
Magnetic oscillations of resistivity and absorption of radiation in quantum wells
with two populated subbands

O. E. Raichev*
Instituto de Física da Universidade de São Paulo, CP 66318 CEP 05315-970, São Paulo, SP, Brazil

�Received 21 May 2008; revised manuscript received 21 July 2008; published 3 September 2008�

The dynamic �ac� conductivity tensor of quantum wells with two populated subbands in the presence of a
magnetic field perpendicular to the well layer is calculated theoretically. The microscopic theory is based on
the Kubo formalism assuming a detailed consideration of elastic scattering of electrons by the random disorder
potential with arbitrary correlation length. The results describe the influence of magnetic field on the linear
absorption of low-frequency electromagnetic radiation, and demonstrate the existence of magnetic oscillations
that survive at high temperatures and whose maxima correspond to absorption of electromagnetic radiation at
combined frequencies, determined by both the magnetic field and the subband separation. Different polariza-
tions of the radiation field with respect to the quantum-well layer are considered. Analytical expressions are
derived for the case of sufficiently weak magnetic field when the Landau levels are overlapping. Application of
the theory to the static �dc� limit provides a consistent description of the magneto-intersubband oscillations of
the resistivity in the systems with two populated subbands.
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I. INTRODUCTION

The discovery of the microwave-induced resistance
oscillations1 whose minima evolve into zero-resistance
states2,3 at sufficiently high intensity of the radiation has
stimulated intensive experimental and theoretical activity.4

These oscillations are related to modification of microwave
absorption in the presence of a magnetic field when the den-
sity of electron states, owing to the Landau quantization,
acquires an oscillating contribution. For this reason, studies
of the absorption of electromagnetic radiation by two-
dimensional �2D� electrons in a magnetic field perpendicular
to the 2D plane are of particular interest. In weak enough
magnetic fields when the Landau quantization is not essen-
tial, the absorption is described by the classical Drude-
Lorentz formula for the dissipative ac conductivity �d���
and shows a peak corresponding to the cyclotron resonance
condition �=�c, where � is the frequency of electromag-
netic field and �c is the cyclotron frequency. In quantizing
magnetic fields, �d��� has another important contribution,
which oscillates with the magnetic field as5

cos
2��

�c
. �1�

The maxima of these oscillations occur under the condition
�=k�c �k is integer�, which corresponds to harmonics of the
cyclotron resonance. The existence of these harmonics as a
result of electron scattering between different Landau levels
was pointed out by Ando.6 Such harmonics have been ob-
served experimentally in surface space-charge layers on Si.7

In contrast to the conventional Shubnikov-de Haas oscilla-
tions of the dc magnetoresistance, which are exponentially
suppressed with the increase in temperature T, the oscilla-
tions �Eq. �1�� survive at high temperature.5 The amplitude of
these ac magnetoconductivity oscillations is proportional to
the square of the Dingle factor exp�−� /�c��, where � is the
quantum lifetime of electrons.

The phenomena of the dc magnetoresistance oscillations
under microwave irradiation and of the oscillating ac mag-
netoconductivity have been studied so far for 2D electron
systems realized in quantum wells with a single �ground-
state� populated subband. The physics of these phenomena is
expected to be more rich and interesting in the case of
two-subband occupation �Fig. 1�, owing to the intersubband
coupling via scattering. This coupling leads to dc magnetore-
sistance oscillations, which are similar to the ac magnetocon-
ductivity oscillations described above in the sense that these
oscillations also survive at high temperatures and are propor-
tional to the square of the Dingle factor. The mechanism
responsible for these oscillations relies on periodic modula-
tion of the elastic intersubband scattering by Landau quanti-
zation. As the different Landau levels of the two subbands
sequentially come in alignment, there appears the oscillating
contribution

cos
2��12

�c
, �2�

where �12 is the subband energy separation �here and below,
we use the system of units where Planck’s constant � is

FIG. 1. Schematic of the confinement potential profile and sub-
band structure of the �a� single-quantum-well and �b� double-
quantum-well systems. The dashed lines show the position of the
chemical potential for the case of two populated subbands. Two
staircases of Landau levels originating from the subbands 1 and 2 in
a magnetic field are shown on the right.
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equal to one�. Such oscillations, often called the magneto-
intersubband �MIS� oscillations, have been theoretically pre-
dicted by Polyanovsky8 and experimentally observed in
single-quantum wells with two populated 2D subbands.9–12

Microscopic theories of the MIS oscillations have been pre-
sented in Refs. 13 and 14. Recent investigations of magne-
totransport in high-mobility electron systems with small sub-
band separation, which are realized in double-quantum wells
�DQWs�, have revealed long-period MIS oscillations with
large amplitudes15 so the interest to this phenomenon is ex-
pected to be renewed.

The aim of this paper is to develop a microscopic theory
of the linear ac magnetoconductivity in quantum wells with
two occupied subbands. The consideration presented below
shows that the oscillating properties of the ac magnetocon-
ductivity in these systems are determined by the interference
of the mechanisms responsible for the oscillations �Eqs. �1�
and �2��. This leads to the magnetic oscillations whose peri-
odicity is described by the functions

cos
2���12 + ��

�c
, cos

2���12 − ��
�c

. �3�

These oscillations, whose maxima correspond to absorption
of electromagnetic radiation at combined frequencies �
= ��12−k�c�, can be possibly detected in experiments on
transmission or reflection of electromagnetic radiation in
quantum wells.7,16,17

Whereas the origin of the oscillations �Eq. �3�� is clear
from the explanation given above, their description based on
a microscopic theory is a complicated problem that requires
a careful consideration of electron scattering in the case of
many-subband occupation. Analytical consideration of the ac
magnetoconductivity can be done for sufficiently weak mag-
netic fields when the Landau levels are overlapping. Even
then, extensive calculations are necessary and the general
expressions derived in this paper appear to be complicated.
Nevertheless, relatively simple analytical expressions are
found under additional reasonable assumptions about scatter-
ing and subband occupation.

The problem remains complicated even in the static �dc�
limit, �=0, which has been already studied theoretically13,14

in application to the MIS oscillations in single-quantum
wells with two populated subbands. These previous studies,
however, are not complete because they are done under a
simplifying approximation of the short-range disorder poten-
tial. Moreover, the analytical results obtained in Refs. 13 and
14 are different from each other, and from the results of this
paper �when taken in the short-range disorder limit�. The
theory of this paper at �=0 gives a consistent description of
the MIS oscillations, valid for disorder potentials with arbi-
trary correlation lengths. A simple analytical expression for
the oscillating dc resistivity in the limit of classically strong
magnetic fields is derived.

When several subbands are involved into consideration,
there exists the absorption of electromagnetic radiation po-
larized perpendicular to the quantum-well plane. This ab-
sorption demonstrates the intersubband resonance peaks ex-
tensively studied in quantum wells, both theoretically and
experimentally, by means of transmission and reflection of

electromagnetic radiation in the far-infrared and terahertz
spectral regions.18 The line shape of intersubband resonance
in the presence of elastic scattering of electrons and a strong
perpendicular magnetic field has been investigated by
Ando.19 Ando has shown that the line shape depends on the
relative position of the Landau levels of two subbands and
predicted quantum oscillations of absorption as a function of
the applied magnetic field with the period determined by the
condition �12=k�c. Ando has considered the case of fully
separated Landau levels. In this paper, the calculations are
done for the case of overlapping Landau levels and the os-
cillations corresponding to combined resonances are de-
scribed.

The paper is organized as follows. Section II contains the
essentials of the linear-response formalism based on Kubo
technique in application to the systems with two occupied
2D subbands. The calculation of the components of the ac
conductivity tensor and investigation of some limiting cases
are given in Sec. III. The static �dc� response is analyzed in
Sec. IV. Magnetic oscillations of the absorption of radiation
polarized perpendicular to the quantum-well plane are de-
scribed in Sec. V. The conclusions and a discussion of the
approximations are presented in Sec. VI.

II. FORMALISM

Consider a system of electrons interacting with a random
static potential of impurities or other inhomogeneities. The
conductivity tensor describing linear response of the system
to the electric field of frequency � is given by the Kubo
formula:20

��	��� =
ie2ns

m�

�	 +

e2

2��L2� d�f�Sp���Ĝ�
A − Ĝ�

R�

� v̂�Ĝ�+�
R v̂	 + v̂	Ĝ�−�

A v̂��Ĝ�
A − Ĝ�

R��� , �4�

where e is the electron charge, ns is the electron density, f� is

the equilibrium Fermi distribution, Ĝ�
R�A� is the retarded �ad-

vanced� Green’s function in the operator form, v̂ is the ve-
locity operator, L2 is the normalization square, Sp denotes
the trace over all quantum-mechanical variables including
spin, and the double angular brackets denote the averaging
over the random potential. The Hamiltonian of the system is
written as

Ĥ =
�p̂ − eA/c�2

2m
+ U�z� + V�r,z� , �5�

where p̂ is the momentum operator, A is the vector potential
describing the magnetic field, U�z� is the confinement poten-
tial, V�r ,z� is the random potential, r= �x ,y� is the 2D coor-
dinate vector, m is the effective mass of electrons, and c is
the velocity of light. The magnetic field is assumed to be
weak enough to neglect the Zeeman splitting.

Assuming that the magnetic field H is perpendicular to
the 2D plane �xy�, we use the gauge A= �0,Hx ,0� and apply
the basis of exact eigenstates in the absence of scattering
potential, �jnpy�, where integers j and n number the subbands
and the Landau levels, respectively. The corresponding free-
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electron energy spectrum in each subband is given by the
separate sets of equidistant Landau levels �see the right part
of Fig. 1�:

� jn = � j + �c�n + 1/2� , �6�

where � j is the energy of the subband j describing electron
confinement in the potential U�z� and �c= �e�H /mc is the
cyclotron frequency. This simple form of the energy spec-
trum reflects the fact that the motion in the quantum-well
plane is separable from the motion in the z direction. For the
same reason, the eigenstates can be written as products
�j��npy�, where �npy� are the Landau eigenstates in the chosen
gauge and �j� corresponds to the envelope function of elec-
trons in the subband j.

If the electric field E is directed in the 2D plane xy �the
case of normally incident radiation�, there are two compo-
nents of the conductivity tensor: the dissipative and nondis-
sipative ones, expressed as

�xx = �yy = �d��� =
�+��� + �−���

2
,

�yx = − �xy = ����� =
�+��� − �−���

2i
. �7�

The absorption coefficient, defined as a ratio of absorbed
power to incident power, for the linearly polarized electro-
magnetic radiation is written in terms of �
��� as17,21

���� = 	



2� Re �
���/c
�

�1 + 2��
���/c
��2
, �8�

where � is the dielectric permittivity of the medium sur-
rounding the quantum well. The denominator in Eq. �8� can
be larger than unity for high-mobility and high-density elec-
tron layers.

Using expressions for the matrix elements of the velocity
operator v= �p̂−eA /c� /m in the chosen basis and taking into
account double degeneracy in spin, one can rewrite the Kubo
formula �4� as

�
��� = i
e2ns

m�
+

e2

2�m�
� d�	

j j�

��f� − f�+��Qjj�

AR ��,��

+ f�+�Qjj�

AA ��,�� − f�Qjj�


RR ��,��� , �9�

where

Qjj�+
ss� ��,��=

2�c

L2 	
nn�


�n + 1��n� + 1�

�	
pypy�

��G�
j j�,s�n+1py,n�+1py��G�+�

j�j,s��n�py�,npy��� ,

�10�

Qjj�−
ss� ��,�� =

2�c

L2 	
nn�


�n + 1��n� + 1� 	
pypy�

��G�
j j�,s�npy,n�py��

�G�+�
j�j,s��n� + 1py�,n + 1py��� , �11�

and G�
j j�,s�npy ,n�py����jnpy�Ĝ�

s �j�n�py��.
The pair correlators standing in Eqs. �10� and �11� are

related to the average of single Green’s function. The aver-

aged Green’s function is given by ��G�
j j�,s�npy ,n�py����

=
nn�
pypy�
G�n

jj�,s, where G�n
jj�,s contains both intrasubband

�j= j�� and intersubband �j� j�� components coupled by the

system of equations 	 j1
���−� jn�
 j j1

−��n
jj1,s�G�n

j1j�,s=
 j j�. The

self-energies ��n
jj�,s describe electron scattering by the disor-

der potential. Below we use the approximation of well-
defined subbands when the scattering-induced broadening is
small in comparison to subband separation. Then, the inter-
subband components of both averaged Green’s functions and

self-energies can be neglected, G�n
jj�,s=
 j j�G�n

j,s and ��n
jj�,s

=
 j j���n
j,s, and we obtain

G�n
j,s =

1

� − � jn − ��n
j,s . �12�

In the self-consistent Born approximation �SCBA�, the self-
energy is given by22

��n
j,s = 	

j�n�
�

0

� dq2

4�
wjj��q��nn��q

2lH
2 /2�G�n�

j�,s, �13�

where wjj��q�=�d�re−iq·�r��Vjj��r+�r�Vj�j�r��� is the spa-
tial Fourier transform of the correlation function of the ef-
fective random potentials defined as Vjj��r�= �j�V�r ,z��j��, q
is the absolute value of the momentum transferred in the
scattering, and lH=
c / �e�H is the magnetic length. The func-

tion �nn��u�= n!
n�!

un�−ne−u�Ln
n�−n�u��2, where Ln

��u� are the La-
guerre polynomials, characterizes scattering between the
Landau levels n and n�.

Calculation of G�n
j,s, and of the correlators in Eqs. �10� and

�11� is considerably simplified for weak enough magnetic
fields when the magnetic length is large in comparison to the
correlation lengths ljj characterizing the scale of the q depen-
dence of wjj�q�. In fact, one needs to satisfy the condition
ljj
2 
n� lH

2 , where n is the relevant Landau-level number �n

��−� j� /�c�1�. Simultaneously, one should satisfy the
condition � j � ljj, where � j is the mean-free path of electron
in the subband j in the absence of magnetic field. Under
these conditions, the Landau-level dependence of ��n

j,s is
weak enough to be neglected in the interval of small
��−� jn� where the contribution of ��n

j,s into Green’s function
G�n

j,s is essential. Moreover, Eq. �13� is reduced to

��n
j,s � ��

j,s = 	
j�

� j j����S�
j�,s, S�

j,s =
�c

2�
	

n

G�n
j,s, �14�

where
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� j j���� = m�
0

2� d�

2�
wjj��
pj�

2 + pj��
2 − 2pj�pj�� cos ��

�15�

are the partial elastic-scattering rates in the absence of mag-
netic field, pj�=
2m��−� j� are the electron momenta in the
subbands, and � is the scattering angle. According to the
definition �Eq. �15��, � j j�=� j�j. The dimensionless functions
S�

j,s become very simple in the case of zero magnetic field,
S�

j,A= i /2. At a finite field, they acquire oscillating depen-
dence on energy according to

S�
j,A =

i

2
− i��

j + . . . , ��
j = e−�j exp

2�i�� j − ��
�c

, �16�

and S�
j,R= �S�

j,A��. Here and below, e−�j is the Dingle factor for
subband j,

� j =
�

�c� j
,

1

� j
� � j = 	

j�

� j j�, �17�

and � j is the quantum lifetime of electron in the subband j.
The terms denoted by the dots in Eq. �16� correspond to
higher powers of Dingle factors. Basically, Eqs. �12� and
�14�–�17� represent a many-subband generalization of the
SCBA approach for the case of overlapping Landau levels.23

According to the definition of S�
j,A, the density of states in the

subband j is �2m /��Im S�
j,A, which is reduced to the 2D den-

sity of states, m /�, if the magnetic field is zero.
Now let us turn to the pair correlators. By defining the

function

K���
j j�,ss��n,n + 1�n�,n� + 1� =

1

L2 	
pypy�

��G�
j j�,s�npy,n�py��

�G��
j�j,s��n� + 1py�,n + 1py��� ,

�18�

one can write an equation for this function in the ladder
approximation:

K���
j j�,ss��n,n + 1�n�,n� + 1�

=
1

2�lH
2 G�n

j,sG��n+1
j,s� �
 j j�
nn� + 	

j1k
�

0

�

duwjj1
�
2u/lH�

��nk�u�K���
j1j�,ss��n + k,n + k + 1�n�,n� + 1�� , �19�

where the variable of integration is related to the transferred
momentum q as u=q2lH

2 /2, and

�nk�u� =
 n ! �n + 1�!
�n + k� ! �n + k + 1�!

e−uukLn
k�u�Ln+1

k �u� .

�20�

To find Qjj�−
ss� �� ,��, one should multiply K��+�

j j�,ss��n ,n
+1 �n� ,n�+1� by 
�n+1��n�+1� and take the sums over Lan-
dau levels. An equation similar to Eq. �19� can be written for

the function K��+�
j j�,ss��n+1,n �n�+1,n�� defining Qjj�+

ss� �� ,�� in
a similar way.

The second term on the right-hand side of Eq. �19� de-
scribes the vertex correction and vanishes in the limit of
short-range scattering potentials when wjj1

does not depend
on the transferred momentum. In this case, the functions

Qjj�−
ss� and Qjj�+

ss� are expressed through the “bare” correlators

K���
j j�,ss��b��n ,n+1 �n� ,n�+1�= �2�lH

2 �−1G�n
j,sG��n+1

j,s� 
 j j�
nn� and

K���
j j�,ss��b��n+1,n �n�+1,n��= �2�lH

2 �−1G�n+1
j,s G��n

j,s�
 j j�
nn�, re-
spectively:

Qjj�−
ss� = 
 j j�2�c	

n

�n + 1�K��+�
j j,ss��b��n,n + 1�n,n + 1� ,

�21�

and

Qjj�+
ss� = 
 j j�2�c	

n

�n + 1�K��+�
j j,ss��b��n + 1,n�n + 1,n� .

�22�

In the limits ��−� j���c, �, one obtains

	
j j�

Qjj�

ss� ��,�� = 	

j

pj�
2 � j


ss���,�� . �23�

The function � j

ss� has dimensionality of time and is ex-

pressed through the functions defined by Eq. �14�:

� j

ss���,�� =

�c

2�
	

n

G�,n
1
j,s G�+�,n

j,s� =
S�

j,s − S�+�
j,s�

� 
 �c + ��
j,s − ��+�

j,s�
.

�24�

If momentum dependence of wjj1
in Eq. �19� is important,

the vertex correction should be taken into account. However,

using the fact that the products G�n
j,sG��n+1

j,s� are large only in
the vicinity of ��� jn and employing the assumed condition
ljj
2 
n� lH

2 together with ��−� j���c, �, one gets the follow-
ing system of algebraic equations:24

Qjj�

ss� = pj�

2 � j

ss�
 j j� + � j


ss�	
j1

�̃ j j1

pj�

pj1�

Qj1j�

ss� , �25�

where

�̃ j j���� = m�
0

2� d�

2�
cos �wjj��
pj�

2 + pj��
2 − 2pj�pj�� cos �� .

�26�

In contrast to the case of short-range scattering potentials, the

nondiagonal Qjj�

ss� are nonzero.

In what follows, the subband basis is restricted to a pair of
lowest subbands, j=1,2. Solution of Eq. �25� then gives

	
j j�

Qjj�

ss� ��,�� =

p1�
2 �2


ss� + p2�
2 �1


ss� + 2p1�p2��̃12

�1

ss��2


ss� − �̃12
2

,

O. E. RAICHEV PHYSICAL REVIEW B 78, 125304 �2008�

125304-4



� j

ss���,�� � �� j


ss���,���−1 − �̃ j j��� , �27�

where we have used the obvious symmetry property �̃12���
= �̃21���. According to Eqs. �14� and �24�,

� j

ss���,�� =

� 
 �c + �12�S�
j�,s − S�+�

j�,s�� j��j

S�
j,s − S�+�

j,s�
+ � j j

tr , �28�

where � j j
tr����� j j���− �̃ j j���, so 1 /� j j

tr coincides with the
standard definition of transport time for intrasubband scatter-
ing. Note that in Eq. �28� the difference between � j j���� and
� j j���+�� is neglected because of the assumed smallness of
�. On the other hand, the difference between the functions
S�

j,s and S�+�
j,s is essential because these functions rapidly os-

cillate with energy. Equation �27� is a generalization of Eq.
�23� to the case of arbitrary correlation lengths. Equation
�23� is obtained from Eq. �27� by formal substitutions �̃ j j�
→0.

This part concludes calculation of the functions

	 j j�Qjj�

ss� �� ,��, which determine the components of the con-

ductivity tensor and absorption of electromagnetic radiation
according to Eqs. �7�–�9�. The calculation of �d��� and
����� is now reduced to evaluation of the integrals over
energy in Eq. �9�. This procedure and its results are given in
the Sec. III.

III. AC CONDUCTIVITY AND ABSORPTION

We consider the case of degenerate electron gas when
energy dependence of pj�

2 , � j j����, and �̃ j j���� is not essential
within the region of thermal smearing, and within the region
of width � near the Fermi surface. Therefore, these quanti-
ties are replaced below by the constants corresponding to the
position of chemical potential, �=�F. In particular, one has
pj�

2 →pFj
2 and the Fermi momenta pFj can be rewritten in

terms of electron densities in the subbands j=1,2 according
to nsj = pFj

2 /2�. The simple substitution �=�F cannot be done
for the part −i��

j of the function S�
j,A because ��

j is a rapidly
oscillating function of energy �see Eq. �16��. Nevertheless,
analytical integration in Eq. �9� is possible and it is based on
the smallness of ��

j in the case of overlapping Landau levels
when the Dingle factors are small. The expansion of the
function 	 j j�Qjj�


AR �see Eqs. �27� and �28�� in series of ��
j and

��+�
j� should be done up to the second order. The first-order

corrections, linear in the Dingle factors, always give the con-
tributions that oscillate with energy. These terms are sup-
pressed if the temperature is high enough. Among the
second-order corrections, quadratic in the Dingle factors,
there are contributions that do not oscillate with energy be-

cause they come from the products ��
j ��+�

j�� �such contribu-
tions do not appear in Qjj�


AA terms�. Only these contributions
should be retained in the second-order corrections. This also
means that there is no need to take into account subsequent
terms in the expansion of S�

j,A �in addition to −i��
j � because

such terms would give only the oscillating corrections be-
yond the first order.

The rapidly oscillating contributions coming from Qjj�

AR

terms are integrated over energy as

1

�
� d��f� − f�+�����

j + ��+�
j� �

= 2e−�j
sin���/�c�

���/�c�
T exp� i��

�c
�cos

2���F − � j�
�c

.

�29�

The expansions of Qjj�

AA and Qjj�


RR terms in powers of Dingle
factors can be done in the region not too close to the cyclo-
tron resonance when ��−�c��� je

−�j. Then, the rapidly os-
cillating contributions appearing from these terms are inte-
grated as

1

�
� d��f� − f�+�����

j − ��+�
j � = 2ie−�j

sin2���/�c�
���/�c�

�T exp�− i
2���F − � j�

�c
� ,

�30�

and

1

�
� d��f� + f�+�����

j − ��+�
j � = − 2e−�j

sin�2��/�c�
�2��/�c�

�T exp�− i
2���F − � j�

�c
� .

�31�

All these expressions are proportional to the factor describ-
ing thermal suppression:

T =
�2�2T/�c�

sinh�2�2T/�c�
. �32�

On the other hand, the second-order contributions, which do
not oscillate with energy, are calculated in the simplest way
by using �−1�d��f�− f�+��=1.

After lengthy but straightforward transformations, one ob-
tains the result

�
��� =
e2

2�m
� P


D


− 2TF
 + 2R
� , �33�

which, together with Eq. �7�, gives the ac conductivity tensor
in relatively weak magnetic fields when the Landau levels
are overlapping. The functions F
 and R
 are the contribu-
tions proportional to the first and second powers of Dingle
factors, respectively. The function P
 /D
, where

P
 = pF1
2 �2
 + pF2

2 �1
 + 2pF1pF2�̃12, �34�

D
 = �1
�2
 − �̃12
2 , �35�

and

� j
 = � j j
tr + �12 − i�� 
 �c� , �36�

describes the classical contribution to the components of the
conductivity tensor of the two-subband system.

The first-order contribution is an oscillating function of
the Fermi energy �F and frequency �:
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F
 =
1 − exp�2�i�/�c�

�2�i�/�c�
	

j
�Aj
 +

ipFj
2

� 
 �c
�gj��F� ,

�37�

with

gj��F� = e−�j cos
2���F − � j�

�c
, �38�

A1
 =
1

D

��a
 + b
� −

P


D


�c
 + d
�� ,

A2
 =
1

D

��a
 − b
� −

P


D


�c
 − d
�� , �39�

a
 = − i�� 
 �c�
pF1

2 + pF2
2

2
,

b
 = �i�� 
 �c� − 2�12�
pF1

2 − pF2
2

2
, �40�

and

c
 = − i�� 
 �c�
�1
 + �2


2
,

d
 = �i�� 
 �c� − 2�12�
�1
 − �2


2
. �41�

In the static limit, �→0, this part describes the
Shubnikov-de Haas oscillations. These oscillations are given
by a superposition of two single-subband contributions.

Oscillations of the second-order contribution are not re-
lated to position of the Fermi energy, and are determined by
the ratios � /�c and �12 /�c, where �12=�2−�1 is the sub-
band separation:

R
 = exp�i
2��

�c
��B1
e−2�1 + B2
e−2�2

+ B12
e−�1−�2 cos
2��12

�c
� , �42�

where

B1
 =
1

D


��12 − i�� 
 �c���pF2
2 −

P


D


��22
tr − i�� 
 �c���

−
c
 + d


D


A1
,

B2
 =
1

D


��12 − i�� 
 �c���pF1
2 −

P


D


��11
tr − i�� 
 �c���

−
c
 − d


D


A2
, �43�

and

B12
 = − �12
pF1

2 + pF2
2

D


+
P


D

2 ��12��11

tr + �22
tr � + �� 
 �c�2�

−
2�a
c
 − b
d
�

D

2 +

2P


D

3 �c


2 − d

2 � . �44�

As the temperature increases and the first-order contribution
becomes exponentially small, oscillations of the conductivity
are entirely determined by the second-order contribution �Eq.
�42��. At �→0 this contribution describes the MIS oscilla-
tions �Refs. 8–15�. For the single-subband case and nonzero
�, the results of Ref. 5 can be restored.

The expression �42� is the central result of this paper. It
shows that the mechanisms responsible for the MIS oscilla-
tions and for the ac magnetoconductivity oscillations de-
scribed in Ref. 5 interfere with each other in the linear ac
response of the systems with two occupied subbands. For-
mally, this is reflected by the presence of the product
�exp�i2�� /�c�cos�2��12 /�c�� of the corresponding oscil-
lating factors. The real part of this product can also be writ-
ten through the sum of the oscillating functions �Eq. �3��.

The expressions �33�–�44� present a complete solution of
the dynamic conductivity problem in magnetic fields under
the approximations listed above. Instead of the complex vari-
ables �
���, it is convenient to introduce real quantities,

�d
�
���� =

1

2
Re �
���, ��

�
���� =
1

2
Im �
��� , �45�

so the real part of the conductivity tensor is defined by the
expressions

Re �d��� = �d
�+���� + �d

�−���� ,

Re ����� = ��
�+���� − ��

�−���� . �46�

In the general case, expressions for �d
�
� and ��

�
� are rather
cumbersome. These expressions are simplified under some
reasonable approximations considered below.

In the limit of short-range scattering potentials, when
�̃12=0 and � j j

tr =� j j, the result is given as a sum of subband
contributions:

�d
�
� =

e2

2m
	

j=1,2

nsj� j

� j

2 + 1

�1 − 2TF j

d + 2R j


d � , �47�

and

��
�
� =

e2

2m
	

j=1,2

nsj� j

� j

2 + 1

�� j
 − 2TF j

� + 2R j


� � , �48�

where � j
= ��
�c�� j. The first-order contributions in �d
�
�

and ��
�
� are described by the following expressions:

F j

d��� = Y j


d���gj��F� + Xj

d����� j j

� j
gj��F� +

�12

� j
gj���F�� ,

�49�

where j�� j. In Eq. �49�,

Xj

d =

� j

2 − 1

� j

2 + 1

sin�2��/�c�
�2��/�c�

+
2� j
 sin2���/�c�
�� j


2 + 1����/�c�
,
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Xj

� =

� j

2 − 1

� j

2 + 1

sin2���/�c�
���/�c�

−
2� j
 sin�2��/�c�
�� j


2 + 1��2��/�c�
, �50�

and

Y j

d =

sin�2��/�c�
�2��/�c�

+
1

� j


sin2���/�c�
���/�c�

,

Y j

� =

sin2���/�c�
���/�c�

−
1

� j


sin�2��/�c�
�2��/�c�

. �51�

The second-order contributions can be written as

R j

d =

Zj

e cos�2��/�c� + � j
Zj


o sin�2��/�c�
� j


2 + 1
,

R j

� =

Zj

e sin�2��/�c� − � j
Zj


o cos�2��/�c�
� j


2 + 1
, �52�

where

Zj

e = �� j


2 − 1 +
� j j

� j
� j


e �� j j

� j
e−2�j + � j


e �12
2

� j
2 e−2�j�

+ �� j

2 − 1 + 2

� j j

� j
� j


e ��12

� j
e−�1−�2 cos

2��12

�c
,

�53�

and

Zj

o = �2 +

� j j

� j
� j


o �� j j

� j
e−2�j + � j


o �12
2

� j
2 e−2�j�

+ �2 + 2
� j j

� j
� j


o ��12

� j
e−�1−�2 cos

2��12

�c
, �54�

are the coefficients standing at the terms even and odd
in � j
. Next, � j


e = �1−3� j

2 � / �� j


2 +1� and � j

o = �� j


2

−3� / �� j

2 +1�. In Eqs. �53� and �54�, j�� j. Since � j =� j j

+�12, the result depends on the three characteristic scattering
rates: �1, �2, and �12. Equations �53� and �54� directly show
that the terms containing the MIS oscillations �Eq. �2�� are
proportional to the intersubband scattering rate �12.

Another important case, when expressions are simplified,
is realized in DQWs where subband splitting is usually small
in comparison to the Fermi energy, �12��F−� j, so the dif-
ference in Fermi momenta is small, pF1� pF2. Assuming also
that the DQWs are symmetrically doped, one has �11��22
and �11

tr ��22
tr . In summary, the approximations �pF1

2 − pF2
2 �

� pF1
2 + pF2

2 and ��11
tr −�22

tr ���11
tr +�22

tr are applied. However,
one should keep in mind that a weak scattering asymmetry
can produce a sizeable difference in the Dingle exponents.
Therefore, the exponential factors e−�1 and e−�2 are still as-
sumed to be different. One gets

�d
�
� =

e2ns�tr

2m�1 + 	

2 ��1 − TC


d 	
j

gj��F� + 2D

d � , �55�

and

��
�
� =

e2ns�tr

2m�1 + 	

2 ��	
 − TC


�	
j

gj��F� + 2D

�� , �56�

where ns=ns1+ns2 is the total sheet density of electrons,
	
= ��
�c��tr, and �tr is the transport time defined as
1 /�tr��tr= ��11

tr +�22
tr � /2+�12

tr , where �12
tr =�12− �̃12 can be

named as the intersubband transport scattering rate. The co-
efficients in the first-order contributions are given by

C

d =

2	

2 sin�2��/�c�

�1 + 	

2 ��2��/�c�

+
�1 + 3	


2 �sin2���/�c�
	
�1 + 	


2 ����/�c�
,

C

� =

2	

2 sin2���/�c�

�1 + 	

2 ����/�c�

−
�1 + 3	


2 �sin�2��/�c�
	
�1 + 	


2 ��2��/�c�
. �57�

The second-order contributions have the same structure as in
Eq. �52�:

D

d =

Z

e cos�2��/�c� + 	
Z


o sin�2��/�c�

	

2 + 1

,

D

� =

Z

e sin�2��/�c� − 	
Z


o cos�2��/�c�

	

2 + 1

, �58�

where

Z

e�o� = h


e�o�1

2
�e−2�1 + e−2�2� + h̃


e�o�e−�1−�2 cos
2��12

�c
.

�59�

The coefficients in this expression are

h

e = �	


2 − 1��1 −
�12

tr

�tr
� +

�

e

2
+

�

e

2
�1 −

2�12
tr

�tr
�2

,

h̃

e = �	


2 − 1�
�12

tr

�tr
+

�

e

2
−

�

e

2
�1 −

2�12
tr

�tr
�2

, �60�

and

h

o = 2�1 −

�12
tr

�tr
� +

�

o

2
+

�

o

2
�1 −

2�12
tr

�tr
�2

,

h̃

o = 2

�12
tr

�tr
+

�

o

2
−

�

o

2
�1 −

2�12
tr

�tr
�2

, �61�

where

�

e =

�1 + 2�̃12/�tr��1 − 	

2 � − 2	


2

	

2 + �1 + 2�̃12/�tr�2 ,

�

o =

	

2 − 3 − 2�̃12/�tr

	

2 + �1 + 2�̃12/�tr�2 ,

�

e = �1 − 3	


2 �/�	

2 + 1� ,

and

�

o = �	


2 − 3�/�	

2 + 1� .
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In high-mobility modulation-doped heterostructures, the
transport scattering times are large, and it is easy to realize
the condition 	


2 �1 in a wide region of frequencies and
magnetic fields, which are not too close to the cyclotron
resonance. In this case, the expressions �55� and �56� have a
simple form:

�d
�
�

�d�D�
�
� = 1 − 2T sin�2��/�c�

�2��/�c�
	

j

gj��F� + cos
2��

�c
��1 −

�12
tr

�tr
�

��e−2�1 + e−2�2� + 2
�12

tr

�tr
e−�1−�2 cos

2��12

�c
� , �62�

and

��
�
�

���D�
�
� = 1 −

2

	


T sin2���/�c�
���/�c�

	
j

gj��F� +
1

	


sin
2��

�c

���1 −
�12

tr

�tr
��e−2�1 + e−2�2� + 2

�12
tr

�tr
e−�1−�2

�cos
2��12

�c
� , �63�

where �d�D�
�
� = �e2ns�tr /2m� / �	


2 +1� and ���D�
�
� =	
�d�D�

�
� are
the classical Drude expressions. Relative contribution of the
oscillating part in the nondissipative component is small be-
cause of large 	
. However, since ���D�

�
� ��d�D�
�
� , the ampli-

tudes of the oscillations of �d
�
� and ��

�
� are comparable to
each other.

The oscillating behavior of the absorption coefficient
����, given by Eq. �8�, is demonstrated in Figs. 2 and 3. The
calculation of the conductivities �
 is done according to the
general expressions �33�–�44� applied to GaAs-based sys-
tems, where m=0.067m0, and the experimentally relevant
case of long-range disorder potential is considered when the
ratios of transport scattering rates to the scattering rates that
enter the Dingle factors are small. For the chosen parameters
�1=�2=0.18 meV and � j j

tr /� j j =�12
tr /�12=0.1, one has �tr

=0.018 meV, which approximately corresponds to the mo-
bility of 106 cm2 /V s. The temperature is assumed to be
high enough �T=10 K� so the second term in Eq. �33� is
completely suppressed and the oscillations are described by
the third term, which is quadratic in the Dingle factors. The
magnetic-field dependence demonstrates the cyclotron reso-
nance �CR� peaks with superimposed oscillating contribu-
tion. The oscillations are better visible in the plots of the
ratios � /�0 where �0 is the classical �nonoscillating� absorp-
tion coefficient calculated by using Eq. �33� with the second
and the third terms omitted. These plots clearly show the
interference of the slow component �Eq. �1�� and fast com-
ponent �Eq. �2�� �note that the chosen ratio �12 /�=8 is
large�. When the relative contribution of intersubband scat-
tering decreases �curve 2�, the amplitude of the fast compo-
nent decreases as well. Only the slow component �Eq. �1��
remains if the intersubband scattering is completely ne-
glected �dashed line�. In the last case, the magnetic-field de-
pendence of the ratio � /�0 is similar to that of 2D systems
with a single populated subband.

In the region of frequencies not too close to the cyclotron
resonance, it is easy to satisfy the condition
�2��
��� /c
���1 when the absorption coefficient is en-

FIG. 2. �Color online� Magnetic-field dependence of the absorp-
tion coefficient ���� at T=10 K and � /2�=200 GHz for GaAs
quantum wells with electron density ns=1012 cm−2. The ratio of
subband separation to frequency is �12 /�=8. The scattering rates
are chosen as �1=�2=0.18 meV, giving the quantum lifetime of
3.66 ps, and the ratios of intrasubband and intersubband transport
scattering rates to the corresponding quantum-scattering rates are
� j j

tr /� j j =0.1 and �12
tr /�12=0.1. The part �a� shows both � �solid line�

and classical absorption �0 �dashed line� at �11=�22=�12

=0.09 meV. The part �b� shows the ratio � /�0 at �11=�22=�12

=0.09 meV �curve 1�, �11=�22=0.12 meV, �12=0.06 meV �curve
2�, and �11=�22=0.18 meV and �12=0 �dashed line�.

FIG. 3. �Color online� The same as in Fig. 2 at � /2�
=100 GHz.
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tirely determined by the real part of the component �d���:
����=4� Re �d��� /c
�. The rotation angle of the polariza-
tion of incident radiation �Faraday angle� is described by
����� in a similar way: ����=2� Re ����� /c
�. The en-
ergy absorbed in unit time by the unit square of the system
�absorption power� is determined by the dissipative compo-
nent and is equal to E2 Re �d��� /2.

IV. STATIC RESISTIVITY

By taking the limit �→0 in the expressions obtained in
the previous section, one finds the components of the static
�dc� conductivity tensor, �d and ��. The result can be written
as �d���=�d���

�0� +�d���
�1� +�d���

�2� , where ��0� is the classical
nonoscillating contribution while ��1� and ��2� describe first-
and second-order corrections in Dingle factors. Similar to
Sec. III, we consider the limiting cases when analytical ex-
pressions for ��1� and ��2� can be written in a simple explicit
form. In particular, by applying the approximation of short-
range disorder potential, one obtains

��d
�0�

��
�0� � =

e2

m
	

j=1,2

nsj� j

��c� j�2 + 1
� 1

�c� j
� , �64�

and

�d
�1� = − T 2e2

m
	

j=1,2

nsj� j

���c� j�2 + 1�2�2��c� j�2gj��F� + ���c� j�2

− 1�
�12

� j
�gj���F� − gj��F��� , �65�

��
�1� = T 2e2

m
	

j=1,2

nsj�c� j
2

���c� j�2 + 1�2����c� j�−2 + 3�gj��F�

+ 2
�12

� j
�gj���F� − gj��F��� , �66�

where j�� j. The second-order corrections are

��d
�2�

��
�2� � =

2e2

m
	

j=1,2

nsj� j

���c� j�2 + 1�2� Zj
e

− �c� jZj
o � , �67�

where Zj
e and Zj

o are given by the right-hand sides of Eqs.
�53� and �54� in the limit �→0, which is taken by straight-
forward substitutions � j


2 → ��c� j�2.
The problem of static magnetoconductivity oscillations in

the quantum wells with two occupied subbands has been
considered previously under the approximation of short-
range disorder potential. Microscopic calculations of both
components of the conductivity tensor have been carried out
in Ref. 14 while the diagonal component also has been cal-
culated in Ref. 13 with a different result. The expressions for
the first-order corrections given in Ref. 14 are identical to the
results presented by Eqs. �65� and �66�. However, Eqs. �37�
and �38� of Ref. 14, representing oscillating parts of �d

�2� and
��

�2�, are different from the results given by Eq. �67� although
the basic formalism used in Ref. 14 is the same as in this
paper.

The expressions �64�–�67� can be applied for calculations
of the resistivity �d=�d / ��d

2+��
2 � measured in the samples

of Hall bar geometry. A simple analytical expression for �d is
obtained under the approximation of symmetric scattering,
which is valid for single-quantum wells with uniformly dis-
tributed impurities or in DQWs with symmetric doping �see
Appendix�. Assuming that ��11−�22���11+�22, we introduce
��1+�2� /2=�=1 /�, and obtain

�d

�0
= 1 − 2T �r+g1��F� + r−g2��F�� + h+e−2�1 + h−e−2�2

+ 2h12e
−�1−�2 cos

2��12

�c
, �68�

where �0= �e2�ns /m�−1 is the zero-field Drude resistivity,

r
 = 1 

ns1 − ns2

ns
�1 −

�12

�
� , �69�

h
 = 1 −
�12

�
−

1

��c��2 + 1
�1 − 2

�12

�
+ 2

�12
2

�2 � 

ns1 − ns2

ns

��1 −
�12

�
−

1

��c��2 + 1
�1 − 2

�12

�
�� , �70�

and

h12 =
�12

�
�1 −

2

��c��2 + 1
�1 −

�12

�
�� . �71�

The first-order contribution in Eq. �68� describes the
Shubnikov-de Haas oscillations for two-subband systems.
This contribution vanishes with increasing temperature. The
second-order contribution contains the MIS oscillations term
together with the terms responsible for positive magnetore-
sistance. The positive magnetoresistance, caused by localiza-
tion of electrons in the magnetic field, of course remains in
the case of single-subband occupation.25 The coefficient h12
at the oscillating term does not depend on the difference in
subband occupations. In DQWs this difference can be ne-
glected, �ns1−ns2��ns, which leads to r+=r−=1 and h+=h−
=h. Neglecting also the difference in Dingle exponents,
e−�1 �e−�2, one gets15

�d

�0
� 1 − 4e−�T cos

2��F

�c
cos

��12

�c

+ e−2��h + h12 cos
2��12

�c
� , �72�

where �=�1=�2 and

� h

h12
� = 1 
 
2 −

1 
 
4

��c��2 + 1
. �73�

The Fermi energy in Eq. �72� is counted from ��1+�2� /2.
The scattering rates are expressed through the parameter 

characterizing tunnel coupling in DQWs �see Appendix�, ac-
cording to �12 /�= �1−
2� /2. In balanced DQWs �
=0�, the
probability of intersubband scattering is equal to the prob-
ability of intrasubband scattering. As the system is driven out
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of the balance by the gates �
2 increases�, the wave functions
for subbands 1 and 2 become localized in the different wells.
Therefore, the probability of intersubband scattering de-
creases so the amplitude of the MIS oscillations is reduced
and the nonoscillating positive magnetoresistance becomes
larger.

In the case of arbitrary disorder potential, a simple de-
scription of the resistivity is obtained under the approxima-
tions �pF1

2 − pF2
2 �� pF1

2 + pF2
2 and ��11

tr −�22
tr ���11

tr +�22
E , relevant

to the case of symmetrically doped DQWs. The components
�d and �� are easily obtained by taking the limit �→0 in
Eqs. �55�–�61� of Sec. III. The resistivity takes the form of
Eq. �68� where �0= �e2�trns /m�−1, r+=r−=1, and

h+ = h− = 1 −
�12

tr

�tr
−

 +

2
, h12 =

�12
tr

�tr
−

 −

2
, �74�

and

 
 =
1

��c�tr�2 + 1



�1 − 2�12
tr /�tr�2�1 + 2�̃12/�tr�

��c�tr�2 + �1 + 2�̃12/�tr�2 . �75�

In the classically strong magnetic fields, �c�tr�1, the field-
dependent corrections  
 can be neglected.

In the systems with long-range disorder where the trans-
port times are much greater than the quantum lifetimes, the
oscillating terms in the resistivity should be considered in the
limit of classically strong magnetic fields; otherwise these
terms are exponentially small. In this approximation, one can
derive a more general expression for the resistivity, valid for
arbitrary ratios pF1

2 / pF2
2 and �11

tr /�22
tr . It takes the form

�d = �d
�0� + �d

�1� + �d
�2�,

�d
�1� = − T 2m

e2ns
	

j
�2nsj

ns
� j j

tr + �12
eff�gj��F� ,

�d
�2� =

2m

e2ns
�ns1

ns
�11

tr e−2�1 +
ns2

ns
�22

tr e−2�2

+ �12
effe−�1−�2 cos

2��12

�c
� , �76�

where �d
�0� is the classical �nonoscillating� resistivity and

�12
eff=�12− �2
ns1ns2 /ns��̃12 is the effective intersubband scat-

tering rate, which is close to the above-defined intersubband
transport scattering rate �12

tr at ns1�ns2. Notice that one can
consider the expression for �12

eff as an alternative definition of
the transport rate for intersubband scattering. The classical
resistivity �d

�0� depends on the magnetic field in the case of
two populated subbands26 �as in the case of two groups of
carriers with different mobilities�. The expression �76� shows
that the contribution of the MIS oscillations in comparison to
the nonoscillating second-order terms is determined by the
ratio of intersubband and intrasubband transport scattering
rates. In DQWs this ratio can approach to unity.

The static magnetoresistance plots calculated according to
the general expression �Eq. �33�� at �=0 are given in Fig. 4.
The subband separation is chosen to be 4 meV, which is
typical for DQWs. The resistivity is normalized to its zero-

field value. The calculations correspond to T=10 K when
the Shubnikov-de Haas oscillations are completely sup-
pressed in the chosen interval of magnetic fields and only the
MIS oscillations remain. The low-temperature resistivity,
when the Shubnikov-de Haas oscillations are important, is
shown in the inset. The plots demonstrate a decrease in the
MIS oscillation amplitude when the relative contribution of
intersubband scattering decreases �curve 2� and demonstrate
an increase in the nonoscillating positive magnetoresistance
for asymmetric scattering �curve 3�. Application of the
simple approximate expression �Eq. �76�� gives practically
no difference in comparison to the results shown in Fig. 4,
thereby confirming high reliability of Eq. �76� for description
of the static magnetoresistance in the systems with two popu-
lated subbands.

V. AC RESPONSE FOR PERPENDICULAR
POLARIZATION

If the vector of electric field has a component Ez perpen-
dicular to the 2D plane, this component also induces absorp-
tion of electromagnetic radiation in quantum wells. The ef-
fect occurs because z component of the velocity operator v̂
has nondiagonal matrix elements in the subband basis �j�. If
only the lowest subband is populated, the radiation-induced
intersubband transitions in the linear-response regime can
take place when the frequency of electromagnetic radiation
exceeds the energy distance between the second subband and
position of the Fermi level in the first subband. When two
subbands are populated, the transitions take place at arbitrary
frequency � although the absorption strongly depends on the
difference between the subband separation �12 and �.

The linear ac response to the field Ez is characterized by
the real part of the component �zz��� of the conductivity
tensor �Eq. �4��. In the chosen basis �jnpy�, the z-velocity

FIG. 4. �Color online� The MIS oscillations of resistivity for
GaAs quantum wells with electron density ns=1012 cm−2, subband
separation �12=4 meV, and averaged scattering rate ��1+�2� /2
=0.18 meV. The case of long-range scattering potentials is as-
sumed: � j j

tr /� j j =0.1 and �12
tr /�12=0.1. The three different lines cor-

respond to �1� �11=�22=�12=0.09 meV, �2� �11=�22=0.12 meV,
�12=0.06 meV, and �3� �11=0.16 meV, �22=0.08 meV, and �12

=0.06 meV. The inset shows the low-temperature resistivity, when
the Shubnikov-de Haas oscillations dominate, for �11=�22=�12

=0.09 meV.
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operator has matrix elements �jnpy�v̂z�j�n�py��=
pypy�

nn�v j j�,

where v j j� is nonzero at j� j�. Therefore,

Re �zz��� =
e2

��
	

j j1�j�j1�
	

j�j1��j��j1��

v j1jv j�j1�� d��f� − f�+��

�Re�Q̃jj1,j�j1�
AR ��,�� − Q̃jj1,j�j1�

AA ��,��� , �77�

where

Q̃jj1,j�j1�
ss� ��,�� =

1

L2	
nn�

	
pypy�

��G�
j j�,s�npy,n�py��

� G�+�
j1�j1,s��n�py�,npy��� . �78�

Considering the correlators in Eq. �78�, we use the resonance
approximation, i.e., retain the contribution which is the larg-
est under the intersubband resonance condition ��−�12�
��12. Therefore, only the terms with j�= j=1 and j1�= j1=2
should be taken into account in Eq. �77�. Introducing the
function

K��+�
12,ss��n,n�� =

1

L2 	
pypy�

��G�
11,s�npy,n�py��G�+�

22,s��n�py�,npy��� ,

�79�

we evaluate it in the ladder approximation leading to the
following equation:

K��+�
12,ss��n,n�� =

1

2�lH
2 G�n

1,sG�+�n
2,s� �
nn� + 	

n1

�
0

�

duw12

��
2u/lH��nn1
�u�K��+�

12,ss��n1,n��� , �80�

where w12�q�=�d�re−iq·�r��V11�r+�r�V22�r���. Finally,

Q̃12,12
ss� ��,�� =

m

��̃12
ss���,���−1 − �̄12���

, �81�

where

�̃12
ss���,�� =

�c

2�
	

n

G�,n
1,sG�+�,n

2,s� =
S�

1,s − S�+�
2,s�

� − �12 + ��
1,s − ��+�

2,s�
,

�82�

and

�̄12��� = m�
0

2� d�

2�
w12�
p1�

2 + p2�+�
2 − 2p1�p2�+� cos �� .

�83�

The dimensionless sums S�
j,s and the self-energies ��

j,s are
defined by Eq. �14�.

According to Eq. �77�, the remaining calculation of
Re �zz��� is reduced to integration of the factor �f�

− f�+��Re�Q̃12,12
AR �� ,��− Q̃12,12

AA �� ,��� over energy. Similar as
in Sec. III, we assume that the energy dependence of the
scattering rates can be neglected in the interval � near the

Fermi energy �this approximation is always valid in the case
of short-range disorder potential�. Neglecting the oscillating
terms proportional to the factor T, one obtains

Re �zz���
Re �zz

�0����
= 1 + B1e−2�1 + B2e−2�2 + B12e

−�1−�2, �84�

where

B j =
�12

�r
�	r

2 − 1

	r
2 + 1

− 2
3	r

2 − 1

�	r
2 + 1�2

� j j − �̄12

�r
�cos

2��

�c

+
�12

�r
	r� 2

	r
2 + 1

+ 2
	r

2 − 3

�	r
2 + 1�2

� j j − �̄12

�r
�sin

2��

�c
,

�85�

B12 = 2�	r
2 − 1

	r
2 + 1

�1 −
�12

�r
� −

3	r
2 − 1

�	r
2 + 1�2

�
��11 − �̄12���22 − �̄12�

�r
2 �cos

2��� − �12�
�c

+ 2	r� 2

	r
2 + 1

�1 −
�12

�r
� +

	r
2 − 3

�	r
2 + 1�2

�
��11 − �̄12���22 − �̄12�

�r
2 �sin

2��� − �12�
�c

− 2��12

�r
�2 3	r

2 − 1

�	r
2 + 1�2cos

2��� + �12�
�c

+ 2��12

�r
�2

	r

	r
2 − 3

�	r
2 + 1�2sin

2��� + �12�
�c

, �86�

and 	r= ��−�12� /�r. The scattering rate �r= ��1+�2� /2− �̄12
characterizes the collision-induced broadening of the inter-
subband resonance.19 The response at zero magnetic field is
described by the expression

Re �zz
�0���� =

e2m�v12�2�r

���� − �12�2 + �r
2�

. �87�

If only the lowest subband is populated, this expression
should be multiplied by the factor ��F−�1� /�12=�ns /m�12,
and one obtains the commonly known result �see, for ex-
ample, Ref. 19�.

The absorption of electromagnetic radiation polarized per-
pendicular to the well plane is described by the absorption
coefficient

�z��� =
4�

c
�
Re �zz��� , �88�

and the absorption power is Ez
2 Re �zz��� /2. To estimate the

absorption strength, we give expressions for the intersubband
matrix elements of the velocity operator27 for the systems
shown in Fig. 1. For deep rectangular quantum well, �v12�
=8 /3ma, where a is the well width. For DQWs, �v12�
�Z
�12

2 −�2 /2, where Z is the distance between the centers
of the wells and � is the energy defined in Appendix.
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The structure of the expression for Re �zz��� is similar to
that of �d

�
���� and ��
�
���� described in Sec. III. The oscil-

lating response contains a combination of the terms �Eq. �1��
and interference terms �Eq. �3��; all these terms are quadratic
in Dingle factors. Note that, however, in weak �classical�
magnetic fields when the oscillations of the density of states
can be neglected, Re �zz��� is equal to Re �zz

�0���� and does
not depend on the magnetic field. In contrast, �d

�
���� and
��

�
���� remain sensitive to magnetic fields in the classical
field region.

The coefficients in Eq. �84� are given by simple expres-
sions in the frequency region not too close to the intersub-
band resonance, 	r

2�1. Assuming this condition in Eqs. �85�
and �86�, we rewrite them as

B1 = B2 �
�12

�r
cos

2��

�c
, �89�

and

B12 � 2�1 −
�12

�r
�cos

2��� − �12�
�c

. �90�

Since the condition ��−�12���12 is assumed, the oscilla-
tions of �zz��� include a fast-oscillating component
cos�2�� /�c� modulated by a slow interference component
cos�2���−�12� /�c�.

Far from the intersubband resonance �for example, when
� is much smaller than �12�, the absorption considered in
this section is weak and the main absorption is caused by the
parallel component of the radiation field �see Sec. III�.

VI. CONCLUSIONS

The basic property that makes the quantum wells with
two populated subbands different from the systems with
single-subband occupation is the coupling between the sub-
bands. The effects described in this paper are caused by the
coupling owing to intersubband scattering of electrons.28 The
influence of the Landau quantization on the dynamic conduc-
tivity in the presence of intersubband scattering is a compli-
cated problem, which is solved analytically in this paper for
the case of sufficiently weak magnetic fields when the Lan-
dau levels are overlapping. Previous theoretical results, such
as the oscillating ac magnetoconductivity of quantum wells
with single populated subband �Ref. 5� and the classical dc
magnetoresistance of quantum wells with two populated sub-
bands �Ref. 26�, follow from the presented theory as limiting
cases. The analytical approach used in this paper implies
expansion of the components of the conductivity tensor in
powers of the Dingle factors. In the first order of this expan-
sion, one obtains the magnetic oscillations caused by sequen-
tial passage of the Landau levels through the Fermi level.
These oscillations are exponentially suppressed with increas-
ing temperature owing to the thermal smearing of the Fermi
surface. In the second order, there exist the magnetic oscil-
lations that are irrelevant to the position of the Landau levels
with respect to the Fermi surface and, therefore, survive at
high temperatures. These important oscillations are caused
by the resonances, which are classified into two groups. The

first group, �=k�c �k is integer�, is also relevant to the sys-
tems with single-subband occupation and can be viewed as
the cyclotron resonance harmonics. The second group in-
cludes the combined resonances at ��
�12�=k�c; they are
specific for the systems with two populated subbands and
depend on the subband separation �12. In the static limit, �
=0, these resonance conditions are reduced to �12=k�c,
which correspond to the maxima of the MIS oscillations of
resistivity, recently observed in DQWs.15 The microscopic
theory of these oscillations is developed in Sec. IV.

The combined resonances manifest themselves in oscilla-
tions of the absorption of electromagnetic radiation incident
on the quantum-well layer. Such oscillations should exist
both for parallel and perpendicular polarizations of the radia-
tion field with respect to the layer. However, if the frequency
� is considerably smaller than the subband separation as in
the case of microwave excitation, the absorption caused by
the parallel component of the radiation field is much stron-
ger. The magnetic oscillations of this absorption can be
viewed as the MIS oscillations, ! cos�2��12 /�c�, modulated
by the component ! cos�2�� /�c�, and the whole oscillation
pattern is superimposed on the cyclotron resonance peak; see
Figs. 2 and 3. The modulation looks like a periodic inversion
of the groups of MIS oscillation peaks; if �=�12 /2, each
second peak is inverted. It is reasonable to presume that
similar oscillatory patterns should appear in the dc resistivity
under microwave photoexcitation because the oscillating dy-
namic conductivity determines the power of electromagnetic
radiation absorbed by the electron system. On the other hand,
the problem of microwave photoresistance implies consider-
ation of nonequilibrium electron distribution and is essen-
tially different from the problem of linear ac photoconduc-
tivity considered in this paper.

Among the systems with two populated subbands, the
DQWs are the most convenient objects for experimental ob-
servation of the phenomena considered in this paper. First of
all, the two-subband occupation in DQWs can be reached
even at relatively small electron densities. Typically, the
Fermi energy in DQWs is considerably larger than the sub-
band separation so the oscillations associated with intersub-
band coupling have a large period and they are easily distin-
guishable from the Shubnikov-de Haas oscillations.
Observation of these oscillations in weak magnetic fields re-
quires large quantum lifetimes, which are attainable in the
modulation-doped structures, and high probability of inter-
subband scattering. Both these conditions can be satisfied in
DQWs because, owing to a small subband separation, the
intersubband scattering does not require a large momentum
transfer and its probability is comparable to the probability
of intrasubband scattering. Another advantage of DQWs is a
possibility to control both the intersubband scattering and
subband separation via the gate voltage.

Finally, let us briefly discuss the approximations made in
the paper. The analytical approach to the problem is valid in
weak enough magnetic fields when many Landau levels are
populated, �c��F−� j. Furthermore, it is assumed that �c� j
"� so the Dingle factors are small and that the magnetic
length is large in comparison to the correlation lengths of the
random potential. It is also assumed that �12� j �1, i.e., the
collision-induced broadening of the energy spectrum is much
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smaller than the subband separation. The case of degenerate
electron gas, when the temperature T is much smaller than
the Fermi energy, is assumed. The frequency � is assumed to
be small enough to neglect the energy dependence of the
scattering rates in the interval � around the Fermi surface.
Next, only elastic scattering by random static potential has
been taken into account because the scattering by phonons is
much weaker at the temperatures of about 10 K and lower.
The most serious approximation is the neglect of electron-
electron interaction. This interaction leads to a shift in the
position of the intersubband resonance �see Ref. 18 and ref-
erences therein�, causes a decrease in the quantum lifetime of
electrons with increasing temperature �see Ref. 15 and refer-
ences therein�, and can give rise to an additional oscillating
contribution to the ac conductivity.29 Therefore, the effects of
electron-electron interaction should be taken into account in
analysis of experimental data. Nevertheless, these effects are
not expected to cause a qualitative modification of the oscil-
latory phenomena studied in this paper.
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APPENDIX: RANDOM POTENTIAL CORRELATORS
IN SINGLE- AND DOUBLE-QUANTUM WELLS

The correlation functions wjj��q� depend on the symmetry
of the envelope wave functions # j�z� describing confinement
of electron states in the subbands �these functions always can
be chosen real�. According to the definition given after Eq.
�13�,

wjj��q� =� dz� dz�# j�z�# j��z�# j��z��# j�z��

� L−2��Vq�z�V−q�z���� , �A1�

where Vq�z� are the 2D Fourier transforms of the random
static potential V�r ,z�.

The correlation function w12�q�, appearing in Sec. V, is
written as

w12�q� =� dz� dz�#1
2�z�#2

2�z��L−2��Vq�z�V−q�z���� .

�A2�

If the potential V�r ,z� is created by impurities numbered
by the index i, one has V�r ,z�=	ivi�r−ri ,z−zi�, where vi is
the single-impurity potential. Therefore,

Vq�z� = 	
i

vi,q�z − zi�e−iq·ri. �A3�

In the case of identical impurities, when vi,q�z−zi�=vq�z
−zi�, the random potential correlators in Eqs. �A1� and �A2�
are expressed through the integral over spatial distribution of
impurities, nim�zi�:

L−2��Vq�z�V−q�z���� =� dzinim�zi�vq�z − zi�v−q�z� − zi� .

�A4�

In the limit of short-range impurity potential, one can ap-
ply the 
-function approximation: vq�z−zi�=v0
�z−zi�.
Thus,

wjj� =� dz# j
2�z�# j�

2 �z�nim�z��v0�2, w12 = w12. �A5�

These correlators are independent of q but still determined
by the envelope wave functions and impurity distribution.
For a deep single-quantum well of rectangular shape �Fig.
1�a��, one can use #1�z�=
2 /a sin��z /a� and #2�z�
=
2 /a sin�2�z /a�, where a is the well width �0"z"a�.
Therefore, if the short-range impurities are homogeneously
distributed inside the well, which means that nim�z�=nim is z
independent, a straightforward integration in Eq. �A5� leads
to

w11 = w22 =
3

2a
w0, w12 =

1

a
w0, �A6�

where w0=nim�v0�2.
In DQWs, which consist of two quantum wells separated

by a narrow barrier, the symmetry of electron states is deter-
mined by the tunnel coupling. The envelope wave functions
of two subbands are represented by superpositions of nor-
malized single-well ground-state envelope wave functions
$l�z� and $r�z�, where the indices l and r denotes left and
right quantum-well layers:

#1�z� = �−$l�z� + �+$r�z� ,

#2�z� = �+$l�z� − �−$r�z� . �A7�

The coefficients in these expressions are given by

�
 =
1

2

1 


�

�12
. �A8�

The physical meaning of the energy � is the subband sepa-
ration in the absence of tunnel coupling. This energy can be
continuously varied by the bias applied to external gates �if
present�. If �=0, the subband separation �12 is entirely de-
termined by tunneling and is usually denoted by �SAS
�symmetric-antisymmetric splitting �SAS�� because it has di-
rect meaning of the energy gap between the states with sym-
metric and antisymmetric wave functions, #1�z�= �$l�z�
+$r�z�� /
2 and #2�z�= �$l�z�−$r�z�� /
2. In the general
case, �12=
�SAS

2 +�2.
It is often convenient to represent the random potential

correlators wjj��q� for DQWs in terms of intralayer and in-
terlayer correlators wkk��q�=L−2��Vk,qVk�,−q��, where k= l ,r,
by introducing the effective random 2D potentials in the lay-
ers, Vk,q=�dz$k

2�z�Vq�z�:

w11�q� = wll�q��−
4 + wrr�q��+

4 + 2wlr�q��−
2�+

2 ,

w22�q� = wll�q��+
4 + wrr�q��−

4 + 2wlr�q��−
2�+

2 ,
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w12�q� = �wll�q� + wrr�q� − 2wlr�q���−
2�+

2 . �A9�

For an arbitrary random potential V�r ,z�, there exists the
case when w11�q�=w22�q�. This occurs at �=0 �balanced
DQWs� when �+

2 =�−
2 =1 /2. For any random potential satis-

fying the property wll�q�=wrr�q� �for example, created by
impurities symmetrically distributed with respect to the
DQW’s symmetry plane�, the property w11�q�=w22�q� is al-
ways valid. If the interlayer correlators wlr�q� are zero and
the scattering is symmetric, wll�q�=wrr�q��w�q�, there exist
simple relations following from Eq. �A9�:

wjj�q� = w�q�
1 + 
2

2
, w12�q� = w�q�

1 − 
2

2
, �A10�

where 
=� /�12. The interlayer correlators can be neglected
in the case of short-range scattering potential or when the
scattering is caused by interface roughness. According to Eq.
�A9�, all the correlation functions wjj��q� are equal to each
other at �=0 and wlr�q�=0. An increase in � leads to a
decrease in w12�q� because of suppression of interlayer cou-
pling. As a result, the intersubband scattering is also sup-
pressed.
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