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We have implemented the linear response approximation of a method proposed to compute the electron
transport through correlated molecules based on the time-independent Wigner function �P. Delaney and J. C.
Greer, Phys. Rev. Lett. 93, 036805 �2004��. The results thus obtained for the zero-bias conductance through a
quantum dot both without and with correlations demonstrate that this method is neither quantitatively nor
qualitatively able to provide a correct physical description of the electric transport through nanosystems. We
present an analysis indicating that the failure is due to the manner of imposing the boundary conditions and that
it cannot be simply remedied.
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I. INTRODUCTION

Electronic transport in artificial nanosystems and single
molecules represents a topic of continuing current interest
and remains a challenge both for fundamental science and
technological applications. In spite of numerous advances,
there still exist important issues which are far from being
resolved. Notoriously, the comparison between experimental
and theoretical values for the current flowing through mol-
ecules usually shows large discrepancies, typically several
orders of magnitude.1–3 No consensus has been reached so
far whether the discrepancies are to be attributed to uncon-
trollable experimental factors �compare measurements on
same systems in Refs. 4–7� or inadequate theoretical frame-
works.

Early theoretical calculations were carried out within the
Landauer formalism,8,9 which is based on a single-particle
description. Because systematically the values of the currents
thus obtained are at odds with those experimentally mea-
sured, a series of theoretical methods was developed to treat
electron correlations, which are excluded by the Landauer
approach.

The description of electron correlation represents an im-
portant challenge from the theoretical side. The most popular
theoretical approaches for nonequilibrium transport in corre-
lated nanoscopic/molecular systems are based on nonequilib-
rium Green functions �NEGF�,10,11 time-dependent density
matrix renormalization group �DMRG�,12–14 and numerical
renormalization group �NRG�.15 In ab initio modeling of mo-
lecular electronics, the NEGF technique is by far the most
utilized one. It is usually combined with electron structure
calculations based on density functional theories �DFTs�.16–18

The NEGF+DFT approach is conceptually simple and com-
putationally less demanding than many-body methods.19–24

However, because of the incompletely elucidated current
dependence25,26 and self-interaction corrections27,28 of the lo-
cal exchange and correlation functionals, the DFT currents
can sensitively vary by choosing different approximate po-
tentials.

Out of the methods proposed so far, the method proposed
in Ref. 21 seems to be one of the most appealing because of

its claim to correctly reproduce the steady-state current ex-
perimentally measured through correlated molecular sys-
tems. It relies upon genuine many-body calculations and is
not limited to a particular configuration interaction �CI�, e.g.,
restricted to singly, doubly, or triply excited configurations.
The originality of this approach consists in the manner of
imposing the boundary conditions. Rather than the Fermi
distribution function, the Wigner distribution function is em-
ployed instead for the constrains at the device-electrode �res-
ervoirs� interfaces. Unlike the former, which is meaningful
only within a single-particle picture, the latter can be directly
used in a many-body approach. Because the key quantity of
this method is the stationary Wigner function �SWF�, here-
after it will be referred to as the SWF method.

One should emphasize from the very beginning that the
support of the SWF method, and especially its manner to
impose boundary conditions, entirely relies upon its ability to
provide currents comparable with those measured experi-
mentally for two molecular systems21,29 and plausible results
for another class of molecules.30 Because this method is con-
ceptually so different from the other widely utilized ap-
proaches, it would be highly desirable to inquire the validity
of this method within the realm of theory. If and to the extent
to which the SFW method is able to reproduce well estab-
lished results, one can consider its predictions reliable. It is
the purpose of the present work to investigate whether the
SWF method is able to correctly describe nanosystems
whose behavior is well understood.

The remaining part of the paper is organized in the fol-
lowing manner. The theoretical framework, the linear re-
sponse approximation of the SWF method, will be developed
in Sec. II. The model for the “device” we shall consider,
consisting of a single quantum dot �QD�, will be exposed in
Sec. III. Next, in Sec. IV, we shall compare the zero-bias
conductance calculated without correlations by means of the
SWF method with the exact one. Section V will be devoted
to the linear transport through the QD in the presence of
correlations. The implications of our results will be discussed
in Sec. VI. Conclusions will be presented in Sec. VII.
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II. METHOD

Theoretical studies of the transport in nanosystems are
inherently faced with the problem of separating the total sys-
tem �S� into left and right reservoirs �electrodes� and device.
The contacts �interfaces� between device and reservoirs �lo-
cated at qL,R� are necessarily subject to arbitrariness. De-
pending on how demanding the numerical calculations are,
parts of the electrodes �as large as possible� are included in
the central part and treated as accurately as possible. In the
SFW method, the challenge is to determine the wave func-
tion � for the total system S.

Following Ref. 21, we shall consider the many-electron
wave function � for the total system S and its associate
exact energy E in the presence of an applied bias

E = ���HT��� = ���H��� + ���W��� , �1�

where H is the Hamiltonian of the total system S and W is
the perturbation due to applied bias.

Within the single-particle picture, in a transport problem
the �semi-infinite� reservoirs fix the electron chemical poten-
tials �L,R at the left and right contacts, and the current flow is
driven by the imbalance �L−�R=eV created by an applied
voltage. At either contact, the electron distribution is dictated
by the reservoir Fermi function with the corresponding
chemical potential. The attractive feature of the approach
proposed in Ref. 21 is that it is based on the Wigner function,
which is directly applicable to a many-body system, without
the need to resort to single-particle Fermi distribution func-
tions. For problems describable within a single-particle pic-
ture, the Wigner function method to account for open bound-
aries specific for transport problems has certain advantages
over the conventional scattering approach.31–33 However,
these advantages are merely technical there.

For a system characterized by a many-electron wave func-
tion �, the one-particle Wigner distribution function f�q , p�
is defined by

f�q,p� = �
r,�

���aq−r,�
† aq+r,����e−2ipr/�. �2�

Unlike the methods based on the NEGF, where semi-infinite
leads are accounted for, the SWF method was devised to be
suited for ab initio quantum chemical calculations, where
rather than semi-infinite electrodes, only �usually very� small
parts thereof can be dealt with. Instead of having an infinite
extension, the wave function � and the related summation
over r of Eq. �2� are inherently limited in space. In this
paper, we shall adopt a one-dimensional discrete representa-
tion, wherein in a lattice of size N=2M +1 the site index
ranges from −M to +M. In Eq. �2�, al,� �al,�

† � denote the
creation �annihilation� operators for electrons of spin � at
site l.

The open boundary conditions to be imposed should dis-
tinguish between electrons flowing into and those flowing
out of the device.31 The distribution of the former should be
determined by the reservoirs. In terms of the Wigner func-
tion, this means that, at the left �qL� and right �qR� boundaries
between device and reservoirs f�qL , pL�0� and f�qR , pR
�0� should be fixed at values dictated by the reservoirs31–33

f�qL,pL� = fL�pL;�L�, for pL � 0, �3�

f�qR,pR� = fR�pR;�R�, for pR � 0. �4�

These constraints are physically plausible and have been suc-
cessfully applied previously to problems treated within
single-particle approximations.31–33 The right hand sides of
Eqs. �3� and �4� represent the Fermi functions of the reser-
voirs with the chemical potentials shifted by the bias voltage
�L,R=��eV /2. Because this procedure cannot be applied
for the many-body case, to determine the above fL,R, which
are basically properties of the reservoirs, it was claimed21

that they can be extracted from the wave function of the total
system S at zero bias. That is, at zero temperature, one has to
determine the ground state �0 of H, then calculate f0 by
using �0 instead of � in Eq. �2�, and impose

f�qL,pL� = f0�qL,pL�, for pL � 0, �5�

f�qR,pR� = f0�qR,pR�, for pR � 0. �6�

To describe a steady state, one has to impose in addition
the condition that the average J of the electric current
operator34 �e is the elementary charge�

jl = itl
e

�
�
�

�al+1,�
† al,� − al,�

† al+1,�� �7�

be site �l� independent

Jl = ���jl��� = J . �8�

Above, tl denotes the hopping integral �−M � l�M −1�.
According to Ref. 21, the solution of the transport prob-

lem is obtained by minimizing E with the supplementary
constraints �5�, �6�, and �8� along with the normalization con-
dition

����� = 1. �9�

In this way, to reach its steady state, the device is allowed to
optimize the Wigner distribution function of the electrons
inside the device and that of the electrons flowing from it
into reservoirs. �The distribution of outgoing electrons
should depend only on the state of the device.�

In the present section, we shall work out the linear re-
sponse approximation of the SFW method, which enables us
later to compute the zero-bias conductance. That is, we shall
only consider changes to the relevant quantities of the order
O�V�, caused by a small applied voltage V. The system �left
reservoir, device, and right reservoir�, which consists of a
collection of discrete sites ranging from −M to +M, is per-
turbed by a small electric perturbation

W = − e �
l=−M

M

nl	l, �10�

where nl=��al,�
† al,� is the electron number operator and 	l is

the electric potential at site l �	−M = +V /2, 	+M =−V /2�.
Starting with a system in the ground state �0, we shall look
for a solution � describing a steady state that slightly differs
from �0. The wave function � will be expanded in terms of
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the complete set of eigenstates of H �H��n�=En��n��,

��� = A0��0� + �
n�0

An��n� , �11�

where An=O�V� for n�0. One should note at this point that,
although the eigenstates �n can and will be chosen real, in
order to satisfy the boundary conditions �5� and �6� the ex-
pansion coefficients An must be complex. While in general
the minimization of E, Eq. �1�, with the constraints �5�, �6�,
�8�, and �9� represents a nonlinear problem, it considerably
simplifies in the linear response limit. By introducing the
Lagrange multipliers 
L,pL

�pL�0�, 
R,pR �pR�0�, �, and �l

for the constraints �5�, �6�, �9�, and �8�, respectively, for
small V the minimization amounts to solve a linear system of
equations, which possesses a solution A0=1+O�V2�, An
=O�V� for n�0, 
L,p=O�V�, 
R,p=O�V�, �=E0+O�V�, and
�l=O�V�.

The quantities entering the minimization problem within
the linear response approximations are

Fn�q,p� 	 �
r,�

��n�aq−r,�
† aq+r,���0�e−2ipr/�, �12�

Jn�l� 	 ��n�jl��0� , �13�

Wn 	 ��n�W��0� . �14�

For the ground state �n=0�, F0�q , p�= f0�q , p�.
We shall assume �a fact justified for the models consid-

ered here� that in the absence of perturbation the Hamil-
tonian of the system H is invariant under inversion, and the
ground state �0 is even and carries no current J0�l�=0.
Owing to the spatial inversion of H, the eigenstates �n are
either even ��g� or odd ��u�. In view of the space inversion,
is it natural to choose boundaries located symmetrically
�qL=−qR�, a mesh comprising symmetric values of positive
and negative values of p �pL=−pR= p�0�, and an antisym-
metric applied potential profile �	−l=−	l�. The quantities
�12�–�14� possess the following symmetry properties:

Fg�qL,p� = Fg�qR,− p�, Fu�qL,p� = − Fu�qR,− p� ,

�15�

Jg�l� = − Jg�− l�, Ju�l� = Ju�− l� , �16�

Wg = 0. �17�

Straightforward algebra shows that the equations for even
�g� and odd �u� eigenstates decouple, and only odd �u� eigen-
states contribute to the current

J = Jl = 2�
u

Im Ju�l�Im Au. �18�

The minimization yields the following linear equations for
the Lagrange multipliers 
�p�	�
L�p�−
R�−p�� /2 and ��j�
	���j�−��−j�� /2�j , j� , p , p��0�:

�
p�


�p���
u

1

Eu − E0
�Fu�qL,p��Fu

��qL,p�

+ Fu
��qL,p��Fu�qL,p��

+ �
j�=1

M−1

��j���
u

1

Eu − E0
�Iu�j��Fu

��qL,p�

+ Iu
��j��Fu�qL,p�� =

1

2�
u

Wu

Eu − E0
�Fu

��qL,p� + Fu�qL,p�� ,

�19�

�
p�


�p���
u

Im Iu�j�Im Fu�qL,p��
Eu − E0

+ �
j�=1

M−1

��j���
u

Im Iu�j�Im Iu�j��
Eu − E0

= 0. �20�

Once they are determined, the relevant expansion coeffi-
cients can be computed as

Au =
2

Eu − E0

−

Wu

2
+ �

p


�p�Fu�qL,p� + �
j=1

M−1

��j�Iu�j�� ,

�21�

which enables us to determine the electric current via Eq.
�18�. Notice that because Wu enters linearly Eqs. �19�–�21�,
the current computed via Eq. �18� is proportional to the ap-
plied bias V.

A very pleasant aspect of the constrained minimization
problem within linear response worked out here is the fact
that Eqs. �19� and �20� represent nothing but a set of linear
algebraic equations, which straightforwardly allows us to de-
termine unique values for the Lagrange multipliers 
 and �.
Therefore, the insertion into Eq. �21� yields a unique solution
of the present minimization procedure. One should empha-
size that this simplification is directly related to the linear
response limit considered in the present paper. In the case of
nonlinear response, the counterpart of Eqs. �19�–�21� is a
series of nonlinear equations wherein the unknowns 
, �,
and A are coupled in a nontrivial way. The solution of those
equations can only be obtained iteratively, and the �numeri-
cal� computation of the constraint gradient of the energy is
necessary as a check for a pinned down solution.

III. MODEL

The method exposed in Sec. II is general. It will be ap-
plied to a concrete system. The physical system considered
in this paper consists of a single quantum dot connected to
two noninteracting leads. It can be described by the Ander-
son impurity model

ELECTRON TRANSPORT THROUGH CORRELATED… PHYSICAL REVIEW B 78, 115315 �2008�

115315-3



H = L �
l=−1

−ML

�
�

al,�
† al,� − tL �

l=−1

−ML+1

�
�

�al,�
† al−1,� + al−1,�

† al,��

+ R�
l=1

MR

�
�

al,�
† al,� − tR �

l=1

MR−1

�
�

�al,�
† al+1,� + al+1,�

† al,��

− td,L�
�

�a−1,�
† d� + d�

†a−1,�� − td,R�
�

�a+1,�
† d� + d�

†a+1,��

+ g�
�

d�
†d� + Un̂d,↑n̂d,↓, �22�

where al,� �al,�
† � denote creation �annihilation� operators for

electrons of spin � in the leads, d�	a0,� �d�
† 	a0,�

† � creates
�destroys� electrons in the QD, and n̂d,�	d�

†d� are electron
occupancies per spin direction. We shall consider ML=MR
	M, tL= tR	 t, L=R �chosen as zero energy hereafter�, and
td,L= td,R	 td, and this ensures the spatial inversion assumed
above. The dot energy g can be tuned by varying a gate
potential. In view of the particle-hole symmetry of model
�22�, �g=−U /2 is the particle-hole symmetric point�, we can
restrict ourselves to the range g�−U /2. The number of
electrons N will be assumed equal to the number of sites
�N=2M +1�. The electric potential entering Eq. �10� will be
assumed constant within the reservoirs 	l=−	−l=−V /2 for
0� l�M and zero at the dot location 	0=0.

In isolated electrodes �td=0�, the single-particle energies
lie symmetrically around =0. Therefore, in order to elimi-
nate energy corrections �t /M in small clusters, it is advan-
tageous to consider reservoirs with an odd number of sites
M.35,36 In the noninteracting case �U=0�, the resonant tun-
neling at the Fermi energy ��=0� is favored for odd M. In
the presence of interaction, the Kondo effect occurs when the
dot spin couples with electrons of the leads at the Fermi
level. This coupling is favored if the leads possess single
electron levels of zero energy, and this is the case for reser-
voirs consisting of an odd number �M� of sites.

Although the numerical values used for the results pre-
sented in this or in the next Sec. IV do not represent a special
choice, we prefer to employ values corresponding to a pos-
sible physical realization of the above model, namely, chains
of QDs of silver. Such QDs were experimentally
fabricated.37–44 Their properties can be tuned in wide ranges
by varying the dot diameter �2R� and interdot spacing
�D�,37–44 and the parameters are well documented in a series
of experimental and theoretical works.37,41,45,46 For interdot
spacings up to say, D /2R�1.3, electron correlations are not
important.46–48 Therefore, the reservoirs can be modeled,
e.g., by chains of nearly touching QDs �D /2R1.07, t
=1 eV�.

In principle, the boundaries could be chosen at 0�qR
=−qL�M. Unless otherwise specified, we shall choose qL,R
= �2. It amounts to consider the central part to consist of the
QD and two additional sites, one at either side of the “de-
vice,” represented by the QD of interest. This bears the most
resemblance to usual quantum chemical approaches to mo-
lecular transport, wherein the smallest possible parts of elec-
trodes are included in the central part. In Eq. �2�, there are
nqL=2�M +qL�+1 values of r such that the values of site

indices are qL�r=0, �1, . . . , � �M +qL�. According to the
careful analysis of Ref. 31, the values of p in Eq. �2� should
span the first Brillouin zone of the reciprocal space of 2r.

IV. CONDUCTANCE THROUGH A POINT CONTACT IN
THE ABSENCE OF CORRELATIONS

Let us start with the noninteracting case, amounting to
switch off the Coulomb interaction �U=0� in Eq. �22�. This
represents the textbook case of conduction through a single
level system.11 By approaching the resonance g→0, the
transmission becomes perfect. The curve of the conductance
G�g� exhibits a peak characterized by a height G�0�=G0
and a half-width parameter �=2td

2 / t.
For the numerical calculations in this section, we shall

choose a value td / t=0.4. This corresponds to an Ag-QD
chain, with a QD in the middle slightly more distant
�D� /2R=1.24� from its two neighbors than the other QDs in
the chains �D /2R=1.07, cf. Sec. III�.

In the case of identical reservoirs and contacts, the zero-
bias conductance can be obtained from the Friedel-Langreth
sum rule49–52

G/G0 = sin2��nd/2� , �23�

where G0	2e2 /h is the conductance quantum. The dot oc-
cupancy per spin direction nd=����0�n̂d,���0� will be com-
puted by numerical exact diagonalization.

In Fig. 1, we present numerical results obtained for 63
sites by means of Eq. �23�, which show a peak in the con-
ductance G�g� with a half width at half maximum in very
good agreement with the formula �=2td

2 / t. These results are
in accord with the fact that the single-particle quantum tun-
neling constitutes the underlying physical phenomenon: At
sufficiently large values of g, the curve for log G�g� in Fig.
1 varies linearly with g

1/2, as expected for the transmission
coefficient through an energy barrier g. The lowest excita-
tion energy, also shown in Fig. 1, displays a similar depen-
dence, which confirms that it plays the role of a tunneling
splitting energy.

0.2 0.4 0.6 0.8 1
0.01

0.1

1

G/G
0

δε
t

ε
g
1/2

FIG. 1. �Color online� Results for the normalized conductance
G /G0 and lowest excitation energy �t �tunneling splitting� ob-
tained by exact diagonalization in the uncorrelated system �U=0�
for chains with 63 sites, t=1, and td=0.4. Note the logarithmic scale
on the ordinate and the square root of the dot energy �=energy
barrier� g on the abscissa. The linearity of the two curves at larger
g confirms the interpretation within the tunneling model.
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The curve of conductance for chains with 63 sites de-
picted in Fig. 1 is very close to the exact result for infinite
chains presented in Fig. 5 of Ref. 36. It has been shown there
that the latter result agrees very well with the time-dependent
DMRG result for 64 sites.36 The size N=63 chosen by us is
the closest to chain size N=64 used in the time-dependent
DMRG calculations compatible with our choice �N=2M +1,
with odd M, cf. Sec. III�.

We shall now present the results of the SWF method dis-
cussed in Sec. II. From the point of view of the computation
time, large chain sizes are more prohibitive for the SWF
method than for exact diagonalization. Indeed, by inspecting
Eqs. �18�–�21� one can see that the computing time for J
scales as N6 in the noninteracting case, where the number of
relevant excitations scales as N2. Because the Hamiltonian
�22� is quadratic in the noninteracting case, exact numerical
diagonalization can be straightforwardly carried out even for
very long chains, e.g., much longer than those that can be
handled by the time-dependent DMRG.

Figure 2 represents a counterpart of the bottom panel of
Fig. 1 of Ref. 21 and illustrates a characteristic feature of the
SWF method discussed in Sec. II: the reservoirs only con-
strain the Wigner distribution function of incoming electrons
while the distribution of outgoing electrons is free. For in-
stance, at the right interface �f�qR , p�	 f�qR , p�− f0�qR , p� is
zero for p�0 �in accord with Eq. �6�� but has nonvanishing
values for p�0. Curves for the latter case are shown in Fig.
2, depicted for several positive values of p.

We shall now compare the exact results with those of the
SWF method. In Fig. 3, the SFW curve for zero-bias con-
ductance is plotted along with the exact curve. As one can
clearly see there, the SFW curve looks completely different,
bearing no resemblance with the exact curve. Most unphysi-
cally, the SWF conductance vanishes for resonant tunneling
�g=0�, where it should attain the maximum value G=G0.

To compute the SWF curve of Fig. 3, we have chosen
qL=−2 and qR=2. A nontrivial realistic ab initio calculation
is so demanding that, besides the device �a molecule or a few
QDs�, if at all, only small parts of the electrodes can be
accounted for in the heaviest part of the computation. There-
fore, practically no or very limited freedom remains to

choose the boundaries qL,R. The fact that in the present case
the eigenvalue problem can be solved exactly for large sys-
tems S enables us to flexibly change qL,R and to inspect the
impact on the solution, and, maybe to make it have some
resemblance to the exact one. In Fig. 4, we present results
derived by choosing different qL,R. For all choices, the opti-
mization yields minimum values of the total energy E, Eq.
�1�, below the value E0 corresponding to the trivial situation
An=0, ∀n�0, i.e., the “condensation” energy �W	E−E0 is
negative. However, the conductance changes only by factors
of the order of unity. Definitely, it cannot be made more akin
to the exact G.

The curves presented in the above Figs. 2–4 have been
deduced by constraining the solution to satisfy the equation
of continuity, as discussed in Sec. II. In Fig. 5, results ob-
tained by imposing the equation of continuity �depicted by
the line denoted by uniform� are compared with those de-
rived without imposing this equation. As is visible there, the
values of the electric current do display a significant depen-
dence on site. The latter is indicated by the numbers in the
legend of Fig. 5. Neither the value of the current through the
QD nor the average along the chain �label 0 and average,
respectively� coincides or reasonably approximates that de-
duced by imposing the equation of continuity. It was claimed

0 0.2 0.4 0.6 0.8 1

-2.0

0.0

2.0

1
4 10

14

17

24
30

31

δf(q
R
,p)/V

ε
g

FIG. 2. �Color online� The difference �f�qR , p�	 f�qR , p�
− f0�qR , p� �in arbitrary units� plotted versus gate potential g for 63
sites, t=1, td=0.4. The nonvanishing values at the right interface qR

and positive momenta p indicate that the Wigner distribution func-
tion of outgoing electrons is free. The values of k �p=k� /nqL

� are
given in the legend.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

exact diag.

G/G
0

SWF

ε
g

FIG. 3. �Color online� Results on the normalized conductance
G /G0 obtained by exact diagonalization and the method based on
the Wigner function for 63 sites in the absence of correlations U
=0 �same parameters as in Fig. 1�.

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0.0

0.1 G/G
0

δW/V
2

ε
g

FIG. 4. �Color online� Results for the conductance G /G0 and the
bias-induced condensation energy �W �the latter in arbitrary units�
obtained by means of the SWF method for boundaries chosen at
qR=−qL=2, 3, 4, and 5 �values increasing upwards for the G curves
and downwards for the �W curves at, say, g=0.5�. Noteworthy, the
conductance does not sensitively depend on the choice of
boundaries.
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that, although in principle necessary because of certain ap-
proximations �see Sec. VI for more details�, there was no
need to impose the equation of continuity for the calculations
reported in Refs. 21 and 22. Obviously, the fact that in our
case the minimization without imposing Eq. �8� leads to a
solution for � that violates the equation of continuity is not
the result of any approximation: except for the SWF method
itself, our results are affected by no further approximation.
To conclude, Fig. 5 demonstrates that the SWF method does
not automatically satisfy the continuity equation, not even
approximately.

V. CONDUCTANCE THROUGH A POINT CONTACT IN
THE PRESENCE OF CORRELATIONS

In this section we shall apply the SWF method exposed in
Sec. II for the case of nonvanishing U, where correlations are
known to play an important role. The physics of model �22�
with U�0 is also well understood.53 For strong interaction
�U� and low temperatures, by varying the gate potential g,
one observes plateaus of well defined dot charge, corre-
sponding to a dot that is empty, singly, and doubly occupied:
nd=0 �0�d�, nd=1 �−U�d�0�, and nd=2 �d�−U�, re-
spectively. This behavior can be demonstrated by exact nu-
merical diagonalization in small clusters, as illustrated by the
curves of Fig. 6.

For low temperatures but above the so-called Kondo tem-
perature TK �often much smaller than 1 K�, the conductance
G�g� exhibits two narrow Coulomb blockade peaks located
at g=−U and g=0, while in between it almostly vanishes
�Coulomb valley�. By decreasing the temperature below TK,
correlation effects in the singly occupied state yield a sharp
�Kondo� resonance in the density of states at the Fermi level,
and this gives rise to a characteristic plateau of width �U in
the curve of G versus g. In the middle of the Coulomb
valley �g=−U /2�, perfect transmission occurs, leading to
the ideal conductance value G0=2e2 /h �unitary limit�.

Numerous results obtained for the model �22� by consid-
ering semi-infinite leads were published in the literature, see,

e.g., Refs. 36, 54, and 55. A comparison between the results
for semi-infinite leads and the SWF method would make no
sense. At zero temperature, the case for which the SWF
method was developed, in the range −U�g�0 for the re-
alistic case of semi-infinite electrodes the conductance is
dominated by the Kondo plateau. Its formation requires
chain sizes larger than the Kondo cloud, which extends over
a number of sites �K� t /TK. The latter rapidly grows �expo-
nentially for large U� beyond the sizes, which neither the
exact diagonalization, nor the SWF, or often even the DMRG
approach,36 can handle. No Kondo peak can be formed for
chains shorter than the Kondo screening length �K. However,
in short chains the G�g� curve should still display the Cou-
lomb blockade peaks at g=0 and g=−U.

Although the clusters considered in this section comprise
a small number of sites, the results are significant. Since our
main purpose here is to address the issue of the validity of
the SWF method, we do not intend to discuss finite-size ef-
fects here. However, we do not expect that they are essential:
the inspection of Fig. 6 reveals that the differences between
chains with seven �M =3� and eleven �M =5� sites are not
substantial.

The primary reason why we restrict ourselves to chains
with seven sites is technical, but this also rises supplemen-
tary doubts on the applicability of the SWF methods for
systems of interest for molecular electronics. Equation �11� is
an expansion over the complete set of eigenstates of H and,
according to Eq. �18�, in principle all eigenstates of odd par-
ity contribute to the current. Calculations contradict the naive
expectation that in the linear response approximation only a
reduced number of excited states are important. For the cou-
plings U employed in Fig. 7, out of a total of 1225 states
with spin projection Sz= +1 /2, the first 300 states are not
always enough to reach convergence. For eleven-site chains
�the next larger size of interest�, there are 213 444 eigen-
states with Sz= +1 /2. One would probably need to target
many thousands thereof in order to get the matrix elements
necessary for convergent results. For this formidable task,
one should run the Lanczos procedure three times, and this
separately for each of the matrix elements entering Eqs.
�12�–�14�, in a manner similar to but more involved than that
employed to compute frequencies and intensities of optical
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FIG. 5. �Color online� SFW results for the conductance G /G0 of
the chain with 63 sites at t=1 and td=0.4. The curves computed
without imposing the continuity equation exhibit a strong site-
dependent current and substantially depart from that labeled by uni-
form, computed by imposing this equation. Nor the average taken
along the chain �label average� represents a satisfactory approxima-
tion of the latter. The number of site q in the chain is specified in the
legend. The dot is located at q=0.
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lines.47,48,56,57 The method of only computing convoluted
spectra by means of the continued fraction algorithm58–60 is
inadequate for this purpose.

Our results on the conductance computed by means of the
SWF method are collected in Fig. 7. �Notice that only the
halves of the curves situated at the right of the particle-hole
symmetric point g+U /2=0 are shown.� As one can see
there, the curves for the conductance, calculated for several
values of U and td, exhibit maxima at the gate potential val-
ues g�0 �g+U /2�U /2�, i.e., at the position where the
Coulomb blockade peaks are expected. Their distance from
the ideal Coulomb blockade location increases with td; a be-
havior similar to that of their width. While this behavior is
physically plausible, unfortunately, the prediction of the
SWF method for the height of the peaks is quite unphysical:
the height is found to vary roughly inversely proportional to
td. The consequence of this dependence is that, as visible in
Fig. 7, the height of the G peak even attains values exceeding
the ideal value G0. To conclude this section, the results of the
SWF method are unphysical; the conductance of correlated
systems evaluated by this method cannot be trusted.

VI. DISCUSSION

A minimal requirement for any many-body approach of
electric transport at nanoscale is to reproduce the Landauer
theory in the absence of correlations and to correctly de-
scribe the zero-bias conductance of the linear response
theory. Although these represent two well established limits
�see, for example, Ref. 20�, the authors of Refs. 21, 29, and
30 did not show that their �SWF� method is compatible to
them. In the preceding Secs. IV and V we have unambigu-
ously demonstrated that the SWF method is incompatible to
the two aforementioned limits.

We still have two comments on the SFW method. They
concern this method in general and are not related to the
linear response limit. First, in Ref. 22, it was claimed that the
imposition of Eq. �8� is necessary because the continuity
equation �� /�t+� . j=0, derived from the Schrödinger equa-
tion in the presence of local interactions, does not hold for

nonlocal interactions. Accordingly, position-dependent cur-
rents could be an effect of ab initio molecular electronics
calculations employing nonlocal effective core potentials or
pseudopotentials, or a result of truncating the molecular or-
bital basis set or the CI. While all these may in general be
sources of violating the continuity equation, for the SWF
method there still exists another reason to impose the con-
strains �8� in a steady state. The wave function � determined
by means of the SWF method does not represent an eigen-
state of the Hamiltonian. � is time independent only because
the formalism is time independent, and not the result e.g., of
taking the limit t→� to get a steady state. No demonstration
has been given in the works dealing with the SWF
method21,22,29,30,61 that the minimization procedure without
imposing Eq. �8� yields a solution compatible with the con-
tinuity equation. While the imposition of Eq. �8� is seem-
ingly unnecessary for the case considered in Ref. 22, there is
no rationale for this in general. For illustration, we have pre-
sented a counter example in Sec. IV. The equation of conti-
nuity �nl /�t= �i /���nl ,H�=−jl+ jl−1 �cf. Ref. 34� holds for
the model Hamiltonian �22�, and nevertheless the current
computed without imposing Eq. �8� is strongly site depen-
dent.

The second and more important point concerns the man-
ner of imposing boundary conditions in Ref. 21. In the ap-
proaches based on the Wigner function within the single-
particle approximation the influence of the applied electric
field is accounted for both at the boundary conditions, via the
shift �L−�R=eV �cf. Eqs. �3� and �4�� and on the electron
dynamics within the device.31–33 Within the methods based
on the NEGF the applied voltage is usually considered solely
via the chemical potential imbalance, and many-body10

methods are employed to treat correlation effects due to in-
teractions within the device without applied field. In both
cases, the applied bias represents the driving force of current
flow. In the SWF method, the effect of the applied field at the
boundaries is entirely neglected �cf. Eqs. �5� and �6��. Let us
suppose that �i� we would be able to reliably solve the mini-
mization problem as prescribed by the SWF method and ex-
actly �or at least very accurately� determine � for very large
systems, including large parts of the reservoirs �assumed
identical�, and �ii� in the latter the single-particle description
applies. Then, according to Eqs. �5� and �6�, the Wigner
functions at the boundaries would reduce to the Fermi distri-
bution functions of the left and right reservoirs characterized
by the same chemical potential �. This would imply that
there would be no difference between incoming electrons
from the left and right reservoirs. Then, it is not at all sur-
prising, e.g., that in the extreme case, where all sites are
noninteracting and identical �U=0 and td= t�, instead of be-
ing maximum, G=G0, the conductance vanishes for g=0, as
visible for the SWF curves of Figs. 3–5. In reality, the correct
wave function � describing the steady-state current flow
should yield a Wigner function that reduces at the boundaries
to the Fermi distribution functions characterized by different
chemical potentials �L,R=��eV /2.

The vanishing zero-bias conductance for g=0 �Fig. 3� is
perhaps the most striking and unphysical result of the SWF
method. It might be tempting to ascribe the vanishing �zero-
bias� conductance to the fact that the SWF method uses finite
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FIG. 7. �Color online� Coulomb blockade peaks of the zero-bias
conductance for seven-site clusters as predicted by the SWF
method. The solid, dotted, and dashed lines correspond to the values
td=0.125, 0.25, and 0.5 respectively. The values of U are given in
the legend and t=1. Notice that, unphysically, the maximum con-
ductance is predicted to increase with decreasing td even beyond the
ideal value G0 �G /G0�1�.
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electrodes rather than �practically� infinite electrodes and
does not include self energies or other level broadenings.
Since our primary aim in this paper is to check the validity of
the SWF method, we have faithfully translated this approach
as proposed in Ref. 21 to concrete cases. However, we do not
believe that the above fact is the source of quite unphysical
predictions. The time-dependent DMRG method12–14 is in
this respect similar to the SWF method, since it also consid-
ers finite electrodes, but is able to correctly reproduce exact
results, as discussed in Sec. IV. Because the aforementioned
vanishing zero-bias conductance is quite unphysical, we
think that it would make little sense to ask whether the cur-
rent at low voltages is proportional to a higher power of V
within the SWF approach: this would be yet another un-
physical prediction. However, in view of the considerations
of the preceding paragraph on the imposition of the boundary
conditions, we believe that even higher order conductivities
are suppressed.

Since the above analysis reveals that the boundary condi-
tions �5� and �6� are inadequate, attempting to mend the SWF
method would be desirable. In view of the above consider-
ations, perhaps the most natural attempt would be to modify
Eqs. �5� and �6� by using instead of �0 the ground state �0
of the system in the presence of the applied potential, i.e.,
HT��0�=ET,0��0�. Although the Wigner functions entering
the right hand side of Eqs. �5� and �6�, calculated by using
�0 instead of �0, do not necessarily reduce to the left and
right Fermi distributions, this procedure would at least ac-
count for the chemical potential imbalance at the boundaries.
However, as revealed by a straightforward analysis, this
modification does not yield the desired improvement: the
solution of the minimization is just �=�0. This solution
obviously satisfies the boundary constraints �5� and �6� as
well as the continuity equation �electrical perturbations only
depend on electron density�, and, being the ground state of
HT, it trivially minimizes E of Eq. �1�. This result is obvi-
ously general, i.e., it holds beyond the linear response ap-
proximation. Still, as a verification, we have performed the
modification �0→�0 in the right hand side of Eqs. �5� and
�6� and carried out straightforward calculations within the
linear response approximation. They yield ���= ��0�
+�n�0Wn / �E0−En���n�, and in the right hand side one im-
mediately recognizes the ground state �0 of HT=H+W in
the first order of perturbation theory. Unless the system is
superconducting, the current �conductance� vanishes in the
state described by the wave function �=�0. So, even with
this “remedy,” the SWF method is unable to describe electric
transport through nanosystems.

VII. CONCLUSION

Several recent studies proposed and applied a many-body
time-independent method to compute steady-state electric
transport in molecular systems, whose key ingredient was the

formulation of the boundary conditions in terms of the
Wigner distribution function.21,22,29,30,61 The fact that this ap-
proach yielded values of the electric current through mol-
ecules comparable with those measured in experiments,
which are usually orders of magnitudes lower than the pre-
dictions of other theoretical treatments, was considered very
encouraging. However, the mere fact that a theoretical
method compares favorably with experiments cannot be
taken as support for its correctness. It should also be able to
correctly reproduce well established results.

In this paper, we have presented results demonstrating
that the SWF method is unable to reliably evaluate the zero-
bias conductance of the simplest uncorrelated and correlated
systems of interest for molecular and nanoscopic systems,
namely, a single QD. It fails to retrieve the result G=G0 for
resonant tunneling through a single QD without correlations,
where it predicts a vanishing conductance instead. In the
presence of correlations, the conductance at the peaks of
Coulomb blockade is unphysically predicted to increase with
decreasing dot-electrode coupling �td� and can even exceed
the conductance quantum G0.

While the idea of formulating boundary conditions in
terms of the Wigner function for correlated many-body sys-
tems is interesting, the manner in which it was imposed in
Ref. 21 turns out to be inappropriate. It misses the fact that,
in accord with our physical understanding, the current flow is
due to an asymmetric injection of electrons from reservoirs
into the device, and that injected electrons are very well de-
scribed by Fermi distributions with different chemical poten-
tials. Moreover, as results from the analysis at the end of Sec.
VI, unfortunately there is no simple remedy of the SWF
method; the modification of the boundary conditions in the
spirit of Ref. 21 such as to account for a nonvanishing
chemical potential shift does not yield the desired improve-
ment.

In addition, as a side note, we believe that the very fact
that astonishingly numerous states with high excitation ener-
gies are found to contribute to the conductance in the linear
approximation is an indication that the SWF method, even if
it were physically sound, would be of little pragmatical use
for strongly correlated nanosystems, because it would be
hardly conceivable that ab initio calculations for real mo-
lecular systems, by far more complex than the presently con-
sidered model, could provide a wave function � with the
accuracy needed for reaching reliable convergent results.
These considerations raise doubts on the possibility to de-
velop a viable SWF approach for the electric transport
through nanoscopic and molecular systems.
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