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A cone-shaped cloak whose cross section gradually increases along the axial direction �z direction� is
proposed in this paper. We present full wave analysis of this cloak in response to electromagnetic waves,
showing that a perfect conical cloak can support the propagation of any kind of fields. In addition, the reduced
set of cloaking parameters is derived for azimuthally invariant �� /��=0� incident fields. The advantage of this
simplified cloaking structure is that all the components of material parameters are spatially invariant with
relative magnitude larger than one. Hence, conical cloak with small scattering is physically realizable within a
wide band of frequency for this specific type of incident fields. Finally, we apply similar transformation to
achieve a polarization rotator which can arbitrarily control the polarization of the electromagnetic wave getting
through. The proposed design provides a practical way to realize invisible cloak and some other electromag-
netic devices, especially in the conditions that the source distribution is rotationally symmetric.

DOI: 10.1103/PhysRevB.78.125108 PACS number�s�: 42.25.Fx, 41.20.Jb

I. INTRODUCTION

Creating electromagnetic �EM� cloak of invisibility has
attracted much attention in the recent years.1–22 One impor-
tant approach to achieve invisibility is based on the form-
invariant coordinate transformation of Maxwell’s equations.3

This concept which generalized a similar idea on the trans-
formation of conductivity equation1 has triggered enormous
interests since the proposed cloaking device can effectively
exclude EM wave from the interior region and rend object
with arbitrary shape and size invisible. A similar conformal
mapping method was applied to two-dimensional �2D� space
to produce similar effect in geometric limit.4 Afterward, the
first experimental demonstration of such a cloak with simpli-
fied parameters was reported.5 Further full wave simulations
and theoretical treatments of the problems were also
presented.6–23

Most of the cloak designs considered in the literatures
have been restricted to 2D geometrics, where the cross sec-
tions of the cloaks remain unchanged and an obstacle is
wrapped completely with the cloak shell. In this paper, we
propose a cone-shaped cloak with varying cross section
along the axial direction. Full wave scattering model is es-
tablished to analyze the electromagnetic characteristics of
this type of cloak. It is demonstrated that a perfect conical
cloak can guide any kind of EM waves, since the transcen-
dental condition is naturally satisfied for arbitrary separation
parameter �, which is quite different from classical cone
scattering problems.24–26 Therefore, the conical cloak is quite
useful in many practical cases. Furthermore, it is shown that
for azimuthally invariant �� /��=0� incoming field, where
only H�, Er, and E� �or E�, Hr, and H�� enter into Maxwell’s
equations, it is possible to construct a simplified conical
cloak whose relative permittivity and permeability elements
are all spatially invariant and larger than one. Consequently,
this simplified cloaking structure can be created with natural
material, and unlimited bandwidth can be realized for this
specific incident waves. Apart from cloak of invisibility,

some other interesting EM devices can be constructed by
extending the same idea, such as conical polarization rotator,
which can arbitrarily control the polarization of EM wave as
it transmits from one side of half space to another. All these
interesting phenomena are evaluated by full wave analysis
and further potential applications are also discussed.

II. MATERIAL PARAMETERS OF A CONICAL CLOAK

We use transformation approach to obtain the material
parameters of a conical cloak. The associated spatial distor-
tion is described as a mapping between the original spherical
coordinate �r� ,�� ,��� and the new physical one �r ,� ,��.
The compressing of the space from a solid cone �0���
��� into a conical cover ������� can therefore be given
by the following equations:

r� = r, �� = g���, �� = � , �1�

where g��� is an arbitrary monotonic function with g���=�
and g���=0. � and � represent coordinate parameters of the
outer and inner surfaces of the conical cloak. As shown in
Fig. 1, these two interfaces share the same vertex at the origi-
nal point. In our study, the original space is assumed to be

free space �characterized by ���=�0I� and 	� �=	0I��. Hence the
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FIG. 1. Geometry of a conical cloak.
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permittivity ��� � and permeability �	� � tensors of the conical
cloak can be expressed in the transformed physical coordi-
nate system �r ,� ,�� as follows:

�� = �0��rr 0 0

0 ��� 0

0 0 ���

�, 	� = 	0�	rr 0 0

0 	�� 0

0 0 	��

� , �2�

where �rr=	rr= g����sin g��� / sin � , ���=	��

= sin g��� / �g����sin �� , and ���=	��= g����sin � / sin g��� .
�rr, ���, and ��� represent the relative permittivity elements
along r, �, and � directions, while 	rr, 	��, and 	�� are the
relative permeability elements along r, �, and � directions,
respectively. In order to simplify the material parameters we
select the transformation function g��� as

g��� = arccos�A�cos � − cos �� + 1� , �3�

where A= �1−cos �� / �cos �−cos �� 
1. Substitute Eq. �3�
into Eq. �2�, the corresponding relative material parameters
can be cast in the following forms:

�rr = 	rr = A, ��� = 	�� =
sin2 g���
A sin2 �

,

��� = 	�� =
A sin2 �

sin2 g���
. �4�

Equation �4� shows that the radial components of the effec-
tive constitutive parameters become a constant larger than 1.
To create such a cloak, we need to carefully control the other
two components with artificially structured metamaterial.27,28

Figure 2�a� depicts the three components of material param-
eters as functions of the longitudinal angle �. It is worth

noticing that under the transformation, the permittivity and
permeability tensors of the conical cloak are strongly aniso-
tropic and severely inhomogeneous. In addition, at the
cloak’s interior surface ��=��, ��� and 	�� are zero while
��� and 	�� tend to become infinite. To verify the validity of
the derived parameters, the ray tracing exercise3,7 is per-
formed, shown in Fig. 2�b� when a bulk of light is obliquely
incident upon the conical cloak. This result indicates that the
configuration specified by Eq. �4� can exclude rays from the
internal region, and the light emerged from the cloak is the
same as if it had just passed through free space.

III. INTERACTIONS BETWEEN ELECTROMAGNETIC
WAVE AND A PERFECT CONICAL CLOAK

The ray tracing exercise in Sec. II shows that the conical
cloak can bend and guide the incoming light smoothly
around the internal region. In this section, we use full wave
scattering method to study the response of a perfect conical
cloak to electromagnetic waves. We assume all the sources
are located beyond the region of interest. Similar to the pro-
cess in Refs. 18 and 20, we utilize Mie scattering theory and
express the fields through two scalar potentials U�r ,� ,��
and V�r ,� ,�� as follows:29

Er = i�� 1

k0
2	�����

�2

�r2U + U� , �5a�

E� =
i�

k0
2	�����

1

r

�2

�r � �
U −

1

�0���

1

r sin �

�

��
V , �5b�

E� =
i�

k0
2	�����

1

r sin �

�2

�r � �
U +

1

�0���

1

r

�

��
V , �5c�

Hr = i�� 1

k0
2	�����

�2

�r2V + V� , �5d�

H� =
i�

k0
2	�����

1

r

�2

�r � �
V +

1

	0	��

1

r sin �

�

��
U , �5e�

H� =
i�

k0
2	�����

1

r sin �

�2

�r � �
V −

1

	0	��

1

r

�

��
U , �5f�

where k0=�		0�0 is the wave number in free space. Substi-
tuting Eq. �4� into Eqs. �5a�–�5f�, we can obtain the wave
equations for U and V:
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FIG. 2. �Color online� �a� The material parameters of the conical
cloak as a function of the longitudinal angle �. �b� Configuration of
rays traversing a conical cloak at an oblique angle. The transforma-
tion medium that composes the cloak lies between the two cones ��
and � are 60° and 30°, respectively�.
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r2 �2

�r2 +
1

sin g���g����
�

��

sin g���
g����

�

��
+

1

sin2 g���
�2

��2 + k0
2��U

V
� = 0. �6�

In what follows, we develop some general properties of the U function, which also concern V.
Utilizing separation of variables method, the U function can be expressed for all values of r � �0,�� as a linear combi-

nation of the form U=R��r��
m����m���, where the explicit expressions of R��r�, �

m���, and �m��� as well as the separation
parameters � and m can be determined through the boundary condition, radiation condition, and sources. For problems with
rotational symmetry, the azimuthal function � is of the trivial form �m���=eim� and the parameter m is an integer �m�Z�.
The radial function R��r� and the angular function �

m��� are the solutions of the following equations, respectively:

r2 �2

�r2R + 
k0
2r2 − ��2 −

1

4
��R = 0, �7�

1

sin g���g����
�

��

sin g���
g����

�

��
 + 
��2 −

1

4
� −

m2

sin2 g���� = 0. �8�

Equation �7� shows that the radial function R��r� is a solution
of Bessel’s function and can be written in terms of appropri-
ate combination of the following form:24

R��r� = 	k0rJ��k0r� + C�
	k0rJ−��k0r� ,

� � �0, � 1, � 2, � 3, . . .� �9a�

or

Rn�r� = 	k0rJn�k0r� + Cn
	k0rYn�k0r� ,

� = n � �0, � 1, � 2, � 3, . . .� , �9b�

where Cn �or C�� is an arbitrary constant while Jn and Yn
represent the Bessel functions of the first and second kinds,
respectively. As to the angular function �

m���, with the sub-
stitution �=cos�g���� it can be reduced to a solution of Leg-
endre’s equation and is of the general form

�
m��� = P�−1/2

m �cos g���� + D�,mQ�−1/2
m �cos g���� , �10�

where P and Q are associated Legendre polynomials of the
first and second kinds, respectively. Therefore, the general
expression of U can be expressed as

U�r,�,�� = �
��I

�
m�Z

a�,mR��r��
m����m��� �11a�

or

U�r,�,�� = 
�

d� �
m�Z

b�,mR��r��
m����m��� �11b�

depending on whether the separation parameter � are discrete
or continuous.

The admissible values of � can be determined by Eq. �16�
in the following part. It should be pointed out that any func-
tion U�r ,� ,�� satisfying certain integrability and continuity
conditions can always be represented through an expression
similar to Eqs. �11a� and �11b� by appropriately choosing I

�or ��.24 Thus, the solution of a scattering problem under
given boundary condition consists of the determination of

the set I or the contour � appearing in Eqs. �11a� and �11b�
along with the expansion constant a�,m �or b�,m�.

Consider the case where the parameter � is continuous
�discrete � can be derived in similar manner�, we can express
the scalar potentials, respectively, for the exterior fields ��
�����, internal fields �0�����, and the fields of the
cloak layer ������� as follows:

Uext = 	k0r
�

d� �
m�Z

a�,m
�U�J��k0r�P�−1/2

m �cos ��eim�,

�12a�

Vext = 	k0r
�

d� �
m�Z

a�,m
�V� J��k0r�P�−1/2

m �cos ��eim�,

�12b�

Uint = 	k0r
�

d� �
m�Z

c�,m
�U�J��k0r�P�−1/2

m �cos ��eim�,

�13a�

Vint = 	k0r
�

d� �
m�Z

c�,m
�V� J��k0r�P�−1/2

m �cos ��eim�,

�13b�

Ucloak = 	k0r
�

d� �
m�Z

d�,m
�U�J��k0r��P�−1/2

m �cos g����

+ D�,m
�U�Q�−1/2

m ��cos g�����eim�� , �14a�

Vcloak = 	k0r
�

d� �
m�Z

d�,m
�V� J��k0r��P�−1/2

m �cos g����

+ D�,m
�V� Q�−1/2

m ��cos g�����eim�� , �14b�

where a�,m
�U�, a�,m

�V� , c�,m
�U�, c�,m

�V� , d�,m
�U�, d�,m

�V� , D�,m
�U�, and D�,m

�V� are all
undetermined expansion coefficients. With the help of Eqs.
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�5a�–�5f�, the expressions of EM fields in the three regions
can be obtained. By applying the continuity of Er, E�, Hr,
and H� at the two boundaries �=� and �=�, we can get
eight boundary equations, four for U function and the other
four for V function. Here we only consider the case of U
function �the V function case can be similarly deduced� and
list the four boundary equations as follows:

d�,m
�U��P�−1/2

m �cos g���� + D�,m
�U�Q�−1/2

m �cos g�����

= c�,m
�U�P�−1/2

m �cos �� , �15a�

d�,m
�U� sin2 g����P�−1/2

m ��cos g���� + D�,m
�U�Q�−1/2

m ���cos g������

= c�,m
�U� sin2 �P�−1/2

m ��cos �� , �15b�

d�,m
�U��P�−1/2

m �cos g���� + D�,m
�U�Q�−1/2

m �cos g�����

= a�,m
�U�P�−1/2

m �cos �� , �15c�

d�,m
�U� sin2 g����P�−1/2

m ��cos g���� + D�,m
�U�Q�−1/2

m ���cos g������

= a�,m
�U� sin2 �P�−1/2

m ��cos �� . �15d�

Since g��� is zero and Q�−1/2
m �cos g���� is an infinite term, it

can be seen from Eqs. �15a� and �15b� that c�,m
�U� =D�,m

�U� =0,
indicating that the internal fields are exactly zero. It is worth
noticing that for the case where m=0, the product
D�,m

�U�Q�−1/2
m �cos g���� is equal to −1, although D�,m

�U� is zero.
Obviously, the value of this product is nonzero only at the
inner boundary ��=�� of the cloak. With the help of Eq. �5f�,
it can be demonstrated that the �-directed magnetic-flux den-
sity B� blows up11 at the cloak’s interior surface, which can
be characterized as a magnetic surface current induced along
� direction.19 However, when m is a nonzero term,
D�,m

�U�Q�−1/2
m �cos g���� is exactly equal to zero. Thus, surface

current will not be induced in this case. Afterwards, by sub-
stituting D�,m

�U� =0 into Eqs. �15c� and �15d�, we obtain the
transcendental equation for the separation parameter �:

sin2 g���P�−1/2
m ��cos g����

sin2 �P�−1/2
m �cos g����

=
P�−1/2

m ��cos ��
P�−1/2

m �cos ��
. �16�

Since g��� is equal to �, Eq. �16� holds true for arbitrary real
or complex �, indicating that the whole system behaves as
free space which supports the propagation of any kind of EM
fields. This result provides another confirmation that the
cloak achieved with the parameters given by Eq. �4� is per-
fect. It is worthwhile to point out that in some nonideal cases
where the outer boundary is not matched to free space
�g������, the solution set of � can be still determined from
Eq. �16�. Thereby, for any given source distribution, all the
expansion coefficients can be determined by matching the
potential functions U and V to corresponding incident field.25

Here we show an example where a perfect conical cloak with
�=60° and �=30° is subject to an illumination at 2 GHz

from a linear polarized plane wave propagating in the +x

direction with electric field Ēi= ŷeik0x. Figures 3�a� and 3�b�
depict the calculated Ey field distribution in two orthogonal
planes. The results indicate that the fields have been ex-
cluded from the interior region while no scattering is induced
outside. There is no near-field enhancement24,26 at the apex
of the perfect conical cloak even when the internal cone is
very sharp. However, it can be demonstrated that the perfor-
mance of the cloak is rather sensitive to tiny perturbations at
the inner boundary. Even a minor change will cause a notice-
able scattered field outside, which has something in common
with the cylindrical cloak case.19,22

Notice that apart from a sharp cone, the surface of the
conical cloak can be a plane. As depicted in Fig. 4�a� where
the outer boundary of cloak is flat ��=90°�, the incident
plane wave is compressed and spread along the inner surface
��=60°� of the concave conical shell. Figure 4�b� shows the
case where a plane wave is obliquely incident upon a conical
cloak with �=90° and �=85°. It can be seen from these two
examples that if the conical cover is fabricated to a thin layer
����=90°�, the incident wave will be compressed from any
direction into a very thin quasiplane. In Figs. 4�c� and 4�d�,
the outer longitudinal angle � is larger than 180° and the EM
wave can be trapped in a small cone.

IV. CONICAL CLOAK WITH SIMPLIFIED MATERIAL
PARAMETERS

The current fabrication of electromagnetic cloak requires
anisotropic media with each component of permittivity and
permeability independently controlled.1,3,5–9,12–15,21,22 Al-
though this is within the realm of metamaterial
technique,27,28 it still requires the radial permittivity and per-
meability elements with relative magnitudes to be less than
one. Even the cylindrical cloak with simplified
parameters5,6,9,12 cannot overcome this drawback. Therefore,
the bandwidth of a passive cloaking structure will be always
limited. However, we find that the conical cloak based on the
reduced set of material parameters offers a feasible solution
to this problem.
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FIG. 3. �Color online� �a� The y-directed total electric-field dis-
tribution in the x-z plane for a plane-wave scattering problem. �b�
Ey field distribution in the same case observed at the plane z
=0.15 m. The incident plane wave propagates in the +x̂ direction
with normalized Ey polarized electric field. The arrows represent the
Poynting vectors. The outer longitudinal angle ��� is set to be 60°,
while the inner one ��� is 30°.
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Here we consider transverse magnetic case, where only
H�, Er, and E� enter into Maxwell’s equations �transverse
electric case can be derived in the same way�. Similar to the
realization of simplified cylindrical cloak,5,6 by keeping the
products 	���rr and 	����� unchanged, the material param-
eters of a reduced conical cloak can be obtained as

�rr = �g�����2, ��� = 1, 	�� = 1. �17�

If g��� is selected as a linear transformation function g���
= ���−�� / ��−�� , Eq. �17� is reduced to

�rr = � �

� − �
�2

, ��� = 1, 	�� = 1. �18�

It is interesting to see that all the permittivity and permeabil-
ity elements are spatially uniform with relative magnitude
larger than one. Consequently, this reduced conical cloak can
be realized with natural materials. Furthermore, it is possible
to be designed within a wide band of frequency. However,
undesired scattering is inevitable since the impedance is mis-
matched at the outer boundary of the cloak. Therefore, it is

necessary to use high-order transformation12,16 to create
smooth impedance at the outer interface. Here, we propose
another transformation function g���=�� ��−�� / ��
−�� ���−��/�, which is different from the quadratic transfor-
mation used in Refs. 12 and 16. As a result, the effective
constitutive parameters of the cloak become

�rr = �� − �

� − �
� 2�

�
, ��� = 1, 	�� = 1. �19�

Although the radial relative permittivity element �rr is de-
pendent of �, it is always larger than 1. Hence, this reduced
conical cloak working for azimuthally invariant incident
fields is still physically realizable within a wide band of fre-
quency.

It should be pointed out that the simplified cloaking struc-
ture specified by Eq. �17� requires that the magnetic field
should be polarized along � direction. Thus, it is only appli-
cable to the case where the fields of the incoming wave are
independent of �. From calculations, we find that the mag-
netic field of this azimuthally invariant incident wave in free
space must take the following general form:

1

0

-1

0-0.2-0.4 0.2 0.4
x (m)

0.4

0.2

0

-0.2

-0.4

z
(m
)

(a)

R
el
at
iv
e
ε,
µ

θ
60 70 80 90
0
2
4
6
8
10

r

θ

ϕ

(degree)

0-0.2-0.4 0.2 0.4
x (m)

0.4

0.2

0

-0.2

-0.4

z
(m
)

(c)

R
el
at
iv
e
ε,
µ

θ
90 100 110 120
0
2
4
6
8
10

r

θ

ϕ

(degree)

0-0.2-0.4 0.2 0.4
x (m)

0.4

0.2

0

-0.2

-0.4

z
(m
)

(d)

θ (degree)
120 130 140 150
0
10
20

30
40

R
el
at
iv
e
ε,
µ

0-0.2-0.4 0.2 0.4
x (m)

0.4

0.2

0

-0.2

-0.4

z
(m
)

(b)

85 86 87 88 89 90
0

100

200

300

R
el
at
iv
e
ε,
µ

θ (degree)

ϕ

r
θ

ϕ

r θ

FIG. 4. �Color online� The y-directed total electric-field distribution and Poynting vectors �arrows� in the x-z plane for a plane-wave
scattering problem by a perfect conical cloak with different inner and outer longitudinal angles. Here, four cases are considered: �a� �
=90° and �=60°. �b� �=90° and �=85°. �c� �=120° and �=90°. �d� �=150° and �=120°. The insets in these figures depict the r, �, and
� components of the material parameters of the conical cover.

INTERACTION OF AN ELECTROMAGNETIC WAVE WITH A… PHYSICAL REVIEW B 78, 125108 �2008�

125108-5



H̄ = �̂J1�k���ekzz for kz � k0, �20a�

H̄ = �̂�ek0z for kz = k0, �20b�

where k�
2+kz

2=k0
2 and k0=�		0�0 is the wave number in free

space.
In what follows, we will perform full wave analysis to

study the electromagnetic characteristics of the reduced coni-
cal cloak based on linear transformation. In the transverse
magnetic �TM� case, only U function contributes to the field
distribution and the scalar wave equation is described as

� r2

	�����

�2

�r2 +
1

�rr sin �

�

��

sin �

	��

�

��
+ k0

2�U = 0. �21�

Since � /��=0, the U function may be written in terms of the
separation solutions of Eq. �22� as U=�

�

R��r�����. After

some algebraic manipulations, we find that the radial func-
tion R��r� still takes exactly the same form as that of perfect

conical cloak, namely, Eqs. �9a� and �9b�. However, the an-
gular function  is different. It is the solution of the follow-
ing equation:

1

sin �

�

��
sin �

�

��
 + �rr��2 −

1

4
� = 0. �22�

In the case of linear transformation where the permittivity
and permeability elements of the cloak are given by Eq. �19�,
the solution of Eq. �22� is

���� = P��cos �� + D�Q��cos �� , �23�

where �=	�� / ��−���2��2− �1 / 4 ��+ 1 / 4 − 1 / 2 and D� is an
arbitrary constant. Following the same process in Sec. III,
the scalar potentials in the three regions �������, �0��
���, and ������� can be listed. By applying the bound-
ary conditions �continuity of Er and H�� at the two interfaces
�=� and �=�, we find that the internal fields are no longer
zero and transcendental equation for the parameter � can be
expressed as

�
P�−1/2�cos �� − P��cos �� − Q��cos �� 0

P�−1/2� �cos �� − P���cos �� − Q���cos �� 0

0 − P��cos �� − Q��cos �� P�−1/2�cos ��
0 − P���cos �� − Q���cos �� P�−1/2� �cos ��

� = 0. �24�

Generally, Eq. �24� has a lot of solutions, which can be de-
termined through numerical method. With the solution set of
Eq. �24�, we can expand the potential for any azimuthally
invariant incident field in eigenfunctions. Finally, all the ex-
pansion coefficients can be determined by matching the in-
coming part of the total potential to the incoming part of the
incident potential.25

For the high-order transformation case where �rr is not
spatially uniform, Eq. �21� can no longer be solved with
analytic Frobenius method.30 Hence, we deal with the prob-
lem trough the finite-element method �FEM�. Suppose the
incident wave is polarized along � direction with magnetic
field specified by Eq. �20a� �here k� is equal to 0.1k0�. Figure
5�a� displays the H� field distribution when the incoming
wave is propagating in free space. Figure 5�b� shows the
field distribution of a perfect conductive cone exposed di-
rectly to the incoming wave, where distinct scattering can be
observed. Figure 5�c� depicts the scattering of a perfect coni-
cal cloak. It can be seen that the incident wave outside is
almost unchanged and the internal fields are equal to zero. In
Fig. 5�d�, we plot the numerical magnetic-field distribution
when the incoming wave is incident upon a reduced conical
cloak obtained from linear transformation. Compared with
the perfect conductive cone shown in Fig. 5�b�, this simpli-
fied cloak has the effect of guiding waves around. However,
due to the impedance mismatching at the outer boundary,
noticeable field scattering is still induced and some waves

can even penetrate the core. Figure 5�e� depicts the numeri-
cal total magnetic field for the case where a simplified coni-
cal cloak based on high-order transformation is exposed to
the incident wave. The result shows that although the field
penetrating the inner region is still nonzero in this case, the
scattering outside is dramatically reduced.

V. CONICAL POLARIZATION ROTATOR

Other than the cloak, in this section we will propose a
conical device which can be used to arbitrarily control the
polarization of EM waves. Consider the following transfor-
mation:

r� = r �� = � �� = �, �for � 
 �� , �25a�

r� = r �� = � �� = � + �0, �for � � �� , �25b�

r� = r �� = � �� = � + h���, �for � � � � �� ,

�25c�

where h��� is a continuous function with h���=0 and h���
=�0. It can be seen that the above mapping rotates an angle
�0 for region ���. Assume the background is free space.
We find the permittivity and permeability tensors of the coni-
cal cover �in the region ������ can be expressed in the
spherical coordinate �r ,� ,�� as follows:
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�� = �0�1 0 0

0 1 − A���
0 − A��� 1 + A2���

� ,

	� = 	0�1 0 0

0 1 − A���
0 − A��� 1 + A2���

� , �26�

where A���=h���sin �. If the function h��� is selected as

h��� = B�ln tan
�

2
− ln tan

�

2
� , �27�

where B=�0 / �ln tan�� / 2 �−ln tan�� / 2 ��, A��� can therefore
be simplified to a constant �A���=−B�. As a result, all the
material parameters become spatially invariant. However, the
relative permittivity and permeability tensors are still nondi-
agonal. For the purpose of simplifying the fabrication pro-
cess, we let sin2 �= 1 / 2 �1+ �B /	1+B2 �� and define a new

orthogonal coordinate system �u ,� ,w� with the unit vectors

û= r̂, �̂= �̂ cos �+ �̂ sin �, and ŵ=−�̂ sin �+ �̂ cos �. As a re-
sult, the relative permittivity and permeability tensors in the
new coordinate are diagonal

�� = �0��uu 0 0

0 ��� 0

0 0 �ww
�, 	� = 	0�	uu 0 0

0 	�� 0

0 0 	ww
� ,

�28�

with �uu=	uu=1, ���=	��= �B2+2+B	B2+4� / 2, and �ww

=	ww= �B2+2−B	B2+4� / 2.
Full wave scattering method is employed to verify the

validity of derived parameters �Eq. �28��. The transformation
conical cover with �=120° and �=90° is exposed to a Ey
polarized plane wave propagating in the +ẑ direction at 2
GHz. The rotation angle was chosen as �0=90°. From cal-
culations �similar to that of Sec. III�, we find the expressions
of the scalar potentials for the exterior fields �������,
internal fields �0�����, and the fields of the conical cover
�������, respectively, as follows:

Uext = 	k0r �
n�Z

�
m�Z

an,m
�U�Jn+1/2�k0r�Pn

m�cos ��eim�,

�29a�

Vext = 	k0r �
n�Z

�
m�Z

an,m
�V� Jn+1/2�k0r�Pn

m�cos ��eim�,

�29b�

Uint = i	k0r �
n�Z

�
m�Z

an,m
�U�Jn+1/2�k0r�Pn

m�cos ��eim�,

�30a�

Vint = i	k0r �
n�Z

�
m�Z

an,m
�V� Jn+1/2�k0r�Pn

m�cos ��eim�,

�30b�

Ucon = 	k0r �
n�Z

�
m�Z

an,m
�U�Jn+1/2�k0r�Pn

m�cos ��eimh���eim�,

�31a�

Vcon = 	k0r �
n�Z

�
m�Z

an,m
�V� Jn+1/2�k0r�Pn

m�cos ��eimh���eim�,

�31b�

where an,m
�U� and an,m

�V� are the expansion coefficients of the
incident wave which can be determined by appropriate pro-
jections with the spherical harmonic.25 Finally, by substitut-
ing Eqs. �29a�, �29b�, �30a�, �30b�, �31a�, and �31b� into
Maxwell’s equations, all the components of the EM fields
can be deduced. Figures 6�a� and 6�b� shows the calculated
Ey and Ex field distributions in the x-z plane, respectively. It
is interesting to see that the wave is totally transmitted from
an open region to another without introducing any scattering.
Nothing has been changed except that the polarization of the

(b) (c)

(d)

(a)

x (m)

z
(m
)

-0.8 0.80-0.4 0.4-0.6 -0.2 0.2 0.6

0

-0.6

-0.4

-0.2

0.2

0.6

0.4

10-1

(e)

FIG. 5. �Color online� �-directed total magnetic-field distribu-
tion for TM mode scattering problem. �a� The incoming wave with

magnetic field H̄= �̂J1�k���ei	k0
2−k�

2z �where k�=0.1k0� propagates in
free space. �b� A perfect electric conductor cone with half cone
angle equal to 30° is exposed directly to this incoming wave. �c�
The incoming wave is incident upon a perfect conical cloak. �d� The
incoming wave is incident upon a nonideal conical cloak obtained
from linear transformation. �e� The wave is incident upon a simpli-
fied cloak achieved with high-order transformation. In cases �c�, �d�,
and �e� the outer longitudinal angle � and the inner longitudinal
angle � are set to be 60° and 30°, respectively.
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field has been rotated by an angle of 90°. In order to observe
it more clearly, we have also computed the Ez field distribu-
tion in two planes vertical to the z axis. As depicted in Figs.

6�c� and 6�d�, the field is rotated and the wave inside the
conical cover transmits in a spiral trajectory.

VI. CONCLUSION

A peculiar cloaking structure—conical cloak—is pro-
posed in this paper. We have analyzed the EM behavior of
this cone-shaped cloak by rigorously solving Maxwell’s
equations in spherical coordinate system. For the scattering
problems of a perfect conical cloak, we show that the tran-
scendental equation is naturally satisfied for the separation
parameter � with arbitrary real or complex values. Under the
condition that the source is rotationally symmetric, with the
resulting fields azimuthally invariant, it is possible to con-
struct a simplified conical cloak with wide working fre-
quency. A conical polarization rotator whose effective con-
stitute parameters are spatially uniform is also studied. This
device can arbitrarily control the polarization of EM waves
getting through without introducing any scattering. The coni-
cal devices proposed here provide good candidates for lots of
applications such as absorbing materials, cylindrical wave-
guide devices, field rotators, etc.
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