��1���
�

= −

4�i

4

2Mi
3�1 +

g̃ii − g̃H,ii + i2
�2�1 − 3�1� + 2�2 − 3�2��
8Mi

+
1

Mi
tr��i

3 − 3Mi
2�i

�Mi + �i�3 �� , �A3�
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where the Mi	Mi matrix �i was defined in Eq. �63� above.
Traces involving the matrices �i can be calculated using the
identities

tr� �i

�Mi + �i�2� = �
k

gik

4Mi
, �A4�

tr� �i
2

�Mi + �i�4� = �
k

f ik

16Mi
2 . �A5�

Addition of Eqs. �A1�–�A3� gives

Bii,ii��� =

4�i

4

16Mi
4 	2
i�i� + 2�g̃H,ii + g̃ii� + f̃ ii
 , �A6�

where �=�1�−�1+�2�−�2.
The diagrams for the relevant contributions to Bij,kl��� in

which the indices differ are shown in the other panels of Fig.

13. Expressing these contributions in terms of the matrices
�i and performing the traces with the help of Eqs. �A4� and
�A5�, we find

Bij,ij��� =

4�i

2� j
2

16Mi
2Mj

2 �f ij − gij� , �A7�

Bii,ij��� =

4�i

3� j

16Mi
3Mj

�− f ij� , �A8�

Bii,j j��� =

4�i

2� j
2

16Mi
2Mj

2 f ij �A9�

for i� j. Other contributions are related by symmetry. Re-
writing the general case Bij,kl��� in terms of the matrices g̃

and f̃ for contact conductances and form factors, we obtain
the result given in Eq. �70� of Sec. IV.

If a Hikami box is placed adjacent to a lead, one finds the
three contributions shown in Fig. 14. Adding these we find,
with the help of Eq. �A5�,

Baj,j j� =

5�a� j

4

Mj
4 tr�WjaWaj

− Mj
3� j

�Mj + � j�4� = −

3� j

3

16Mj
3 faj� .

�A10�

This is the result reported in Eq. �71� of the main text.
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