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We propose to generate terahertz surface plasmon polaritons �SPPs� on a metal wire by launching electron
bunches onto a tapered end of the wire. To show the potential of this method, we solve Maxwell’s equations for
the appropriate boundary conditions. The metal wire tip is modeled by a perfectly conducting semi-infinite
cone. It is shown that the SPPs can be recovered from the idealized fields by well-known perturbation tech-
niques. The emitted radiation is strongly concentrated into a narrow solid angle near the cone boundary for
cones with a small opening angle. We calculate that, using currently available technology, subpicosecond SPPs
with peak electric fields of the order of MV/cm on a 1 mm diameter wire can be obtained.
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I. INTRODUCTION

Terahertz surface plasmon polaritons �SPPs� on a metal
wire recently received a lot of attention.1–10 It has been
shown that these SPPs can efficiently be focused below the
diffraction limit by periodically corrugating the wire7,8 or
tapering the wire into a tip.9 This leads to electromagnetic
�e.m.� terahertz pulses that are both very strong and highly
localized, making it possible to study materials at terahertz
frequencies with subwavelength spatial resolutions.11,12 Ap-
plications include near-field optical microscopy,13,14 imaging
of semiconductor structures15,16 or biological tissues,17,18

single-particle sensing,19,20 and terahertz spectroscopy.21,22

Another benefit of the wire geometry is that it acts as an
efficient waveguide for terahertz SPPs. Recently it has been
shown that terahertz SPPs can propagate along a wire over
long distances with low attenuation and dispersion.1–5 This
enables endoscopic delivery of terahertz radiation to samples
in applications where line of sight access is not available.1

Several other structures have been proposed as waveguides
for terahertz SPPs, including coaxial lines,23 metal tubes,24

and nonmetallic guides.25,26 However, the feasibility of these
guides is limited by either high attenuation or high disper-
sion. An exception is the parallel-plate waveguide,27 but in
this case the large cross-sectional area may be a problem for
many terahertz applications.

Despite the promising properties of terahertz SPPs guided
by a metal wire, it has proven difficult to efficiently generate
SPPs of appreciable amplitude. In contrast, over the last
years, several sources have become available that generate
intense free-space terahertz radiation pulses with broad band-
width and peak electric fields that approach the MV/cm re-
gime. Technologies of the latter include accelerator-based
sources generating coherent radiation28–30 and table-top sys-
tems producing radiation by optical rectification of femtosec-
ond laser pulses.31 However, up to now, efficient coupling of
these free-space terahertz pulses into the guided mode on a
wire has been difficult. Currently, terahertz SPPs are gener-
ated by scattering the linearly polarized free-space waves
into a radially polarized wave, which is then coupled onto
the wire.1 However, due to the poor spatial overlap between
the free-space radiation wave form and the SPP wave form,
the coupling efficiency is very low �typically less than 1%32�.

Hence the attainable SPP electric-field strength is limited to
the kV/cm range by current methods. A proposed method to
overcome this low coupling efficiency is to create radially
polarized terahertz radiation using a radially symmetric pho-
toconductive antenna.32

In this paper, we propose a method to generate terahertz
SPPs on a wire directly, that is, without the creation of free-
space terahertz radiation as an intermediate step. Similar to
the method proposed in Ref. 32, in our method the guided
mode on the wire is excited by a radially polarized field,
thereby avoiding the poor coupling efficiency described
above. We propose to generate terahertz SPPs by launching
electron bunches onto a metal wire, which is tapered into a
conical tip, as is illustrated in Fig. 1. When passing the coni-
cal vacuum-metal boundary, the bunch will generate a radi-
ally polarized coherent transition radiation �CTR� field, of
which terahertz SPPs along the boundary are part. These
excited SPPs will propagate onto the wire subsequently. We
calculate that, with currently available electron bunches, sub-
picosecond SPPs with peak electric fields of the order of
MV/cm could be created on a 1-mm diameter metal wire.

Transition radiation is generated when an electron passes
a vacuum-metal boundary,33–35 and the radiation is radially
polarized due to the radial polarization of the Coulomb field
of the electron.36 The radiated energy from a single electron
is very small. However, when N electrons pass the boundary
and radiate coherently, they produce N2 as much energy as a
single electron. In the latter case, the radiated energy can be
considerable. Because the radiation profile and spectrum de-
pend on the bunch form, CTR is a well-known diagnostic
tool to characterize the spatial distribution of electron
bunches.37–41 Note that in this paper we use the term “coher-
ence” as it is commonly used in classical electromagnetism,
that is, referring to the constructive interference of the elec-
tromagnetic field contributions from different parts of the
source. Such coherent field addition takes place if the elec-
trons are compressed into a bunch of dimensions less than
the wavelength, which means that bunches of size �300 �m
radiate coherently at frequencies up to about 1 THz. Re-
cently, such generation of intense free-space terahertz radia-
tion by CTR emitted at a planar interface has been demon-
strated, using linac42 or laser-wakefield43 accelerated
bunches and resulting in electric fields of the order of
MV/cm after focusing of the radiation.
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We propose to generate terahertz SPPs directly by launch-
ing electron bunches onto a tapered wire tip instead of cou-
pling free-space CTR emitted at a planar interface onto a
metal wire. This has two benefits: first, electrons are capable
of exiting SPPs directly, in contrast to photons where an
additional coupling medium is necessary to match the wave
vectors of the photons and SPPs. Second, for sharp tips the
electrons pass the vacuum-metal boundary at grazing inci-
dence, which enhances the transition radiation due to an in-
creased radiation formation length.44

It is well known that the radiated power of transition ra-
diation is proportional to log �,33 where �= �1−�2�−1/2 is the
relativistic factor of the electron bunch. Therefore, in prin-
ciple there is no need to accelerate the bunch to high ener-
gies; typically �=5–10, i.e., an electron energy of 2–5 MeV,
is sufficient for transition radiation methods. Furthermore, it
has been shown previously that mildly relativistic bunches of
the required size can be made using a table-top setup.45–48

Thus, a technological benefit of our method is that it can be
applied using an overall table-top system.

In this paper we calculate analytically what terahertz SPP
electric fields can be obtained by launching electron bunches
onto a tapered metal tip. Hence a considerable part of this
paper will be devoted to an analytical calculation of the tran-
sition radiation that is produced by the bunch impinging on
the conical tip in Fig. 1. This calculation amounts to finding
a solution of Maxwell’s equations for the electric field. This
field should be consistent with the presence of the electron
bunch and should satisfy appropriate boundary conditions at
the metal surface. However, fully solving Maxwell’s equa-
tions for a conical geometry is notoriously difficult. The
problem is greatly simplified by assuming that the metal is
an ideal conductor so that the electric field is perpendicular

to the metal surface outside the tip and is zero inside the tip.
In making this assumption, however, one inherently neglects
the possibility of the existence of SPPs. Nevertheless, for
good conductors, the SPPs can be recovered from the ideal-
ized field by well-known perturbation techniques. This is the
approach followed in this paper. Furthermore, since we are
only interested in the SPPs that result at distances from the
tip that are large compared to the wavelength, we have ap-
plied far-field approximations, which greatly simplify the
calculations.

The remainder of this paper is organized as follows: In
Sec. II, it is shown how the SPP field may be obtained from
the idealized field. Having this connection established, we
proceed to calculate the transition radiation field of a point
charge impinging on an ideally conducting conical tip in Sec.
III. In Sec. IV the results of this calculation are presented for
a number of concrete cases for the opening angle of the tip.
It will be shown that for sharp tips the transition radiation
strongly concentrates into a narrow bundle grazing the tip
surface, leading to very intense SPP fields. In Sec. V it is
shown that the calculated field expressions exactly agree
with closed analytical expressions obtained by different
methods for the limiting cases of a tip with a very large
opening angle �that is, a planar surface� and that of a tip with
a very small opening angle �that is, a semi-infinite line�. The
results for the single point charge are then extended to the
case of electron bunches in Sec. VI. This allows calculation
of the SPP field that can be readily obtained in practical
applications, which is shown in Sec. VII. Section VIII sum-
marizes the conclusions of this paper.

A note on the notation: nearly all quantities in this paper
are expressed in Fourier transformed form according to X
�X�����2��−1/2�−�

� X�t�ei�tdt. Time-domain quantities will
be denoted explicitly like X�t�.

II. SPPs AS PERTURBATION OF RADIATION FIELD AT
IDEAL CONDUCTOR

Considered throughout the paper is a semi-infinite metal
cone with an opening angle of 2� placed along the negative
z axis of a spherical coordinate system and a charge q mov-
ing along the positive z axis toward the cone tip, as shown in
Fig. 2. Suppose that, using the idealization that the metal is a
perfect conductor, the magnetic field can be calculated ana-
lytically for every point P outside the cone. In the case of a
good but not perfect conductor this idealized field can be
extended into the conductor by approximate methods. This is
common practice in resonant cavity and waveguide design
and yields the well-known skin field,49

Eskin � �1 − i�� �

2��
e�1−i� 	


 �n � B�� , �1�

with


 =� 2

���
�2�

as the skin depth. Here, B� is the idealized magnetic field at
the surface �which is parallel to the surface�. Furthermore, n

FIG. 1. �Color online� Principle of terahertz SPP �blue bell-
shaped pulse� generation on a wire by launching electron bunches
�red oval� onto a conical tip.

SMORENBURG, OP ’T ROOT, AND LUITEN PHYSICAL REVIEW B 78, 115415 �2008�

115415-2



denotes the outward normal vector at the metal surface and 	
a coordinate along this vector, � denotes the permeability,
and � denotes the conductivity of the metal. As is typical for
good conductors, the skin field decreases exponentially with
the depth −	 into the metal. In the following sections, the
idealized fields are calculated from which the skin field 	Eq.
�1�
 can be determined for every point on the cone surface.
This skin field and the accompanying magnetic field can be
seen as electromagnetic disturbances in the metal skin with a
forced distribution B��r ,�−� ,��. They will propagate inde-
pendently as SPPs along the cone surface and onto a wire
only if their wave form matches that of the SPPs, that is, if
the field 	Eq. �1�
 is matched with freely propagating surface
waves. To see whether this is true, the electric SPP field ESPP
on a nonideal cone has to be calculated and compared to the
skin field 	Eq. �1�
.

The field ESPP is a solution of the homogeneous Helm-
holtz equation,

��2 + k2�ESPP = 0, �3�

with boundary conditions appropriate to the conical geom-
etry of Fig. 2. Unfortunately, no closed-form solutions exist
for this. However, the eikonal or WKB approximation may
be used to approximate ESPP for small opening angle cones.9

This is shown in Appendix A. Applying the Drude model50

for the permittivity of the metallic cone, the result is that

ESPP � �1 − i�� �

2��
e�1−i�

−�z�tan �


 B0eikzzez �4�

is an approximate solution of Eq. �3� provided that

k�z� � 1, �5�

�z�tan �



� 1, �6�

� d

da

1

kz�a�
�tan � � 1. �7�

In Eq. �4�, B0 is an amplitude with units of magnetic field. In
Eq. �7�, kz�a� denotes the propagation constant of SPPs along
a cylinder with radius a, which is discussed in Appendix A.
Comparison of Eqs. �1� and �4� shows that the skin field
obtained from a calculation of the idealized field outside the
cone is of the same form as the field of freely propagating
SPPs, identifying the amplitude B0 with �B�� and noting that
B� is polarized in the � direction. The latter is the property of
the transition radiation field that we exploit using the cone
geometry.

Therefore, we can conclude that the amplitude of the tran-
sition radiation field at the cone surface, calculated under the
assumption of an ideally conducting cone, can be identified
with the amplitude of the excited SPPs as long as conditions
�5�–�7� apply. Thus we proceed by calculating the idealized
field in the next sections, returning to the SPP field in Sec.
VII.

III. RADIATION FIELD CALCULATION

A. Dyadic Green’s function

To calculate the electric radiation field generated by the
moving point charge in Fig. 2, we use a dyadic Green’s-
function method. Dyadic Green’s functions are an important
tool in electromagnetic theory51,52 and are often used to cal-
culate how incoming electromagnetic radiation is scattered
by some given body.53 In contrast, the incoming field con-
sidered here is that of a moving physical charge. In particu-
lar, the field propagates in the negative z direction with a
speed less than that of light.

Considering the idealized situation of a perfectly conduct-
ing cone embedded in vacuum, the total electric field outside
the cone satisfies the inhomogeneous Helmholtz equation,

��2 + k2�E = �0
−1 �  − i��0J ,

0 � �� � − � , �8�

where  is the charge density, J is the current density, and �0
and �0 are the permittivity and permeability of vacuum, re-
spectively. At the cone, the field is subject to the boundary
condition,

n � E = 0, � = � − � . �9�

Furthermore, we are interested in the far-field part of the
electric field, that is, in that component, which represents
electromagnetic radiation. This component ET is the trans-
verse part49 of the vector field E such that

� · ET = 0. �10�

As is known, while applying a Green’s-function method
one first calculates the field response at some position r due
to a unit point source at another position r0, and then inte-
grates the result over the full source distribution to obtain the
full field. More exactly, the method is as follows:51 Suppose
that a dyadic �i.e., nine component� function G of two coor-

x
( , , )P r � �

z

y

q �

r

�

�

�

FIG. 2. Definition of coordinates.
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dinate vectors r and r0 can be found, such that

��2 + k2�G�r,r0� = I�3�r − r0� ,

0 � �� � − � , �11�

where I is the identity dyadic or idemfactor and �3 is the
three-dimensional Dirac delta function. Suppose further that,
at the cone, G satisfies the boundary condition

n �G = O, � = � − � , �12�

with O as the zero dyadic. Then it can be shown that the
transverse part of the electric field that satisfies Eqs. �8� and
�9� is given by

ET�r� = − i��0  
V0

GT�r,r0� · J�r0�dV0, �13�

where V0 is the entire space outside the cone. Here, the dy-
adic GT is the transverse part of G,51 i.e., the part of G for
which

� · GT = 0 . �14�

Equation �13� can be derived by manipulation of Eqs.
�8�–�12� and depends on the vanishing of several surface
integrals. This is shown in Appendix B. Note in particular the
well-known result that the far-field only depends on the cur-
rent density and not on the charge density.

With Eq. �13�, the problem of finding the radiation field
generated by the point charge in Fig. 2 is reduced to evalu-
ation of the dyadic Green’s function GT, current density J,
and a three-dimensional integral. The time-domain and Fou-
rier transformed current densities of a point charge that
moves along the z axis in the negative direction with velocity
�c and passes the origin at time t=0, are given in Cartesian
coordinates by

J�t� = − q�c��x���y���z + �ct�ez, t � 0, �15�

J��� = − �2��−1/2q��x���y�e−i
k
�

zez, z � 0. �16�

Thus, in the Fourier domain the current takes the form of
a line distribution along the positive z axis. The dyadic
Green’s function G of course depends on the geometry of the
volume V0, that is, on the angle �. Several representations for
G are known, one of which takes the form of an expansion in
terms of dyadic products of the eigenfunctions of the vecto-
rial Helmholtz equation.51,52 This expansion is shown in full
in Appendix C. Taking the transverse part GT of this repre-
sentation and keeping only terms that yield a nonzero con-
tribution to the integral in Eq. �13�, reduces the Green’s func-
tion to a simpler form. This is shown in Appendix C. The
result is

GT = − ik�
�

��
2

��� + 1��N�
�1��r�N�

�3��r0� r � r0

N�
�1��r0�N�

�3��r� r � r0
� , �17�

where the eigenvalues ��� are the solutions of Eq. �C12�, ��

and N� are given by Eqs. �C7� and �C11�, respectively, and
subscripts m=0 have been omitted.

B. Field quantities in the far zone

Substitution of current �16� and Green’s function �17� in
Eq. �13� yields an expression for the transverse electric field
generated by the moving point charge. As is shown in Ap-
pendix D, in the far zone kr→� this expression reduces to

ET �
�0�q
�2�

eikr

kr �
�

��
2e−i�

�
2 I����P�

1�cos ��e�, �18�

with

I���� �
������

2��� + 3
2�e−i�

�
2 · ��

2
��2F1��2 ,

� + 1

2
;� +

3

2
;�2� .

�19�

Here, � denotes the Gamma function and 2F1 is the hy-
pergeometric function. The curl of the electric field yields the
magnetic field in the far zone,

B =
1

i�
� � ET �

�kq
�2�

�
�

��
2e−i�

�
2 I����P�

1�cos ��
eikr

kr
e�.

�20�

The �time integrated� energy flow per unit of surface area
per unit of frequency is given by the spectral Poynting
vector,36

S��� =
2

�
Re	ET��� � B����
 , �21�

here defined such that a ·�0
�S���d� gives the energy flow per

unit of area in the direction of a unit vector a. The spectral
brightness, defined as the energy flow W per unit of fre-
quency � per unit of solid angle �, is

�2W

�� � �
= r2er · S��� , �22�

which yields

�2W

�� � �
=

q2

4��0c��� 2��
2e−i�

�
2 I����P�

1�cos ���2
. �23�

This is the transition radiation generated by the moving point
charge in Fig. 2 as it passes from vacuum into the perfectly
conducting cone at the cone tip, resolved into the spectral
components � and the observation angle �. Note that the
brightness does not depend on the frequency, which is a char-
acteristic for transition radiation from a point charge.33 Of
course, for a physical metal, the permittivity is frequency
dependent so that the brightness quickly decreases as the
frequency approaches the metal’s plasma frequency. There-
fore the total radiated energy �� �2W

����d�d� remains finite.
However, here we are interested in terahertz frequencies,
which are well below typical plasma frequencies.

Finally, to obtain the radiated energy per unit of frequency
or spectral intensity, the spectral brightness is integrated over
the angular coordinates. This gives
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�W

��
=

q2

4��0c
�
�
�4

��0
4

��1
2 �I��2

+ 8 Re�
���

��0
2 ��0

2 e−i��−���
2 I�I�

� p�,�� , �24�

with ��0 and ��1 given by Eq. �C7�, and with54

p�,� =
2� sin �

��� + 1� − ��� + 1�
· 	P�

1�− cos ��P�
2�− cos ��

− P�
1�− cos ��P�

2�− cos ��
 ,

where the asterisk denotes complex conjugation.

C. Spectral brightness in the narrow-angle cone limit

To validate the results of the previous section with alter-
native analytic methods later on, the behavior of the spectral
brightness in the narrow-angle cone limit will be discussed.
In order to obtain this behavior, we study the form of the
dyadic Green’s function 	Eq. �17�
 in this limit. The Green’s
function depends on the cone opening angle � via the set of
eigenvalues ���, which are the solutions of Eq. �C12�. Its
angular dependency is described by the Legendre functions
in Eq. �C11�, and from the previous section it is apparent that
only the component,

ez0
· GT · e� = − ik�

�

��
2	ez0

· N�
�1��r0�
	e� · N�

�3��r�
 �25�

of the Green’s function contributes to the spectral brightness
	Eq. �23�
. In the following, we show that this expression and
therefore the spectral brightness contains two components:
one that is well behaved in all directions � and one that is
sharply peaked near narrow-angle cones. In Ref. 55 a series
similar to Eq. �25� is studied and the following results are
obtained.

As �→0, �the cone approaches a half line�, the eigenval-
ues approach the integers from above, such that

�n = n + �0, �26�

�0 →
1

2 ln 2
�

, �27�

as �→0, where n�N. The terms e� ·N�
�3��r� in Eq. �25� con-

tain noninteger degree, first-order Legendre functions. These
grow very rapidly near the cone boundary if ��1 because
then the argument cos � approaches the singularity
limx→−1 P�

1�x�=�. The functions may be approximated by

Pn+�0

1 �cos �� � Pn
1�cos �� + �− 1�n+1 2�0

sin �
, �0 � 1.

�28�

On the other hand, the terms ez0
·N�

�1��r0� in Eq. �25� contain
zeroth-order Legendre functions, which are evaluated at �0
=0. This is because the source current 	Eq. �16�
 is confined
to the z axis where ez0

=er0
. Hence

Pn+�0
�cos �0� = Pn�cos �0� � 1, �29�

irrespective of �0. Finally, the scale factors �� are approxi-
mately equal to

�n+�0

2 � �n
2 =

2n + 1

4�
. �30�

Note that Eq. �28� splits the noninteger degree Legendre
functions into a regular term Pn

1�cos �� and an additional
term �−1�n+12�0 /sin �. The latter strongly grows near the
cone boundary, where �−��1, but is small otherwise due to
the smallness of �0. The extent of the angular regime in
which the second term is dominant may be characterized by
the angle at which this term becomes larger than the regular
term. For each n�1, this angle is larger than

�c = � −� 1

ln 2
�

. �31�

In Eq. �28�, the regular term vanishes altogether for n
=0 since P0

1�x��0, but also in this case Eq. �31� is a conve-
nient measure for the angular extent of the second term since
the latter grows larger than unity at this angle.

Substituting Eqs. �26�–�30� in series �25�, it is found that
the Green’s-function component resembles

ez0
· GT · e� � − ik�

n=1

�

�n
2	ez0

· Nn
�1��r0�
	e� · Nn

�3��r�
 �32�

in the regime 0����c, while it grows as

ez0
· GT · e� �

1

� − �
�33�

in the regime �c����−�, that is, close to the cone bound-
ary.

Now, Eq. �32� may be recognized as the dyadic Green’s
function for free space51 or rather its component applicable
to the problem considered here. Therefore, for a narrow-
angle cone and in the regime 0����c, the transition radia-
tion profile 	Eq. �23�
 resembles the radiation that the point
charge in Fig. 2 �which travels along half the z axis and
disappears in the origin� would produce without the presence
of the cone. On the other hand, in the regime �c����−�
the electric field is proportional to ��−��−1 by Eqs. �13� and
�33� so that the spectral brightness grows as

�2W

�� � �
�

1

�� − ��2 , �c � �� � − � �34�

near the cone boundary. In the very limit that �→0, Eq. �31�
yields that �c→�. Thus, in this limit, the transition radiation
is composed of two contributions: �1� the radiation pattern
produced by a point charge moving in free space along half
the z axis and �2� an infinitesimally thin and infinitely high
radiation peak along the negative z axis.

The latter may be seen as the contribution of a surface
wave propagating along the infinitesimally thin cone, which
will be shown using an alternative analytic method in Sec. V.
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First, however, the numerical evaluation of Eqs. �23� and
�24� for the spectral brightness and intensity will be pre-
sented in Sec. IV.

IV. NUMERICAL RESULTS

In Fig. 3 the spectral brightness 	Eq. �23�
 has been plot-
ted for several values of the cone opening angle. For the
charge velocity a relativistic factor of ���1−�2�−1/2=5 has
been taken. The series has been truncated after 30 terms in
each case. The same truncation has been used in the remain-
ing figures of this paper.

Apparent from Fig. 3 is that �i� the brightness profile con-
tains a “specular” peak near �=�−2�, which moves toward
the cone boundary as the opening angle decreases; �ii� as the
opening angle decreases, the brightness profile develops a
“surface” peak at the cone boundary; and �iii� this surface
peak rapidly grows with decreasing opening angle and domi-
nates the specular peak when ��25°.

The first radiation peak mentioned above is called specu-
lar since it is analogous to the specular reflection that would
be observed at �=�−2� if free electromagnetic radiation
would be axially incident on the cone instead of a point
charge. In the present case, however, the incident Coulomb
field propagates in the negative z direction with a speed less
than that of light. Therefore a Fourier decomposition of the
field differs somewhat from a superposition of free e.m.
waves with the wave number k=� /c causing the deviation of
the specular peak from the angle �−2�. Indeed, the specular
peak tends to this angle when high values of � are chosen.

The development of the surface peak with decreasing
opening angle clearly shows the result of Sec. III C that the
spectral brightness becomes peaked near the cone boundary
in the narrow-angle cone limit. To study the surface peak in
this limit, the spectral brightness has been plotted on a dou-
bly logarithmic scale in Fig. 4 for a half opening angle of

�=1°. Note from the scales that the peak height has in-
creased very rapidly as compared to the �=25° case. Also,
the peak is very narrow with a full width at half maximum
�FWHM� of about 0.5°. The peak shows the asymptotic
narrow-angle cone behavior given by Eq. �34�, which is in-
dicated in Fig. 4 by the red line �dash-dot�. The estimate 	Eq.
�31�
 for the left bound of the regime that is dominated by
the surface peak gives �c=154° for �=1°. Indeed, around
this value of � the surface peak shown in Fig. 4 rapidly
grows larger than unity and starts to dominate the brightness
profile. The ���−��−2 behavior sets in at somewhat larger
angles since Eq. �31� is a lower estimate.

As has been discussed in Sec. II, to estimate the amplitude
of SPPs the transition radiation field will excite, the quantity
of interest is the magnetic field at the cone boundary. Thus,
in the light of terahertz SPP generation by transition radia-
tion, another very important advantage of the cone geometry
is evident: the excited SPPs can be increased by orders of
magnitude by tapering the tip into a very narrow cone. This
is illustrated once more in Fig. 5, in which the spectral
brightness evaluated at the cone boundary has been plotted
as a function of half opening angle. The spectral brightness
increases by 4 orders of magnitude over the range �=90°
→�=1°, corresponding to an increase of 2 orders of magni-
tude in the magnetic field and SPP amplitude.

Of interest as well is the spectral intensity 	Eq. �24�
. This
quantity has been plotted in Fig. 6 as a function of half
opening angle. The intensity increases only by a factor of 4
over the range �=90° →�=1°, in contrast to the rapid
growth of the brightness near the cone boundary. Thus, the
primary effect of a small opening angle is not so much that
more radiation energy is generated but rather that the radia-
tion strongly concentrates into a narrow solid angle grazing
the cone boundary.

FIG. 3. �Color online� Angular spectral brightness profile for
several cone opening angles generated by a point charge moving
with �=5. The vertical lines represent the cutoff of the fields at the
cone boundary �=�−�. The series of Eq. �23� has been truncated
after 30 terms in the numerical evaluation.

FIG. 4. �Color online� Angular spectral brightness profile near
the cone boundary for a narrow-angle cone ��=1°�. As a reference,
the spectral brightness for a 25° cone has been plotted in both Fig.
3 and this figure. See also the comments below Fig. 3.
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V. VALIDATION

In order to validate the results obtained in the previous
sections, we compare result �23� for the spectral brightness
with results obtained by alternative methods in both the limit
of a large cone opening angle �planar boundary or �=90°�
and the limit of a narrow cone opening angle �semi-infinite
line or �→0�.

A. Planar boundary limit

The transition radiation field generated by a point charge
that is normally incident on a planar boundary between dif-
ferent media was calculated in closed exact form by Gin-
zburg and Frank.33 In the special case that one of the media
is a perfect conductor and the other is a vacuum, their result
for the spectral brightness reduces to

�2W

�� � �
=

q2

4��0c
� � sin �

��1 − �2 cos2 ���
2

. �35�

A plot of this expression as a function of � proves iden-
tical to the black solid graph in Fig. 3 for the planar bound-
ary. Accordingly, the Ginzburg-Frank results that are shown
as well in Figs. 5 and 6 are equal to the corresponding values
calculated with our theory. Thus, result �23� for the spectral
brightness is in exact agreement with the closed-form result
�35� of Ginzburg and Frank.

B. Semi-infinite line limit

One approximate method to obtain the scattered electro-
magnetic field, which results if some known field is incident
on a conducting object, is the physical theory of diffraction
�PTD� method. The method is commonly used in antenna
theory.56 The primary approximation in the method is to sup-
pose that the surface current density K on the conductor
surface satisfies the boundary condition,

�0K = 2n � Bin rather than �0K = n � Btot, �36�

where Bin is the �unperturbed� incident magnetic field and
Btot is the total �incident plus scattered� magnetic field. Thus,
the magnetic-field contribution at the surface induced by the
surface current is assumed to be equal to the incident field.
From the resulting approximate surface current distribution,
the scattered electromagnetic fields may be calculated by
evaluation of the standard electromagnetic vector potential.

The PTD method has been subjected to some criticisms.56

The most important objection in the case of a cone as a
scatterer is that the curvature of the surface is infinite at the
tip, which in general makes Eq. �36� a poor approximation.
However, the method has been successfully applied to accu-
rately calculate the radar cross section of a narrow-angle
semi-infinite cone.53,57,58 Moreover, rigorous expansions of
the surface current density exist, which are in good agree-
ment with the PTD approximation near the cone tip.59 There-
fore, we proceed by applying the PTD method to the transi-
tion radiation problem and the results will show to be in
perfect agreement with the results obtained in Sec. III C.

In the present case, the incident field Bin is that generated
by the moving point charge extended into the region z�0.
The current distribution J of this charge is given by Eq. �16�.
Now, the current J generates Bin, and this field in turn gen-
erates the current K according to Eq. �36�. Because of the
symmetry that both currents J and K are confined to the z
axis, it follows from Eq. �36� that simply

K = 2J, z � 0, �37�

which is the current of a uniformly moving point charge 2q.
Now, the total electric far field is the radiation field produced
by K at z�0 and J at z�0 combined. From this combination
we may remove a common charge q moving along the com-
plete z-axis, since the latter will not radiate at all. Thus, the
effective radiation source reduces to a point charge q moving
along the negative z axis and surrounded by free space. This

FIG. 6. �Color online� Spectral intensity as a function of half
cone opening angle generated by a point charge moving with �=5.
The Ginzburg-Frank result for a planar boundary given by Eq. �35�
integrated over the angular coordinates has been plotted as well.

FIG. 5. �Color online� Spectral brightness at the cone boundary
as a function of half cone opening angle generated by a point charge
moving with �=5. The Ginzburg-Frank result Eq. �35� for a planar
boundary has been plotted as well.
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confirms the first contribution predicted at the end of Sec.
III C.

To obtain the fields in some more detail, we consider the
current distribution I�z� of the effective source, which is

I�z� = − �2��−1/2qe−i
k
�

z, z � 0. �38�

Note that I�z� has the units of a Fourier transformed cur-
rent. One may proceed by calculation of the vector potential
generated by this current distribution, which involves trans-
formation to the k domain and contour integration
techniques.60 However, the electromagnetic fields can be ob-
tained directly in a more elegant way, by recognizing Eq.
�38� as the current distribution of a linear traveling wave
antenna of the slow type61 with one of the end points placed
at infinity. Traveling wave antennas carry a linearly phased

current, as given by the factor e−i
k
�

z, while “slow” refers to
the fact that the propagation velocity �c is less than that of
light in vacuum. Recently, a similar antenna model has been
successfully used to describe the radiation from a metal tip
coupled to terahertz pulses generated with a photoconductive
switch.62 An important property of traveling wave antennas
is that they generate two distinct electromagnetic field con-
tributions, namely, �i� they carry a radially evanescent elec-
tromagnetic field along their length, that is, a surface wave;
�ii� they radiate from their end points only.

Regarding the current 	Eq. �38�
 as a limiting case of a
slow wave antenna, the first of these contributions carries
energy into an infinitesimally small solid angle around �
=�. This contributes an additional peak to the spectral
brightness profile at �=� that is infinitesimally thin and in-
finitely high. This confirms the second property predicted at
the end of Sec. III C.

Summarizing, by qualitative arguments the Green’s-
function method of Sec. III agrees with the PTD method and
antenna theory used above. As an additional and a more
quantitative check, we now calculate the spectral brightness
using the antenna model.

Figure 7 shows a linear slow wave antenna with a current

distribution I�z�= I0e−i
k
�

z and with the end points at z
=�L /2, radiating in the direction �. The electric radiation
field in the far zone is given by61

ET = − I0
�0c

4�

eikr

r

� sin �

1 + � cos �
· �eik

L
2

�cos �+�−1�

− e−ik
L
2

�cos �+�−1�� . �39�

Now, the traveling wave e−i
k
�

z along the antenna gives a
harmonic excitation of the end point in z=�L /2 with a

phase of e�i
kL
2� with respect to the origin so that it will radiate

spherical waves with this phase. The waves from both end
points subsequently add in the far field with an additional

phase e�i
kL
2

cos � due to the path difference induced by the
orientation of the antenna with respect to the direction of
propagation. The different phase factors in the two field con-
tributions are indicated in Fig. 7. Observe in Eq. �39� that the
phase factors in the second line correspond exactly to those
just described so that the first line may be interpreted as the

radiation generated by a single end point. This is also noted
in Ref. 60 for the case of a strip carrying a traveling wave.
From the symmetry of the problem and the fact that the first
line of Eq. �39� changes sign under the substitution �� ,��
→ �−� ,�−��, the end points have equal radiation patterns
but with opposite sign, hence the minus sign in the second
line.

Returning to the semi-infinite antenna represented by cur-
rent �38�, only the radiation from the end point at z=0 con-
tributes to the far field at observation angles ��� since the
other end point is placed at an infinite distance. From Eq.
�39� with I0�−�2��−1/2q, the electric field in the far zone is

ET =
�0qc

2�2��
3
2

eikr

r

� sin �

1 + � cos �
. �40�

Applying Eqs. �20�–�22� to this field yields the spectral
brightness,

�2W

�� � �
=

q2

4��0c
� � sin �

2��1 + � cos ���
2

. �41�

Now, Eq. �39� gives the free-space radiation field and
does not include the surface wave traveling along the an-
tenna. Therefore, in order to make a proper comparison of
Eq. �41� with the result Eq. �23� obtained by the Green’s-
function method, we have to consider the latter in the limit
�→0 and take the free-space radiation part only. In terms of
the regular regime 0����c and the regime �c����
where the brightness is peaked considered in Sec. III C, this
is equivalent to letting �c approach � as �→0 and remove
the resulting radiation peak along the z axis. This is easily
effected by enforcing �0�0 in Eq. �28�, that is, by using in
expansion �23� integer degree Legendre functions. The re-
sulting adapted series has been plotted in Fig. 8. Indeed, the

�

/ 2L�

/ 2L�

0
z

2
kLi

e �

2
kLi

e �
�

cos
2
Lik

e
��

cos
2
Lik

e
�

Wavefront

Antenna

FIG. 7. Linear slow wave antenna with the end points at z
=�L /2 radiating in the direction �. Both end points radiate spheri-
cal waves, which acquire mutual phase differences at the shown
wave front due to different optical path lengths. The direction of
wave propagation along the different paths has been indicated by
arrowheads together with the associated phase factor introduced in
field expression �39�.
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remaining spectral brightness thus obtained is exactly the
same as that given by Eq. �41�.

In summary, the Green’s-function result for the spectral
brightness is in exact agreement with both the Ginzburg-
Frank result for the planar boundary limit and the PTD
method for the narrow-angle cone limit. Therefore we are
confident that the results obtained for the intermediate open-
ing angles are reliable.

VI. EXTENSION TO ELECTRON BUNCHES

In Sec. I of this paper we proposed to excite very strong
SPPs using bunched electrons rather than a single point
charge. To study the effect of such an extended source
charge, we now replace the point charge in Fig. 2 by a gen-
eral charge distribution that moves as a whole toward the
cone tip without deforming, that is, by an electron bunch.
Since different parts of the bunch will generate transition
radiation at different times, the extent of the bunch in both
the longitudinal and transverse directions will determine the
magnitude of the radiation field by coherence effects. Below,
the effects of the longitudinal and transverse extent of the
bunch will be calculated separately. In the next section, the
results will be combined to estimate the radiation field and
SPP intensities generated by an electron bunch that can be
readily obtained with present technology.

A. Bunches of finite length

The point charge of Fig. 2 passes the cone boundary at the
origin at time t=0. If instead a point charge is considered
that passes the origin at some other time t1�0, Eqs. �16� and
�18� for the current distribution and electric field, respec-

tively, are multiplied by a phase factor ei
k
�

z1, where z1
=�ct1 is the position of the charge on the z axis at t=0.
Therefore, composing at t=0 a line charge distribution ��z�

on the z axis from individual point charges and adding their
electric fields yields

ET =
1

q�−�

�

��z1�ei
k
�

z1dz1�ET0 � FLET0. �42�

Here, ET is the electric transition radiation field generated by
the line distribution, q is the total charge of the distribution,
and ET0 is the field that would be produced by a point charge
of magnitude q. The quantity FL appears frequently in radia-
tion problems and is called the �longitudinal� form factor.63

From Eqs. �20�–�22�, the spectral brightness produced by the
charge distribution is

�2W

�� � �
= �FL�2

�2W0

�� � �
, �43�

where �2W0 /���� is the spectral brightness produced by a
point charge of magnitude q. Evidently, the form factor de-
creases rapidly as �kz1 /�� grows larger than unity in the in-
tegral of Eq. �42�, corresponding to incoherent contributions
to the radiation field from the different parts of the charge
distribution. If, on the other hand, the distribution is not
much longer than a single wavelength of interest, the radia-
tion contributions add coherently, leading to very strong
electric fields.

B. Bunches of finite transverse extent

To study the effect of the transverse extent of the charge
distribution impinging on the cone tip, we consider an infini-
tesimally thin and homogeneously filled disk of charge with
radius a and total charge q with its center at the z axis. The
Fourier transformed current density of this disk is

J��� =
− q
�2�

1

�a2e−i
k
�

z��a − �ez, �44�

where � denotes the Heaviside step function. Substitution of
this expression and the dyadic Green’s function �17� in Eq.
�13� yields an expression for the transverse electric field gen-
erated by the charged disk. Similar to the electric field gen-
erated by a point charge considered in Appendix D, in the far
zone kr→� this expression reduces to

ET�r� �
�0�q
�2�

eikr

kr �
�

��
2e−i�

�
2

��� + 1�
Q���,ka�P�

1�cos ��e�,

�45�

where now

Q���,ka� �
k

�a2  
V0

e−i
k
�

z0ez · N�
�1��r0�dV0. �46�

Because of the step function in Eq. �44�, the integration
volume V0 in Q� is confined to a semi-infinite cylinder with
a conical cut out, as is shown in Fig. 9. In Appendix E, the
quantity Q� is analyzed further. It is shown that Eq. �46� can
be reduced to a one-dimensional integral using the properties
of the functions N�. The expression thus obtained is checked
by taking the limit ka→0, which yields the correct equiva-

FIG. 8. Angular spectral brightness profile in the limit that �
→0. The limit has been taken by choosing the integers for the set of
eigenvalues ��� in the series of Eq. �23�. A point charge moving
with �=5 has been assumed and the series has been truncated after
30 terms in the numerical evaluation.
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lent expression for a point charge. Finally, the remaining
integration path is deformed in the complex s plane in order
to substitute exponential behavior for oscillatory behavior of
the integrand along the path, which enables efficient numeri-
cal evaluation of Eq. �46�. For any choice of the cone open-
ing angle and the dimensionless disk size ka, Eq. �45� now
permits numerical evaluation of the electric far field. As
usual, Eqs. �20�–�22� translate the electric field to the spec-
tral brightness. As an example, Fig. 10 shows the spectral
brightness profile thus obtained for a �=45° cone and several
values of ka. As the disk grows larger than about a=k−1

=� / �2��, radiation from different parts of the disk start to
become incoherent, decreasing the spectral brightness mag-
nitude. The surface peak decreases more rapidly with ka than
the specular peak, which can be observed for other opening
angles as well.

To study the effect of the disk size on the spectral bright-
ness in more detail, the spectral brightness at the cone
boundary and the spectral intensity have been plotted as a
function of ka in Figs. 11 and 12, respectively, for several
values of the opening angle. In the case of a planar boundary,
extending a point charge to a disk has little effect on the
considered quantity in both figures until the disk radius
grows larger than about ka=1, after which the curves quickly
decrease. One effect of choosing a smaller opening angle is
that the coherence starts to break down at smaller disk radii,
which is a disadvantage of the use of small opening angle
cones. However, this effect is more than compensated by the

x

y

z

�

/ tanz a �� �

a
0V

FIG. 9. Integration volume V0 to be used in Eq. �46�.

FIG. 10. �Color online� Angular spectral brightness profile for a
�=45° cone and several disk sizes ka. The same conditions as in
Fig. 3 have been used. The black solid curve �ka→0� has been
obtained using the point charge result Eq. �23�.

FIG. 11. �Color online� Spectral brightness at the cone boundary
as a function of dimensionless disk size ka. For the velocity of the
disk a relativistic factor of �=5 has been assumed. The curves have
been normalized to their corresponding point charge result shown in
Fig. 5. The Ginzburg-Frank result for a planar boundary adjusted by
the disk form factor 	Eq. �49�
 has been plotted as well �solid line�.

FIG. 12. �Color online� Spectral intensity as a function of di-
mensionless disk size ka. For the velocity of the disk a relativistic
factor of �=5 has been assumed. The curves have been normalized
to their corresponding point charge result shown in Fig. 6. The
Ginzburg-Frank result for a planar boundary adjusted by the disk
form factor 	Eq. �50�
 has been plotted as well �solid line�.
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greatly increased spectral brightness shown in Fig. 5. More-
over, for ka��1, small opening angle cones yield more
coherent radiation compared to a planar boundary. This can
be a significant advantage when it is technologically difficult
to reduce the transverse bunch size.

As before, the results for the planar boundary �=90° can
be checked with the Ginzburg-Frank result Eq. �35�. Analo-
gous to the effect of a longitudinal extent of the charge dis-
tribution shown by Eq. �43�, in the case of the disk the spec-
tral brightness should by multiplied by a transverse form
factor �FT�2 with63

FT =
1

q


0

2�
0

�

��,��eikr cos �dd� , �47�

where �� ,�� is the surface charge distribution of the disk
and kr=k sin � is the radial component of the wave vector of
the radiation under consideration. For the disk considered
here, Eq. �47� yields

FT =
2J1�ka sin ��

ka sin �
, �48�

where J is the cylindrical Bessel function. Thus, Ginzburg-
Frank theory predicts a spectral brightness at the cone
boundary �=� /2 proportional to

�2W

�� � �
� � J1�ka�

ka
�2

, �49�

while the spectral intensity is proportional to

�W

��
� 

0

�/2 � J1�ka sin ��
ka�1 − �2 cos2 ���

2

sin �d� . �50�

In Figs. 11 and 12 these results have been plotted as well and
they are in excellent agreement with the numerical results.

C. Three-dimensional bunches

Combining the above results for the longitudinal and
transverse extent of the source charge distribution to obtain
the transition radiation from three-dimensional electron
bunches is straightforward. Consider a bunch with a cylin-
drically symmetric charge-density distribution �� ,z� at time
t=0. Of course, the bunch may be thought of as composed of
transverse slices of infinitesimal thickness dz and charge
equal to,

dq�z� = dz · 2�
0

�

��,z�d � �eff�z�dz , �51�

and for each one of them the electric far field can be calcu-
lated by the method of Sec. VI B. Note that any charge dis-
tribution of the slice other than homogeneous will introduce
additional factors in the integrand of Eq. �46�, requiring ad-
ditional numerical effort. The resulting field of the slice will
always be less than that of a point charge of equal magnitude
dq due to the extent of the charge within the slice. To obtain
the electric field produced by the complete bunch, the fields
of the individual slices must be added. While doing so, the

phase differences due to the longitudinal positions of the
individual slices within the bunch have to be accounted for
as was done in Eq. �42�. Combining Eqs. �45� and �51� and
including a longitudinal phase factor yields the electric far
field of the bunch,

ET�r� �
�0�q
�2�

eikr

kr
e��

�

��
2e−i�

�
2

��� + 1�
P�

1�cos �� · 
−�

�

Q��z1�

�
�eff�z1�

q
ei

k
�

z1dz1. �52�

Here, q is the charge of the whole bunch and Q��z1� is an
integral similar to Eq. �46� that accounts for the transverse
extent of charge within the slice at z=z1 in the bunch. In the
case that each transverse cross section is a homogeneously
charged hard-edged disk as in the previous section, Q��z1�
�Q�	� ,ka�z1�
 is given exactly by Eq. �46�, where a�z1� is
the radius of the slice at z=z1. If in addition each slice is
equal, the bunch has a somewhat artificial form of a hard-
edged homogeneously charged cylinder with radius a and
some length 2b. In this case Q� becomes independent of z1
so that Eq. �52� reduces to Eq. �45� multiplied by an effective
longitudinal form factor FL,eff. The latter is given by Eq. �42�
with �=�eff and equals

FL,eff = sin c� kb

�
� . �53�

VII. OBTAINABLE SPPs IN THE TIME DOMAIN

Let us now return to the experimental setup of Fig. 1 that
we propose to generate SPPs on a wire. In Secs. III–VI we
have modeled the metal tip of the wire by a semi-infinite
perfectly conducting cone and showed how the radiation
field generated by charge impinging on it can be calculated.
Now, we will choose some realistic electron bunches and
apply the theory to these bunches. In Sec. II we showed that
the field strength at the cone boundary of a perfect metal thus
obtained may be identified with the amplitude of the gener-
ated SPP propagating along the physical metal tip of Fig. 1,
as long as conditions �5�–�7� hold.

As a realistic setup we choose a copper wire with radius
R=0.5 mm tapered into a �=5° tip, which is sharp enough
to benefit from the strong increase in the field amplitude
shown in Fig. 5 but which is still easy to manufacture. For
terahertz frequencies, it is easily verified that conditions �5�
and �6� hold at the position where the conical tip smoothly
evolves into the cylindrical wire 	i.e., at r=R /sin � or �z�
=R / tan � in Eqs. �5� and �6�
. Analysis of the longitudinal
wave vector kz�a� as a function of local radius a= �z�tan �
shows that also condition �7� holds at this position.3 So if in
the setup of Fig. 1 the tip smoothly evolves into the wire, we
can estimate the field strength of the generated SPPs propa-
gating along the wire by evaluating our theory at radial po-
sition r=R /sin �.

For the bunch form we choose homogeneously charged
hard-edged ellipsoids. Theoretically, such “waterbag”
bunches are the ideal particle distributions for controlled
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high-brightness charged particle acceleration. Because of
their linear internal fields, they do not suffer from brightness
degradation caused by space-charge forces.64,65 A practical
recipe has been developed, which results in almost ideal el-
lipsoidal bunches45–48 using a table-top setup. The bunches
are characterized by their charge q, their transverse half axis
a, and their longitudinal half axis b=�cT /2. We consider
three bunches: �1� a “conventional” bunch with q=100 pC,
T=500 fs, and a=200 �m that we can presently make in
the laboratory; �2� a “short” bunch with q=100 pC, T
=100 fs, and a=140 �m. Detailed numerical simulations
have shown that such a bunch may readily be obtained by
longitudinal compression of bunch 1 using a two-cell booster
compressor;47 and �3� a “short and slim” bunch with q
=100 pC, T=100 fs, and a=50 �m that is obtained by ad-
ditional compression of bunch 2 in the transverse direction,
which may be achieved in the near future.

For the three bunches above, we have calculated the elec-
tric field as a function of frequency generated at the cone
boundary a distance r=R /sin � from the cone tip. For this
purpose the bunches were approximated by 100 cylindrical
slices so that the integrals in Eq. �52� were approximated by
summations over the slices. To validate the numerical results,
we compared the calculated spectra ET���� with those gen-
erated by cylindrical bunches with the same parameters q, a,
and b. The latter electric fields are given by the product of
Eqs. �45� and �53�. These fields may be seen as “worst case”
approximations for those generated by the ellipsoidal
bunches since the average distance between the charges
within a cylindrical bunch is larger than that within the cor-
responding ellipsoidal bunch, leading to less coherent radia-
tion. The calculated squared field amplitudes are shown in
Fig. 13. The spectra have been normalized to the field E0
generated at the same position r=R /sin � by a point charge
of equal magnitude q=100 pC given by

E0
2 �

sin2 �

2�0cR2� �2W

�� � �
�
�=�−�

, �54�

with �2W /���� given by Eq. �23�. As expected, the field
generated by an ellipsoidal bunch is greater than that of the
corresponding cylindrical bunch for all frequencies. This dif-
ference is only slight, however, which means that the maxi-
mum transverse and longitudinal cross sections of the bunch
are decisive for the coherence. The spectra are coherent up to
the terahertz regime, which reflects the fact that the bunch
dimensions have been brought down to the order of the 1
THz wavelength 2�k−1�300 �m�c�1 ps by current
technology.

In order to find the pulse form of the SPPs that will be
measured in practice in the setup of Fig. 1, the inverse Fou-
rier transforms of the electric fields of Fig. 13 have to be
calculated. A rigorous treatment of this is beyond the scope
of this paper. However, the field spectra raise the question
whether the time-domain pulse is governed by the terahertz
regime, that is, whether the spectra do indeed represent sub-
picosecond SPPs. In order to verify this, we approximate the
inverse Fourier transform of the field spectra of Fig. 13. For
this purpose the spectra are approximated by straight line
segments, as is indicated in the inset of the figure. In Appen-

dix F the inverse Fourier transform of these approximate
spectra is calculated. This yields an estimate of the peak
electric field E�t�max of the SPP pulse at the wire surface and
the pulse duration �, which is defined as

� �
1

E�t�max


−�

�

E�t�dt . �55�

Table I shows the estimated peak electric field and dura-
tion of the SPP pulse as defined above generated by the three
considered bunches. As can be seen, the SPP pulse is gov-
erned by the high-frequency part of the field spectra since
��1 ps. From the table, the potential of the method we
propose to generate terahertz SPPs is clear. First, by using
currently available electron bunches, it is possible to excite
subpicosecond pulses, that is, SPPs with terahertz bandwidth
can be generated on a wire. Second, these SPPs carry peak
electric fields in the order of MV/cm. Such fields are several
orders of magnitude higher than any SPP field that can cur-

FIG. 13. �Color online� Squared electric-field amplitude at the
cone boundary generated by the three bunches considered in Sec.
VII �solid symbols� and that of corresponding cylindrical bunches
with the same charge and dimensions �open symbols�. A relativistic
factor of �=5 and a cone opening angle of �=5° have been as-
sumed. The curves have been normalized to the field amplitude
generated by a point charge of equal magnitude as the bunches. The
inset shows the approximate form of the curves used in Sec. VII to
make time-domain estimations.

TABLE I. Time-domain estimates of the peak SPP electric field
E�t�max 	Eq. �F4�
 and pulse duration � 	Eq. �F5�
 using the param-
eters �1 and �2 in the field model 	Eq. �F1�
.

�1 �2 E�t�max �

Bunch �THz� �THz� �MV/cm� �ps�

1 1.1·10−2 2.0 0.35 0.64

2 1.3·10−2 5.0 0.82 0.27

3 4.7·10−2 8.2 1.4 0.16
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rently be obtained by coupling free-space terahertz radiation
onto a wire.

VIII. CONCLUSION

In conclusion, we propose a method to excite terahertz
SPPs on a wire by launching electron bunches onto a coni-
cally tapered end of the wire. We have calculated analytically
the radiation field generated by these bunches assuming a
perfectly conducting semi-infinite cone. We have linked the
results to the electric-field strength and duration of the SPPs
that are excited and propagate along the wire in a realistic
setup. We have shown that, using currently available electron
bunches, it is possible to generate subpicosecond SPP pulses
with peak electric fields of the order of MV/cm on a 1-mm
diameter wire.

Focusing of such MV/cm terahertz surface plasmon po-
laritons may yield electromagnetic terahertz fields that are
both very strong and highly localized, enabling nonlinear
terahertz experiments with subwavelength spatial resolution.
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APPENDIX A: APPROXIMATE SPP FIELD IN CONICAL
GEOMETRY

Using the eikonal method to approximate the SPP electric
field in a conical geometry,9 it is recognized that a thin slice
of the cone at z=z0�0 resembles part of a cylinder with
radius a= �z0�tan � so that locally the SPP fields resemble the
fields of a surface wave propagating along such a cylinder.
Hence, the SPP electric field in the conical geometry is ap-
proximated by

ESPP�r� = Ecyl�r�ei��z�, �A1�

where ��z� is a phase function to be determined and Ecyl�r�
is the field of a surface wave along a cylinder with radius a.
The latter is given in cylindrical coordinates � ,� ,z� by66

�Ecyl,

Ecyl,�

Ecyl,z
� = �kzI1� �

0

i I0� �
� c

�rk

B0�z0�
I1	 a�z0�


, �A2�

in which Im denotes the mth-order modified Bessel function
of the first kind, �r is the relative permittivity of the cylinder
material, k=� /c is the vacuum wave number, and B0 is an
amplitude with units of magnetic field. Like a, the latter may
depend on the choice of z0 as is indicated in Eq. �A2�. The
parameters kz and  are the propagation constant in the z
direction and the radial attenuation factor, respectively, and
are related as

�km
2 − kz

2 = i��km
2 − kz

2� � i , �A3�

with km=��rk as the wave number in the cylinder material.
For each radius a, the constant kz can be determined solving
a transcendental dispersion relation66 that depends on � and

�r. For metals, applying the Drude model for the
permittivity,50 one can calculate that

kz � k and  �
1 − i

k

�A4�

at terahertz frequencies. Substituting these approximations
into Eq. �A2� gives

Ecyl � �1 − i�� �

2��
e�1−i�

−a�z0�

 B0�z0�ez �A5�

for a�z0��
. In the cone geometry, the SPP field will de-
crease as r−1 as it diverges from the cone tip so that a form
B0� �z0�−1 may be assumed for the field amplitude. Using
this form and Eq. �A4�, substitution of Eqs. �A1� and �A5� in
Eq. �3� and differentiation show that Eq. �4� is an approxi-
mate solution of Eq. �3� provided that Eqs. �5�–�7� hold.

APPENDIX B: DERIVATION OF EQ. (13)

Any vector field can be written as the sum of the gradient
of some scalar field and the curl of some vector field,49

which are called the longitudinal and transverse part of the
vector field, respectively. Applying the Helmholtz operator
��2+k2� on a vector field does not change its longitudinal or
transverse property. Similarly, the dyadic Green’s function in
Eq. �11� may be split into longitudinal and transverse com-
ponents Glong and GT, such that

� �Glong = �0 �Glong = O , �B1�

� · GT = �0 · GT = 0 , �B2�

with O as the zero dyadic. It can be shown that application
of the Helmholtz operator on these dyadics gives51

��2 + k2�Glong = L�r,r0� ,

��2 + k2�GT = T�r,r0� , �B3�

where the dyadics on the right-hand side have the properties,

 L · X�r0�d3r0 = Xlong�r� ,

 T · X�r0�d3r0 = XT�r� ,

L + T = I�3�r − r0� , �B4�

for any vector field X. Taking the inner product of Eq. �8�
with GT and that of Eq. �B3� with E�r0�, subtracting, and
integrating over the exterior cone volume V0 gives

  
V0

	E�r0� · �0
2
GT − GT · �0

2E�r0�
dV0

= ET�r� −  
V0

GT · 	�0
−1�0�r0� − i��0J�r0�
dV0,

�B5�

where Eq. �B4� has been used. The left-hand side can be
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written as an integral over the cone surface A0 with Green’s
second theorem,51 giving

 
A0

	�n � E0� · ��0 �GT� − �n �GT� · ��0 � E0�

+ �n · E0���0 · GT� − �n · GT���0 · E0�
dA0,

in which E�r0� has been abbreviated as E0. Since boundary
conditions �9� and �12� apply at the cone surface and GT
satisfies Eq. �B2�, the first three terms in this surface integral
vanish. Furthermore, using that � ·E=�0

−1, Gauss’s theorem
yields

 
A0

�n · GT���0 · E0�dA0 = �0
−1  

V0

GT · �0�r0�dV0

so that the last term in the surface integral cancels identically
the contribution of the charge density in Eq. �B5�. Therefore,
Eq. �B5� reduces to Eq. �13�.

APPENDIX C: DYADIC GREEN’S FUNCTION FOR
CONICAL GEOMETRY

The dyadic Green’s function that satisfies

��2 + k2�G = ��0
2 + k2�G = I�3�r − r0� , �C1�

subject to the boundary condition,

G� e� = O, � = � − � , �C2�

is51,52

G�r,r0� = − ik�GL + GM + GN� , �C3�

with

GL = �
�

�
m=0

�

��m
2 �L�m

�1� �r�L�m
�3� �r0�

L�m
�1� �r0�L�m

�3� �r� � , �C4�

GM = �
!

�
m=0

�
�!m�

2

!�! + 1��M!m
�1��r�M!m

�3��r0�
M!m

�1��r0�M!m
�3��r� � , �C5�

GN = �
�

�
m=0

�
��m

2

��� + 1��N�m
�1� �r�N�m

�3� �r0�
N�m

�1� �r0�N�m
�3� �r� � , �C6�

where the upper rows apply when r�r0 and the lower rows
apply when r�r0. The scale factors � are given by54

��m
−2 = 

0

2�
0

�−�

�P�
m�cos ���2sin �d�d�

=
2� sin �

2� + 1
�� �P�

m�cos ��
��

�P�
m�cos ��

��
��

�=�−�
,

�C7�

�!m�
−2 = 

0

2�
0

�−� � d

d�
P!

m�cos ���2

sin �d�d� , �C8�

where P�
m denotes the associated Legendre function of the

first kind, degree �, and order m. The vector functions con-

stituting the dyadic products in Eqs. �C4�–�C6� are given in
spherical components �er ,e� ,e�� by

L�m
�p� �r� =�

d

dr
j�
�p��kr�P�

m�cos ��

j�
�p��kr�

r

d

d�
P�

m�cos ��

im
j�
�p��kr�

r

P�
m�cos ��
sin �

�eim�, �C9�

M!m
�p��r� =�

0

im
P!

m�cos ��
sin �

−
d

d�
P!

m�cos ��� j!
�p��kr�eim�, �C10�

N�m
�p� �r� =�

��� + 1�
j�
�p��kr�

kr
P�

m�cos ��

1

kr

d

dr
	rj�

�p��kr�

d

d�
P�

m�cos ��

im

kr

d

dr
	rj�

�p��kr�

P�

m�cos ��
sin �

�eim�,

�C11�

in which j�
�p� is the spherical Bessel function of the pth kind

and order �. Because the functions are periodic in the azi-
muthal direction, m=0,1 ,2 , . . .. The sets of eigenvalues ���
and �!� are such that the Green’s function satisfies boundary
condition �C2�. Consequently, they are the solutions of

P�
m�− cos �� = 0, �C12�

� d

d�
P!

m�cos ���
�=�−�

= 0. �C13�

Miscellaneous properties of the vector functions are

� � L�m
�p� = 0, �C14�

� · M!m
�p� = � · N�m

�p� = 0, �C15�

kN�m
�p� = � � M�m

�p� . �C16�

Due to properties �C14� and �C15�, Green’s function �C3�
can easily be split into a longitudinal part Glong and trans-
verse part GT as

Glong = − ikGL, �C17�

GT = − ik�GM + GN� . �C18�

Since the current densities considered in this paper are
independent of �, terms having m�0 in the expansion of GT
integrate to zero in Eq. �13�. Moreover, the dyadic GM makes
no contribution to the integral since M!m ·J=0 for m=0.
Therefore, the relevant Green’s function to be used in Eq.
�13� is given by Eq. �17�.
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APPENDIX D: ELECTRIC FIELD IN THE FAR ZONE

Substitution of Eqs. �16� and �17� in Eq. �13� yields

ET =
�0�kq
�2�

�
�

��
2 · ��

0

r j��kz0�
kz0

e−i
k
�

z0dz0�N�
�3��r�

+ �
r

� h�
�1��kz0�

kz0
e−i

k
�

z0dz0�N�
�1��r�� , �D1�

where the vector functions N� are given by Eq. �C11�. In the
far field kr→�, the third line of Eq. �D1� vanishes. Further-
more, the asymptotic form of the vector functions is

N�
�3� � P�

1�cos ��e−i�
�
2

eikr

kr
e�, kr � 1, �D2�

so that in the far zone the electric field reduces to Eq. �18�, in
which the integral,

I���� = 
0

� j��kz0�
z0

e−i
k
�

z0dz0, �D3�

is tabulated67 and given by Eq. �19�.

APPENDIX E: ANALYSIS OF Q� in EQ. (46)

Using property �C16� of the N functions and Stokes’s
theorem, integration in the plane z=z0 yields


0

2�
0

a

ez · N�
�1��r0�0d0d�0 =

2�a

k
e� · M�

�1��r1� , �E1�

where the functions M� are given by Eq. �C10� with m=0
and !��, and r1 denotes the spherical coordinates,

�r1,�1,�1� = ��z0
2 + a2,arccos

z0

�z0
2 + a2

,�1� .

Making use of identity �E1� and expression �C10�, Eq.
�46� reduces to

Q� =
2

ka


−ka/tan �

�

e−i
s
�P�

1� s

R
� j��R�ds

+
2 tan �

�ka�2 P�
1�− cos ��

−ka/tan �

0

se−i
s
� j�� − s

cos �
�ds ,

�E2�

R � �s2 + �ka�2, �E3�

in which the substitution s=kz0 has been applied. Note that
the first line of this expression represents integration over a
full semi-infinite cylinder and the second line represents in-
tegration over the conical cut-out that is subtracted from the
integration volume.

As a check on Eq. �E2�, the limit ka→0 will now be
taken to obtain the equivalent expression for a point charge.
From the power series of the Bessel function,68 the second
line of Eq. �E2� is proportional to �ka�� as ka→0 so that it
vanishes in the limit. In the first line, we use the identity67

P!
�+2�x� + 2�� + 1�

x
�1 − x2

P!
�+1�x� = �! − ���! + � + 1�P!

��x�

to rewrite

2

ka
P�

1� s

R
� =

1

s
���� + 1�P�

0� s

R
� − P�

2� s

R
�� .

Making use of this identity, taking the limit ka→0 of Eq.
�E2� yields

lim
ka→0

Q���,ka� = ��� + 1�I���� , �E4�

where I���� is given by Eqs. �D3� and �19�. With this, elec-
tric field �45� generated by the charged disk correctly reduces
to field �18� generated by a point charge when ka→0.

Because the integrand in the first line of Eq. �E2� is os-
cillatory, it is numerically beneficial to deform the integra-
tion path in the complex s plane. Denote the integrand by
T��s�. The integration path is along the real line with a nega-
tive finite lower boundary, and T��s� has cuts in the complex
s plane along the parts of the imaginary axis where �s��ka,
as shown in Fig. 14. Since limA→� AT��Aei��=0 in the quad-
rant −� /2���0,


0

�

T��s�ds = − i
C

T��s�ds , �E5�

where the contour C is shown in Fig. 14. Denoting the limit
to the lower cut from the right by s=−it+0, t�ka, expres-
sion �E3� becomes

R = ��− it + 0�2 + �ka�2 = − i�t2 − �ka�2 � − iR�, �E6�

while the Bessel function in Eq. �E2� may be rewritten as68

Im s

ika

Original
integration path

Re s
0

ika�

C

1tan
ka
�

FIG. 14. �Color online� Original integration path in the first line
of Eq. �E2� and contour C in Eq. �E5� in the complex s plane. The
cuts and poles of T��s� are shown as well.
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j��− iR�� = e−i�
�
2� �

2R�
I�+ 1

2
�R�� , �E7�

where I denotes the modified cylindrical Bessel function of
the first kind. Combining Eqs. �E5�–�E7�, the integration
along the positive real line in Eq. �E2� equals


0

�

T��s�ds = − ie−i�
�
2��

2


0

�

e− t
�P�

1� t

R�
� I�+ 1

2
�R��

R�
1
2

dt ,

�E8�

by which the oscillatory behavior of the integrand is ex-
changed for exponentially damped behavior.

APPENDIX F: APPROXIMATION OF PEAK FIELD AND
PULSE DURATION

The approximate electric-field spectrum, indicated in the
inset of Fig. 13, has the form,

�ET����� � E0�
1 �� �1

� ln �2 − ln �

ln �2 − ln �1

�1 ��� �2

0 �� �2

� ,

�F1�

with E0 given by Eq. �54�. According to Eq. �52� the phase of
the field equals

arg ET���� = kr + ���� , �F2�

where the term kr is equivalent to a time shift r /c in the time
domain and ���� is the phase of the sum in Eq. �52�. A

Taylor expansion of the time-domain field ET��t� around t
=r /c may now be obtained using the moments of the fre-
quency domain field since69

�dnET��t�
dtn �

t=r/c
= e−in

�
2� 2

�
Re

0

�

�nei�����ET�����d� .

�F3�

Here, it has been used that ET��−��=ET�
� ��� because ET��t�

is real. If ���� were zero, the field ET��t� would be maxi-
mum at t=r /c, and its maximum value E�t�max would simply
be Eq. �F3� with n=0. Substituting Eq. �F1�, this would yield

E�t�max �� 2

�
E0�2 ·

��
2

erf��ln
�2

�1
�

�ln
�2

�1

, � = 0. �F4�

The first factor on the right equals the amplitude that
would result if the spectrum of Fig. 13 were fully coherent
up to the frequency �2 and zero for ���2, while the second
factor corrects for the slope in the spectrum. Analysis of the
actual phase of ET���� shows that it is not zero; however, it
is approximately constant at ��−� /4 for all three cases.
Evaluating a few more orders of Eq. �F3� and the resulting
Taylor expansions of ET��t� shows that this nonzero phase
does alter the symmetry of the SPP pulse but it does not
affect the maximum value of field much. Therefore Eq. �F4�
is a good approximation for the maximum electric-field am-
plitude in the time domain.

Finally, the duration � of the time-domain SPP pulse,
which is defined by Eq. �55�, is equal to

� �
1

E�t�max


−�

�

E�t�dt =
�2�E0

E�t�max
. �F5�
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