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From itinerant to local-moment antiferromagnetism in Kondo lattices:
Adiabatic continuity versus quantum phase transitions
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Motivated by both experimental and theoretical activities, we discuss the fate of Kondo screening and
possible quantum phase transitions in antiferromagnetically ordered phases of Kondo lattices. While transitions
with topological changes of the Fermi surface may occur, we demonstrate that an entirely continuous evolution
from itinerant to local-moment antiferromagnetism (i.e., from strong to negligible Kondo screening) is possible
as well. This situation is in contrast to that in a nonsymmetry-broken situation where a quantum phase
transition toward an exotic metallic spin-liquid state necessarily accompanies the disappearance of Kondo
screening. We discuss criteria for the existence of topological transitions in the antiferromagnetic phase as well
as implications for theoretical scenarios and for current experiments.
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I. INTRODUCTION

Quantum criticality in heavy-fermion metals is an active
topic in current condensed-matter research. Much work has
focused on the nature of the quantum phase transition (QPT)
between a paramagnetic heavy Fermi liquid (FL) and an an-
tiferromagnetic (AF) metal.!? Various experimental data ap-
pear to be inconsistent with the theoretical predictions for a
spin-density wave (SDW) transition in a metal.>~> This has
prompted proposals about a different transition scenario
where the Kondo effect breaks down at the antiferromagnetic
quantum critical point (QCP). Then the heavy quasiparticles
of FL, formed from conduction (¢) and local-moment (f)
electrons, disintegrate at the QCP.

Such a Kondo-breakdown transition involves degrees of
freedom other than the antiferromagnetic fluctuations at the

ordering wave vector Q and different theoretical descrip-
tions have been proposed.®® Si et al.” have employed an
extension of dynamical mean-field theory (DMFT) to argue
that magnetic fluctuations in two space dimensions render
the Kondo effect critical at the AF QCP. In contrast, the
scenario of Senthil et al.3-!! is centered around a Kondo-
breakdown transition between two paramagnetic states: a
heavy Fermi liquid with Kondo screening and a so-called
fractionalized Fermi liquid (FL*) without Kondo screening.
In FL*, frustration and/or strong quantum fluctuations pre-
clude magnetic long-range order of the f moments, which
instead form an exotic spin liquid,'? decoupled from the con-
duction electrons. A sharp distinction between FL and FL* is
in the Fermi volume (assuming one f electron per unit cell in
the paramagnet): FL has a “large” Fermi volume including
the f electrons, whereas the Fermi volume of FL* is “small,”
i.e., only determined by the c electrons. Loosely speaking,
the f electrons may be called “itinerant” in FL and “local-
ized” in FL*. In this scenario, antiferromagnetism may occur
as a secondary instability of FL* such that a conventional AF
phase is reached via the Kondo-breakdown transition.!%!!
The possibility of having distinct quantum critical points
between FL and AF raises the question whether distinct AF
phases (i.e., with “itinerant” or “localized” f electrons) may
be discriminated. Consider commensurate order with an even
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number N of sites in the unit cell (other cases will be dis-
cussed briefly toward the end of the paper). Then, the size of
the Brillouin zone (BZ) in the AF phase is reduced by a
factor N compared to the paramagnetic phase and as a result
“large” and “small” Fermi volume are no longer distinct.
However, it has been proposed that the situations differ with
respect to their Fermi-surface topology.”!*-!> Two phases,
AF; and AFg, corresponding to itinerant and local-moment
antiferromagnetism, respectively, have been introduced''*
with the notion that they are separated by one or more quan-
tum phase transitions. In this context, it has been suggested
that in AFg Kondo screening is absent.

In this paper, we argue that such a sharp distinction be-
tween AF; and AFg does not exist. To this end, we invoke
continuity arguments between Kondo and weakly interacting
electron models and demonstrate the possibility of a continu-
ous Fermi-surface (FS) evolution between the situations of
itinerant and local-moment antiferromagnetism. Kondo
screening hence disappears smoothly in the AF phase: Tech-
nically, a line of renormalization-group fixed points emerges
describing AF-polarized Fermi liquids. This finding does not
contradict microscopic calculations,'>!'® which find a topo-
logical Lifshitz transition inside the antiferromagnetic phase,
but shows that such a transition is not connected to a break-
down of the Kondo effect. We also discuss conditions for the
occurrence of FS-topology-changing transitions.

We note that many experimental criteria for Kondo
screening, e.g., the existence of a maximum in the resistivity
p(T) at the coherence temperature, do not provide a sharp
distinction between itinerant and local-moment AF. This
means, e.g., that the maximum in p(7) will be gradually
washed out and disappear when tuning from itinerant to
local-moment AF.

The remainder of this paper is organized as follows: In
Sec. I we start by characterizing ground states of Kondo
lattices, and we discuss the adiabatic continuity to phases of
weakly interacting electrons. In Sec. III we give an explicit
example for a continuous Fermi-surface evolution in a mean-
field Kondo-lattice model smoothly connecting the situations
of “itinerant” and “localized” f electrons in the presence of
commensurate antiferromagnetism. We then reformulate our
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findings in the languages of renormalization group (Sec. IV)
and slave-particle theory coupled to gauge fields (Sec. V),
establishing connections to earlier work. We close with re-
marks on recent theoretical and experimental results. The
detailed discussion of band structures, of criteria for topo-
logical transitions, and of the interesting case of incommen-
surate magnetic order are relegated to the Appendixes A-D.

II. GENERAL CONSIDERATIONS

Consider a Kondo-lattice model in d spatial dimensions
with a unit cell containing one ¢ and f orbital each,

HmM=2(€E—M)C;T;UCEa+JE S+ 8i, (1)
ko i

where the chemical potential w controls the filling n. of the
conduction (¢) band with dispersion €; and
=20.0.er0;'0.0.76'1'0.!/ 2 is the conduction electron-spin density
on site i. Sometimes it is useful to explicitly include a
Heisenberg-type exchange interaction between the f electron

local moments S, H1=E,»jl,»j§,»-§j, which may originate
from superexchange [or Ruderman-Kittel-Kasuya-Yosida

(RKKY)] interactions.!”

A. Phases

If Kondo screening of the local moments §i dominates
over intermoment interactions then a heavy FL results. The
Fermi volume is “large,” i.e., includes the local-moment
electrons, Vg =K (n, mod2) with ny=n+ns=n.+1, in
agreement with Luttinger’s theorem.!® Here, the factor of 2
accounts for the spin degeneracy of the bands, and K,
=(2m)/(2v,) is a phase-space factor with v as the unit-cell
volume.

Kondo screening may break down due to competing ex-
change interactions among the local f moments. If the local-
moment magnetism is dominated by geometric frustration or
strong quantum fluctuations,'? the f moment subsystem may
form a paramagnetic spin liquid without broken symmetries,
only weakly interacting with the ¢ electrons.® The resulting
FL* phase is necessarily exotic as it features a “small” Fermi
volume Vg +=K,(n, mod 2) violating Luttinger’s theorem.
As discussed in Ref. 8, the low-energy excitations of the
fractionalized spin liquid account for the Luttinger violation.
Thus, the Fermi volume provides a sharp distinction between
FL and FL".

If the heavy FL phase undergoes a standard SDW transi-
tion, we obtain a conventional metallic AF phase—often de-
noted as “itinerant” antiferromagnet—with Fermi-liquid
properties. For the simplest case of collinear commensurate
antiferromagnetism with an even number N of sites in the AF
unit cell, the spin degeneracy of the bands is preserved (see
Appendix A), and the onset of AF order simply implies a
“backfolding” of the bands into the AF Brillouin zone. This
results in a Fermi volume V p=K)(Nn. mod 2) with K},
=K /N. This value of V,r equals K(Nn, mod 2), i.e., the
distinction between “large” and ‘“small” Fermi volume is
lost.
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On the other hand, one may consider a “local-moment”
AF phase. In the language of the Kondo model, this is ob-
tained by forming a local-moment antiferromagnet from the
f spins and then switching on a weak Kondo coupling to the
c electrons. Importantly, this phase has Fermi-liquid proper-
ties as well.

Parenthetically, we note that a distinct magnetic phase is
obtained by the onset of magnetic order in the fractionalized
FL* phase.? This exotic AF* phase characterized by topologi-
cal order is not of interest for the body of the paper but will
be briefly discussed in Sec. V.

B. Adiabatic continuity and weakly interacting electron states

The FL phase of a Kondo lattice is adiabatically con-
nected to the noninteracting limit of the corresponding
Anderson lattice model,

Haim= 2 (6= e cio+ 2 (6= Wi fis
ko ko

+ VZ (f;;gc,;,,+ CEJ/ZO.) + UE Ny itNyi| (2)
ko !

in standard notation. While this Anderson model can be
mapped to the Kondo model in the Kondo limit V—o, U
— 00, and €——® with Vz/ef finite, the properties of the
heavy FL phase of both models can in principle be obtained
perturbatively in U starting from two hybridized noninteract-
ing bands.!” In other words, no phase transition occurs be-
tween the free-fermion situation U=0 and the large-U Fermi-
liquid phase in the Anderson model.?°

As the itinerant AF phase is obtained from FL by the
onset of SDW order, it is adiabatically connected to a non-
interacting electron system of two hybridized bands in the
presence of a staggered magnetic mean field.?!?2

Now we turn to the local-moment AF phase. Consider
first the system of f moments alone: This is an AF Mott
insulator. In the band picture, the f band is half-filled; after
backfolding this translates into integer band filling for an
even number N of sites in the AF unit cell. (The same applies
to odd N, but here the spin degeneracy is lifted, see Appendix
A.) As large band gaps are induced by the AF order param-
eter, noninteracting f electrons in the presence of an antifer-
romagnetic exchange (mean) field are insulating as well, i.e.,
there is no distinction here between band and Mott insulator.
This fact is well known, e.g., for a half-filled one-band Hub-
bard model, where itinerant and local-moment antiferromag-
net are continuously connected upon variation of U.?* Con-
sequently, for vanishing Kondo coupling, the local-moment
AF phase of the Kondo lattice is adiabatically connected to a
noninteracting Anderson model with vanishing hybridization
and mean-field antiferromagnetism. Further, in such a two-
band model of noninteracting electrons with f band gap, a
small c-f hybridization is a marginal perturbation as it shifts
the bands but leaves the topology of the Fermi surface un-
changed.

C. Evolution of phases

Recent theory works'3~!> suggested that local-moment

and itinerant antiferromagnetism in Kondo lattices are dis-
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tinct phases, which are separated by (at least) one quantum
phase transition. There are, in fact, two issues here, related to
(A) possibly different Fermi-surface topologies, and (B) a
possible breakdown of Kondo screening within the AF
phase, to be discussed in turn.

(A) The local-moment AF phase (dubbed AFy) displays a
Fermi surface with a topology inherited from the bare ¢
band, while the itinerant AF phase (dubbed AF,) was argued
to display a different FS topology.'* (In the simplest models,
AF; has a holelike FS whereas AFg has an electronlike FS.)
If this difference in topology indeed exists, it necessitates
one or more topology-changing transitions inside the AF
phase. Such a transition can be of Lifshitz or van Hove type
where a local band extremum or a saddle point crosses the
Fermi level, respectively—both cases cause (weak) thermo-
dynamic singularities and lead to abrupt changes in the elec-
tron orbits as measured, e.g., in the de—Haas-van—Alphen
effect. The variational Kondo-lattice-model calculations of
Ref. 15 indeed showed two AF phases with different FS
topology; however, in a large parameter regime, a direct
first-order transition from FL to AFg was found.

(B) In Ref. 14, the AFg phase was argued to be stable
against a small Kondo coupling. The authors concluded that
this situation is qualitatively different from AF;, and conse-
quently AF; and AFg have to be separated by a quantum
phase transition associated with the breakdown of Kondo
screening (which may coincide with the transition in FS to-
pology).

In the following, we argue that (A’) a continuous FS evo-
lution between itinerant and local-moment AF phases is pos-
sible (using an explicit example, Sec. IIT), and (B') Kondo
screening disappears smoothly in the AF phase (Sec. IV).
Consequently, a sharp distinction between two phases AFj
and AF; is not meaningful.

III. WEAKLY INTERACTING ELECTRONS:
FERMI-SURFACE EVOLUTION

We now give an explicit example for a continuous evolu-
tion from itinerant to local-moment AF in a model of effec-
tively noninteracting electrons. This approach can be justi-
fied by invoking either the equivalence of the relevant Fermi-
liquid phases to phases of noninteracting electrons (Sec.
II B) or the well-known mean-field treatments of the Kondo
or Anderson lattice models. For instance, for the Kondo lat-
tice the Kondo interaction is decoupled using a slave-boson
field b. At the saddle-point level, one obtains a two-band
model of noninteracting electrons with a hybridization b;
hence, the condensation of b signals Kondo screening (see
Sec. V for details). Antiferromagnetism is obtained from a
mean-field decoupling®!” of the intermoment exchange inter-
action [;;, which results in a staggered mean field for the f
electrons.

We consider the following effective Hamiltonian:

M= 2 [(€= w)et, Cio+ (€57 = Nf b fio+ VIt fio+ Hec.)
ko

i ¥
+ msUCg+éUCEa+MsUfg+éJEo]- (3)

It consists of two bands hybridized by V, with dispersions €;
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FIG. 1. (Color online) Fermi surfaces (left) and band structures
(right) for a mean-field Kondo-lattice model, Eq. (3), on a two-
dimensional (2D) rectangular lattice, with n.=0.5 and bare band
dispersions as given in the text. The dashed lines show the bound-
ary of the reduced Brillouin zone of the antiferromagnet with é
=(mw/2,0). (a) Bare ¢ band. (b) Paramagnetic heavy Fermi liquid
(FL), V=0.3. (c) Antiferromagnetic Fermi liquid (AF) with (c1) V
=0.29, M,=107*, and m,=10"> (no changes occur for M,,m,—0)
and (c2) V=0.01, M,=0.1, and m,=10"2. From (b) to (cl), the
system undergoes a standard SDW transition, whereas (c2) is close
to a “local-moment” antiferromagnet [i.e., obtained by backfolding
of the band structure from (a), together with a fully gapped f band].
Note that (c) has two completely filled bands after backfolding.

and e, respectively. Note that within a mean-field theory for
the Kondo lattice, € and N are renormalized effective pa-
rameters of the f band, the latter playing the role of a
Lagrange multiplier fixing ny=1. Collinear antiferromag-
netism is accounted for via the mean fields m, and M, (for ¢
and f electrons) encoding the magnetic order parameter with

wave vector Q (see Appendix A for the general case). Typi-
cally, order will primarily arise in the f electron sector;

hence, we expect | M| >|m,|. Q corresponds to an N-site unit
cell in the AF ordered state, for even N the AF bands will be
spin degenerate (Appendix A).

As an example we focus on a quasi-one-dimensional situ-
ation of a 2d array of coupled chains where the AF phase has
a 4 X1 unit cell, i.e., a collinear period-4 AF order in each
chain. In Fig. 1 we show the Fermi-surface evolution and the
band structures for parameters ez=-2 cos k,.+cos(2k,)
—(cos k,)/30,  €;=0.2[cos k,—cos(2k,)]-(cos k,)/50, n,
=0.5, ny=1, and different values of V, M, and m,. The bare
¢ Fermi surface is shown in Fig. 1(a). Backfolding into the
AF zone results in two partially filled bands—this is the FS
structure of the local-moment antiferromagnet where the f
subsystem is gapped [Fig. 1¢2]. On the other hand, the para-
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magnetic large-FS state for sizeable V is shown in Fig. 1(b).
Entering the AF phase via an SDW transition leaves us with
two full and two partially filled bands [Fig. 1c1]. Impor-
tantly, this topology is identical to the one in Fig. 1c2. To-
gether with the continuity arguments in Sec. II B, this con-
stitutes a proof that a continuous evolution from itinerant
[Fig. 1c1] to local-moment [Fig. 1¢2] antiferromagnetism is
possible.

A few remarks are in order: (i) Due to the 1d geometry,
there are no closed orbits, and the large Fermi surface of FL
does not intersect the AF zone boundary [Fig. 1(b)]. As a
result, there is no Landau damping of the AF order parameter
at the SDW transition. However, both features can be easily
changed by including a second ¢ band with a closed FS
intersecting the AF zone boundary. (Heavy-fermion metals
often feature a complicated band structure with numerous
bands.) If this band is only weakly hybridized with the f
band, then its Fermi surface will not differ in topology be-
tween the itinerant and local-moment limits. We shall give an
additional example in Appendix C, which displays both
closed orbits and Landau damping. (ii) For an AF unit cell
with N a half-integer multiple of 4 (N=2,6,...), topological
reasons require that the Fermi surface crosses at least one
van Hove singularity between the itinerant and local-moment
limits (see Appendix B).

IV. RENORMALIZATION GROUP AND FIXED POINTS

In this section, we discuss the fate of Kondo screening in
the framework of the renormalization-group (RG) treatment
of the Kondo coupling between local moments and conduc-
tion electrons. In this language, Kondo screening (in the
paramagnetic phase) is signaled by a runaway flow to strong
coupling of the Kondo interaction.

What happens in the antiferromagnetic phase? Reference
14 presented an RG calculation starting from a local-moment
antiferromagnet, with the result that the Kondo coupling is
an exactly marginal perturbation to the fixed point of decou-
pled ¢ and f electrons (dubbed AFg). This qualitative differ-
ence to the paramagnetic case was used to conclude that AF
and the Kondo-screened AF; situations represent distinct
phases, and a phase transition has to separate the two.

For comparison, let us review the well-studied problem of
a single Kondo impurity in a magnetic field.'” Here, no zero-
temperature phase transition occurs as a function of the field,
i.e., all observables evolve smoothly from B=0 to B— .
For B>0, the low-energy theory takes the form of a spin-
dependent potential scatterer with phase shifts varying con-
tinuously as a function of the field. In the RG language, this
situation corresponds to a line of fixed points parametrized
by the phase shifts. This line connects the fixed points of the
screened zero-field impurity and the fully polarized impurity.
The topology of the RG flow implies the existence of an
exactly marginal operator—for a finite fixed field, this is the
Kondo coupling J itself. Importantly, the distinct RG flow of
J for zero and finite fields does not imply the existence of a
quantum phase transition.

Adapting this knowledge to the Kondo lattice, we believe
that the RG calculation of Ref. 14 is correct but does not
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imply the necessity for a phase transition inside the antifer-
romagnetic phase (if the latter is reached via a SDW transi-
tion). We can offer two lines of arguments: (i) Within DMFT,
the antiferromagnetic phase of the Kondo lattice is mapped
onto a single Kondo impurity in a field; hence, the knowl-
edge sketched above can be carried over.?* (ii) Beyond
DMFT, we know that both AF; and AFg are Fermi-liquid
phases, which generically display a set of marginal operators
(corresponding, e.g., to band-structure parameters). As the
RG expansion in Ref. 14 is performed around a Fermi liquid,
finding marginal operators is no surprise. (This is different
from an expansion starting from decoupled moments in the
paramagnetic Kondo lattice—this is a non-Fermi liquid due
to the degenerate local-moment states.) In fact, it is straight-
forward to check that all Fermi-liquid renormalizations are
generated in the expansion of Ref. 14. Hence, no qualitative
differences exist between the local-moment and itinerant AF
regimes.

In summary, the RG result of Ref. 14 is not in contradic-
tion with itinerant and local-moment AF regimes being con-
tinuously connected. Instead, the AF phase should be inter-
preted as a family of RG fixed points of Fermi-liquid type.
Depending on band-structure details, topological transitions
may occur along a path from itinerant to local-moment AF,
but this is not required, see Sec. III.

V. SLAVE PARTICLES, GAUGE FIELDS,
AND PHASE DIAGRAM

A popular description of the low-temperature Kondo-
lattice physics is based on a representation of the local mo-
ments by auxiliary fermions and a decoupling of the Kondo
interaction by slave-boson fields b;. Fluctuation effects are
captured via a compact U(1) gauge field. An additional in-
termoment exchange interaction Jy is decoupled using a non-
local field y, such that the low-energy action takes the form,’

S= f d?{z i, — )y + Eﬁ(é’f— iay)f;
X i

4|b,|?
-> (biEifﬁ cc.— %)

o 4y
- |:Xij(emijfifj +c.c.)— M} } (4)
(i) T

Here, the time component a, of the gauge field implements
the occupation constraint for the f fermions, whereas the
space component a;; represents phase fluctuations of the de-
coupling parameters.

In the saddle-point approximation, gauge-field fluctua-
tions are ignored. This mean-field approach has well-known
deficiencies, such as an artificial breaking of the internal
gauge symmetry in the FL regime where (b) # 0, leading to
an artificial finite-temperature phase transition. These defi-
ciencies are cured once the gauge-field physics is taken into
account. After integrating out the fermions, the effective
theory is given by a compact U(1) gauge field coupled to the
charged scalar b. The Fermi-liquid phase corresponds to the
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Deconfinement

transition

Quantum fluct./Frustration

AF transition

T/ 1

FIG. 2. Schematic zero-temperature phase diagram of the
Kondo-Heisenberg model Hy;v+H; as a function of the dimen-
sionless ratio T /I (formed from Kondo and intermoment exchange
energy scales) and the amount of quantum fluctuations (e.g., due to
frustration). The solid lines show continuous phase transitions asso-
ciated with the onset of antiferromagnetism and deconfinement/
topological order. In the absence of antiferromagnetism, the decon-
finement transition is equivalent to a Kondo breakdown or f Mott
transition. The shaded area denotes the crossover from itinerant to
local-moment AF; in this region FS-topology-changing transitions
may occur depending on the type of magnetic order and the FS
topology, see Appendix B. (The structure of the phase boundaries
follows from Refs. 8 and 9.) A scenario of deconfined criticality
modifies the phase diagram (Ref. 10), see text.

Higgs phase of the gauge theory; due to the compactness of
the U(1) gauge field, no finite-temperature transition occurs.
Most importantly, for this gauge theory, the confined and the
Higgs phases are smoothly connected, i.e., identical®® (and
hence FL-like). The gauge theory also has a deconfined (or
Coulomb) phase characterized by topological order. Without
magnetism, the result is the fractionalized Fermi liquid FL*.
No Kondo screening occurs here, i.e., b=0 at the mean-field
level. The transition from FL to FL* is the Kondo-breakdown
transition advocated in Refs. 8 and 9, which can also be
interpreted as a Mott transition of the f electron subsystem.?
Adding antiferromagnetic order to the FL* phase results in
an AF* phase—this is a fractionalized antiferromagnet.’

The zero-temperature phase diagram from this discussion
is in Fig. 2. The smooth connection between Higgs and con-
fined phases of the gauge theory allows us to conclude that in
the presence of antiferromagnetism, there is only a single
conventional phase (AF). Inside the AF phase, a transition
toward the fractionalized AF" phase is possible, accompa-
nied by the onset of topological order. Such a transition may
be driven by increasing quantum fluctuations or magnetic
frustration.'> However, it is usually assumed that local-
moment antiferromagnetism in heavy-fermion metals is con-
ventional, such that the AF" phase is unlikely to be
realized.?” (Mean-field theories display a zero-temperature
transition where b vanishes upon increasing the magnetic
order parameter. This transition—which may be interpreted
as the AF— AF" transition—does not coincide with a possible
Lifshitz transition.)
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Finally, we note that a Kondo-breakdown transition from
FL to AF in Fig. 2 is only possible with fine tuning via the
multicritical point. In contrast, in the scenario of deconfined
criticality®® proposed for the Kondo lattice,'” the FL* phase
is assumed to display a secondary instability toward antifer-
romagnetism (accompanied by confinement). Then FL* (to-
gether with AF) disappears from the 7=0 phase diagram
rendering a Kondo-breakdown transition from FL to AF pos-
sible without fine tuning. The RG flow near this transition
displays multicritical behavior.?8

VI. CONCLUSIONS

We have argued that local moment and itinerant antifer-
romagnetism in heavy-fermion compounds are not necessar-
ily distinct phases. To this end, we have demonstrated adia-
batic continuity along the path (i) itinerant Kondo-lattice AF,
(ii) noninteracting two-band system with small exchange
field and strong hybridization, (iii) noninteracting two-band
system with large exchange field and vanishing hybridiza-
tion, and (iv) local-moment Kondo-lattice AF. Here, the con-
nection (i)—(ii) follows from the Fermi-liquid properties of
the heavy FL, the connection (ii)—(iii) was established using
an explicit example for a continuous Fermi-surface evolution
in Sec. III, and the connection (iii)—(iv) builds on the conti-
nuity between antiferromagnetic band and Mott insulators in
one-band models together with the Fermi-liquid properties of
the local-moment antiferromagnet. This provides a proof of
principle that a continuous evolution from itinerant to local-
moment antiferromagnetism is possible without intervening
topological or other quantum phase transitions.

These arguments do not exclude the existence of (continu-
ous or first-order) Lifshitz or van Hove transitions within the
antiferromagnetic phase. However, those transitions depend
on band structure and topology and cannot be associated
with the breakdown of Kondo screening in the magnetic
phase: The concepts of quasiparticles and Fermi surfaces re-
main well defined across such transitions.'® Our reasoning,
which rests on the broken translational symmetry in the AF
phase, applies similarly to other variants of translational
symmetry breaking in the local-moment regime of Kondo
lattices, e.g., the formation of valence-bond solids.

Let us briefly consider the implications for the much dis-
cussed Kondo-breakdown scenario for the antiferromagnetic
quantum critical point. Our arguments imply that the two
distinct quantum phase transitions, namely conventional
SDW and Kondo breakdown, connect the same phases,
namely a paramagnetic and an antiferromagnetic Fermi-
liquid metal. Then, it is clear that measurements only taken
inside the antiferromagnetic phase (even close to the critical
point) do not allow to draw sharp conclusions about the na-
ture of the quantum phase transition. Only (i) the finite-
temperature quantum critical behavior and (ii) the evolution
of observables at low temperatures across the quantum phase
transition can distinguish between the transition being of
conventional SDW type or of Kondo-breakdown type. In the
latter case, e.g., a jump in the zero-temperature limit of the
Hall coefficient® across the quantum phase transition can be
expected. (Such a jump also occurs at a first-order transition
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between FL and AF as in the theory work of Ref. 15; how-
ever, there will be no finite-temperature quantum critical re-
gion, but instead the first-order behavior will continue to
finite 7.)

On the experimental side, CeNi,Ge, appears to fit into the
standard SDW transition scenario, whereas CeCug_,Au, and
YDbRh,Si, have been discussed as candidates for AF transi-
tions accompanied by the breakdown of the Kondo effect.? In
particular, Hall-effect measurements on YbRh,Si, support a
jump in the Hall coefficient across the QPT.?’ Recent substi-
tution experiments®® in YbRh,Si, gave indications for a
separation of the magnetic and Kondo-breakdown transition
signatures (e.g., upon replacing Rh with Ir or Co), opening
an exciting opportunity to study the global phase diagram in
more detail. In line with our arguments, we predict the sig-
natures of the Kondo breakdown to be weakened or smeared
inside the antiferromagnetic phase even in the low-
temperature limit. For CeCuq_,Au,, we note that several
transport experiments inside the AF phase®'*? could be
nicely explained by a competition between AF order and
Kondo screening—this may be taken as evidence against a
Kondo-breakdown scenario for the magnetic QPT in this ma-
terial. More detailed studies (e.g., Hall effect under pressure)
are desirable.

An interesting case is that of CeRhIng.>3* Under pres-
sure, de-Haas-van—Alphen measurements detected a change
in the Fermi-surface properties at a critical pressure of p,
~2.3 GPa.** In zero field, this system displays an intricate
pressure-driven interplay of antiferromagnetism and super-
conductivity. However, the experiment was performed in
fields up to 17 T where superconductivity is suppressed, but
antiferromagnetism is believed to persist for p <p,. Thus, the
experimental data may be consistent with a Kondo-
breakdown transition upon lowering p, which occurs con-
comitantly with the onset of AF order. Evidence for a
transition inside an AF phase with a Fermi-surface recon-
struction has been recently found®® in CeRh,_,Co,Ins. This
transition, however, is strongly first order and is also accom-
panied by a change in the magnetic structure.

Last but not least, we note that metallic spin-liquid behav-
ior has been observed in the geometrically frustrated Kondo-
lattice compound Pr,Ir,O; (Ref. 36) rendering it a candidate
for the FL* phase. Here, experimental efforts to drive a tran-
sition toward FL [by doping or (chemical) pressure] seem
worthwhile.
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APPENDIX A: BAND STRUCTURE OF ITINERANT
ANTIFERROMAGNETS

In this Appendix, we highlight the distinctions between
collinear and noncollinear AF regarding band degeneracy.

PHYSICAL REVIEW B 78, 125109 (2008)

Those are relevant for the possible existence of FS topologi-
cal transitions inside the AF phase of Kondo lattices, to be
discussed in Appendix B.

Consider the local-moment electrons only, with one-
electron per paramagnetic unit cell and a dispersion €, in the
presence of commensurate antiferromagnetic order described
by a single ordering wave vector Q. The electrons move in a
mean field given by h(r;)=Re[M exp(iQ-r;)], where M is a
complex vector encoding the order parameter, such that, e.g.,
spiral order has M=M+iM, with real M; and M, obeying
M,-M,=0. For a unit cell with N sites, NQ is a reciprocal-
lattice vector, and the band structure is given by the eigen-
values of the 2N X 2N matrix

My, M € 0 My My
My M 0 &g My M, . (AD)
0 0 Mj M € O
0 0 M, M| 0 €y

where odd (even) rows and columns correspond to spin-up

(down) electrons, and M, =M -7, with 7 as the vector of
Pauli matrices. For collinear AF, M, can be chosen diago-
nal «7,.

We are interested in the degeneracy of the 2N bands. The
simplest situation is collinear AF with even N: Here, the up
and down sectors decouple and are degenerate, as the eigen-

values of Eq. (Al) depend only on |A71 |>. For noncollinear
order with even N the spin sectors mix, but the double de-
generacy is preserved, because there exists a translation op-
eration which reverses all spins (i.e., the combined action of
time reversal plus translation is a symmetry of the state).

For odd N, the spin degeneracy is in general lifted. The
only exception is the case of a purely imaginary M ,,,: Here,
one site within the unit cell (more generally, an odd number
of sites) has exactly zero magnetization. This situation re-
quires an exotic spin liquid, further symmetry breaking, or
coupling to other degrees of freedom like Kondo screening
of these moments.

We conclude that for both the cases of (i) even N and (ii)
odd N with spin degeneracy lifted, the itinerant antiferromag-
net with one electron per site has an integer band filling
(after taking into account backfolding and spin). Then, in the
presence of sufficiently large exchange fields (i.e., band split-
ting) the magnet will be insulating. This AF band insulator is
adiabatically connected to an AF Mott insulator.

APPENDIX B: CRITERIA FOR THE NONEXISTENCE
OF FS TOPOLOGICAL TRANSITIONS

As transitions with changes in the FS topology may al-
ways occur within Fermi-liquid phases, we discuss under
which circumstances topological transitions in the AF phase
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of Kondo lattices are not required to occur: An example
without transitions was given in Sec. III. The discussion will
concentrate on the momentum-space volume and topology of
the occupied fermionic states of the ¢ plus f electron system
where we allow for K different ¢ electron bands. The strategy
is to find conditions for the backfolded band structures of the
FL phase and the ¢ bands alone to be identical in topology—
then a smooth evolution from itinerant to local-moment AF
is possible.

We denote the total occupied volumes of the partially
filled bands in the FL phase and the ¢ bands alone with K n;
and Kng, respectively. Hence, n;=(n.+1)mod 2 and ng
=n, mod 2; in other words, n; and ng differ by an odd inte-
ger. After backfolding, both total occupied volumes (again of
the partially filled bands) need to be identical to avoid topo-
logical transitions in the AF phase. The volumes can change
by 2/N if bands after backfolding (i.e., in the reduced Bril-
louin zone) are fully occupied [as in Fig. 1(b)]. Hence, the
number F of completely filled reduced BZ must differ by an
odd multiple of N/2 between the FL phase and the ¢ bands
alone, (F;—Fg)2/N=1 mod 2.

This condition can obviously not be met for odd N; here
“large” and “small” Fermi volumes are only equivalent in the
AF phase after taking into account the broken spin degen-
eracy of the bands. Thus, for odd N, at least one topological
transition occurs inside the AF phase.

For even N, we now focus on the number P of partially
filled bands in the AF phase (after backfolding) where those
(d—1) dimensional surface areas of the reduced BZ bound-
ary, which were not part of the original BZ boundary, are
fully occupied. For the discussion we furthermore assume
inversion symmetry. P receives even contributions from all
bands of the paramagnetic phase, except for situations where
a reduced BZ is fully occupied: Each of these cases give an
odd contribution to P, hence, P=F mod 2. To avoid topo-
logical transitions, P must be equal for the itinerant AF (de-
rived from FL) and the localized AF (derived from the ¢
bands alone), P; =Pg. Hence, F; = Fg mod 2. The above con-
dition F;—F¢=(N/2)mod N translates into the necessary
condition of N to be a multiple of 4 for not having a topo-
logical transition (in the presence of inversion symmetry).
An example with N=4, K=1, and P=2 is in Fig. 1.

Further considerations now have to include the (d-2) di-
mensional “edges” of the BZ. Here, we have found that at
least in low-symmetry situations topological transitions can
be avoided. One truly 2d example, which also includes
closed electron orbits, with N=4, K=1, and P=0 is in Fig. 3.

APPENDIX C: FERMI-SURFACE EVOLUTION:
ANOTHER EXAMPLE

We provide an additional example for a continuous
Fermi-surface evolution within a model of effectively nonin-
teracting electrons similar to Sec. III.

The model is defined on a 2d square with inequivalent
diagonals (equivalent to a rhomboid lattice). The AF phase
has N=4 with a 2 X2 unit cell originating from 4-sublattice
coplanar AF order characterlzed by two ordermg wave vec-

tors Ql—(7T 0) and Q2 (0, 77), where Ql (QZ) correspond to
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cl)
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FIG. 3. (Color online) Fermi surfaces as in Fig. 1, but now for a
situation with a 2 X2 AF unit cell as described in the text. (a) Bare
¢ band. (b) Paramagnetic heavy FL, V=0.45. (c) AF Fermi liquid
with (c1) V=0.44, M,=10"%, and m,=107> and (c2) V=0.01, M,
=0.1, and m,=1072.

a spin-density wave with spin polarization in z (x) direction
with an equal amplitude. The model parameters are
€r=(cos k,—cos k,)*+(cos 2k +cos 2k,)/2—cos(k,—k,)+[(1
—cosk)8+(1—cosk)8]/50 ekfz—(cosk +cosk)/10
+[cos(k,—k )+cos(k +ky)]/20+(cos 2k, +cos 2k,)/20,  n,
=0.65, and n=1.

The Fermi-surface evolution is shown in Fig. 3. Backfold-
ing of the FL bands [Fig. 3(b)] results in two completely
filled plus four partially filled bands in the itinerant antifer-
romagnet [Fig. 3c1]. Again, these Fermi surfaces are topo-
logically identical to those of the local-moment antiferro-
magnet [Fig. 3c¢2], obtained from backfolding the bare ¢
band structure of Fig. 3(a). Note that this example displays
both closed electron orbits and Landau damping of the order
parameter.

APPENDIX D: INCOMMENSURATE MAGNETISM

So far, the discussion applied to antiferromagnetism with
a spatial period being commensurate with the crystal lattice.
Incommensurate order is qualitatively different, at least at
T=0 in an ideal crystal. Here, the volume of the reduced
Brillouin zone (after backfolding) is zero, and the resulting
band structure has quasicrystalline properties with a hierar-
chy on infinitely many gaps.?>3” Hence, the Fermi volume is
no longer a well-defined concept. Another way to think about
1nc0mmensurate ordering is to approach the incommensurate

Q via a sequence of commensurate Q with increasing size of
the unit cell and decreasing size of the Brillouin zone. A
small Brillouin zone implies that changes of the band struc-
ture cause frequent topological transitions. Then, the passage
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from itinerant to local-moment antiferromagnetism in the in-
commensurate case will be accompanied by a dense se-
quence of topological transitions—which may be interpreted
as adiabatic continuity.

PHYSICAL REVIEW B 78, 125109 (2008)

In the presence of finite temperature or disorder, the small
band gaps will be smeared, and the structure effectively be-
haves as commensurate (for fixed 7). Then, our above con-
sideration in the body of the paper applies.
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