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The Zn-IV-N2 compounds, with the group-IV element Si, Ge, and Sn, which have a common crystal
structure closely related to the wurtzite-structure form a series analogous to the group-III nitrides GaN, AlN,
and InN, respectively. Calculations of the phonons and related quantities in these materials are reported here
using the density-functional perturbation-theory linear-response approach in the local-density approximation
and using a plane-wave pseudopotential method. We focus on spectra, such as the imaginary part of the
dielectric function and the energy-loss function as measurable by infrared absorption or reflectivity, and the
Raman spectra. We also present phonon densities of states, band dispersions, and related integrated thermo-
dynamic quantities such as the specific heat, and Helmholtz free energy and entropy as functions of tempera-
ture. Structural and elastic properties such as the lattice constants and bulk moduli are also reported. Finally,
high-frequency and static dielectric tensors are presented. The trends in the series and the relation to the
corresponding III-N nitrides are discussed. It is found that the bimodal bond-length distribution with IV-N
bonds shorter than the Zn-N bonds �even for Sn� strongly modifies the spectra from those in III-N nitrides.
While in ZnGeN2 and ZnSnN2 folded acoustic-like modes are clearly separated from the optic type modes, this
is not the case in ZnSiN2. The calculated Born effective charges indicate that ZnGeN2 has the lowest ionicity
of the three materials.
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I. INTRODUCTION

The Zn-IV-N2 group of compounds with the group-IV
elements Si, Ge, and Sn forms a series analogous to the
well-known III-N nitrides AlN, GaN, and InN but have, in
comparison with the latter, only received very little study.
Their close analogy to the III-N compounds makes them
promising materials for the same types of wide-band-gap
semiconductor applications, mainly in optoelectronics, but
possibly also as host for dilute magnetic semiconductors,1 or
piezoelectric and nonlinear optical materials. The ternary na-
ture of these compounds provides additional band-structure
engineering opportunities because both the group-IV and
group-II elements can be modified. Furthermore, these mate-
rials may share some of the properties of other II-IV-V2 chal-
copyrites in exhibiting a more complex defect physics, which
could open new routes to doping control.

The crystal structures are closely related to those of the III
nitrides as discussed in more detail in Sec. III A. The elec-
tronic properties are also closely related to the corresponding
III nitrides but are not yet well established. Starting from
ZnGeN2, which is most directly related to GaN because Zn
and Ge are in the same row of the periodic table as Ga, we
find indeed that ZnGeN2 has a band gap �3.40 eV excitonic
band gap at 4 K from photoluminescence� �Ref. 2� close to
that of GaN �3.483 band-gap free exciton �A exciton� at 4.2
K�.3 Earlier results by Larson et al.4 gave a band-gap esti-
mate of 2.67 eV for ZnGeN2, but this estimate is probably
referring to subband-gap defect absorption. Kikkawa and
Morisaka5 gave 3.1 eV from the direct optical-absorption
edge. For ZnSiN2 only one of the two cations is in an earlier
row, so one expects the gap to be in between that of AlN �6.2
eV� and GaN. Endo et al.6 reported an indirect absorption
edge at 3.64 eV. Osinsky et al.7 reported a gap of 4.46 eV for

ZnSiN2 based on optical transmittance. For ZnSnN2 one ex-
pects a gap between that of GaN and InN �0.7 eV�.8 Our
local-density approximation �LDA� band-structure calcula-
tions of ZnGeN2, ZnSiN2, and ZnSnN2 will be discussed
elsewhere.9 Here, we only mention that using a full-potential
linearized muffin-tin orbital �FP-LMTO� method, we obtain
LDA gaps of 3.48 �indirect� and 3.69 eV �direct� for ZnSiN2,
2.06 eV for ZnGeN2, and 0.07 eV for ZnSnN2. This means
our band gap is underestimated by 1.34 eV for ZnGeN2.
LDA calculations using a similar FP-LMTO method gave
1.935 eV or an underestimate of 1.54 eV for GaN,10 4.255
eV or an underestimate of 1.95 eV for AlN, and 0.064 eV or
an underestimate of 0.64 eV for InN. We thus see that the
LDA underestimate is larger for the wider gap materials.
This means we can expect a gap correction for ZnSiN2 of at
least 1.34 eV. This would give an estimated lower limit of the
gap of 4.8 eV for ZnSiN2. Making the plausible assumption
that the gap correction is the average of that of ZnGeN2 and
that of AlN, we obtain an estimate of 5.1 eV. The calcula-
tions do predict a slightly smaller direct than indirect gap but
the two are quite close. However, it indicates that the 3.64
eV value for the indirect gap6 is not really the indirect gap
but probably an underestimate because of subband-gap de-
fect absorption. For ZnSnN2, we may expect a gap correction
between that of InN and that of ZnGeN2 or a gap of about
1.0 eV. In any case, this indicates that the gaps in the
ZnSnN2, ZnGeN2, and ZnSiN2 span a wide range from the
infrared to the ultraviolet. There have been a few previous
LDA calculations11–13 but firm conclusions on the gaps were
not reached in those works because of the usual LDA under-
estimated of the gap. Similar values were obtained for the
LDA gaps as ours.

In the present paper, we focus on the ground-state and
phonon related properties of these materials. This paper con-
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tinues our previously reported work on ZnGeN2 �Refs. 14
and 15� and ZnSiN2 �Ref. 16� by expanding the study to
ZnSnN2 and discussing the trends in the series. ZnSnN2, to
the best of our knowledge, has not yet been synthesized, so
our work is completely predictive for this hypothetical com-
pound. We focus on infrared absorption and Raman spectra
because they are more readily applicable to small crystals. In
fact infrared reflectance data for ZnSiN2 were reported by
Mintairov et al.17 and analyzed by us in Ref. 16. Raman data
for ZnGeN2 were reported for ZnGeN2 polycrystalline pow-
ders by Viennois et al.18 and tentatively interpreted in Ref.
14. A Raman study on single-crystal ZnGeN2 was presented
in Ref. 15. Full phonon-dispersion curves are only measur-
able by neutron diffraction or inelastic x-ray scattering,
which requires large single crystals. However, they are still
an important part of a full understanding of the phonons in a
material, so we present calculated dispersions along the high-
symmetry lines in the Brillouin zone mostly to connect them
with the density of phonon states. The latter have more prac-
tical importance because in defective materials, crystal mo-
mentum conservation may be relaxed and Raman spectra
may then reflect density of phonon states. Once we have the
density of phonon states, we can also calculate some thermo-
dynamic quantities of interest, such as specific heat. In order
to calculate LO-TO phonon splittings, the linear-response ap-
proach uses derivatives of the total energy versus a static
electric field. The Born effective charges, which are key
quantities in obtaining the LO-TO phonon splittings, also
provide some information about the ionicity of the materials.
Using the same derivatives, one obtains as a byproduct the
high-frequency �but below band gap� dielectric tensor, giving
us the indices of refraction by taking the square root. Experi-
mental data on indices of refraction in ZnSiN2 were reported
by Cook et al.19 The static dielectric constant is also ob-
tained.

II. COMPUTATIONAL METHOD

The calculations were carried out using the linear-
response approach20–22 together with an iterative minimiza-
tion norm-conserving pseudopotential plane-wave
method21–23 and within the framework of density-functional
theory,24,25 as implemented in the ABINIT package.26 The
density-functional perturbation theory is the basis of the
linear-response approach. Once first-order perturbed wave
functions are obtained, it allows one to obtain second-order

derivatives of the energy versus atomic displacements, which
give force constants; second derivatives versus a static elec-
tric field, giving susceptibilities ��,� or dielectric tensors and
mixed derivatives of the two, which give the Born effective
charge tensor describing the LO-TO splittings. Using the
2n+1 theorem, the first-order perturbed wave functions give
the energy correct to third order so one can also calculate
third derivatives. These allow one to calculate the Raman
tensor elements from ���� /��, where � is an atomic dis-
placement. For further details on the calculation of the Ra-
man matrix elements, we refer the reader to Veithen et al.,27

and Deinzer and Strauch.28 From the effective charges and
the phonon eigenvectors, one obtains directly the oscillator
strengths and hence the infrared-absorption spectra.16

The LDA was used for the exchange and correlation en-
ergies. In the Fritz-Haber pseudopotentials used,29 the 3d
electrons of Zn were treated as valence electrons. The calcu-
lations were carried out with a 70 Ry plane-wave energy
cutoff, and the orthorhombic Brillouin zone was sampled
with a regular and shifted 2�2�2 k-point mesh. The pho-
non frequencies change by less then 1% when a plane-wave
energy cut-off energy of 80 Ry and k-point mesh of 4�4
�4 is used, proving the results are well converged. Our cri-
teria for self-consistency were changed by less than
10−22 Hartree2 for the wave functions squared residual
�����H−E�2��� with E= ���H����, 10−6 Hartree for energies,
and 10−6 Hartree /Bohr for forces. To obtain the phonon den-
sity of states, we used the approach described by Bungaro et
al.30 in which the phonons are calculated first on a coarse
2�2�2 q-point mesh, the short-range force constants are
obtained in real space by subtracting the known long-range
behavior in q space followed by a Fourier transform, and the
long-range forces are then added analytically when carrying
out the calculations on a finer q-point integration mesh or for
the points along symmetry lines.

III. RESULTS

A. Crystal structure and bulk moduli

The crystal structure of these compounds is a superstruc-
ture of the wurtzite structure with overall orthorhombic sym-
metry. In the idealized structure, the lattice basis vectors a, b,
and c are related with wurtzite lattice vectors aw, bw, and cw

by a=2aw, b=aw+2bw, and c=cw. Here the wurtzite bw vec-
tor is at 120° from the aw vector, both lying in the plane
perpendicular to the cw vector. Thus, the orthorhombic b

TABLE I. Calculated and experimental lattice parameters a, b, and c in amperes in Zn-IV-N2

compounds.

Compound Calculated Experimental

a b c a b c

ZnSiN2 �Å� a 6.01 5.28 4.98 6.18 5.35 5.05

ZnGeN2 �Å� b 6.33 5.36 5.11 6.44 5.45 5.19

ZnSnN2 �Å� 6.76 5.85 5.58

aMintairov et al. �Ref. 17�.
bWintenberger et al. �Ref. 31�.
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=�3aw and is along what is sometimes called the orthohex-
agonal axis. We could call the superstructure a 2��3�1
superstructure. However, small distortions from this ideal-
ized structure occur, maintaining the orthorhombic symme-
try.

The calculated lattice constants obtained by minimizing
the energy using the ABINIT approach are in excellent agree-
ment with the experimental lattice constants of ZnSiN2 �Ref.
17� and ZnGeN2.31 Table I shows that the b /a ratios of
ZnSiN2, ZnGeN2, and ZnSnN2 are 1.73, 1.69, and 1.73, re-
spectively, all close to �3 as expected. Similarly the c /a
ratios of ZnSiN2, ZnGeN2, and ZnSnN2 are 1.65, 1.61, and
1.65. The ideal wurtzite c /a ratio is �8 /3	1.633, and that in
GaN is 1.626. Thus the c /a is slightly smaller than ideal in
the case of ZnGeN2 and GaN while it is slightly larger than
ideal in the case of ZnSiN2 and ZnSnN2, contrary to the
cases of AlN �c /a=1.602� and InN �c /a=1.615�.

As expected, the lattice constants increase and hence the
bulk modulus, shown in Table II, decreases with the atomic
number of the group-IV elements. The bulk moduli and their
pressure derivatives were obtained by fitting the Vinet equa-
tion of state32 to the energy versus volume curves. We also
note that the calculated unit-cell volumes 158, 173, and
220 Å3 for ZnSiN2, ZnGeN2, and ZnSnN2, respectively, un-
derestimate the experimental ones 167 and 182 Å for
ZnSiN2 and ZnGeN2, respectively, by about 5%, which is
usual for the LDA.

The atomic positions of each of the elements are not
available experimentally except for ZnGeN2.31 We therefore
tabulate the atomic position of each of anions and cations in
Table III. There are two inequivalent N positions: one above
the group-II atom and one above the group-IV atom. A figure
of the structure can be found in Ref. 14. Relaxation shows
that the cations essentially remain in the same positions
while the nitrogen positions deviate from their ideal posi-
tions. The nitrogen atoms essentially find an optimized posi-
tion in the tetrahedron of cations surrounding them by mov-
ing away from Zn and toward the group-IV element. The
resulting average bond lengths are summarized in Table IV.
The Zn-N bond length remains constant among the three
compounds while the IV-N bond increases with the atomic
radius of the group-IV element. This increment of the IV-N
bond length causes the bond strength to decrease and may
thus be expected to decrease the phonon frequencies corre-
sponding to IV-N bond stretches. In ZnSnN2 the two bond
lengths are almost equal.

B. Phonons and related properties

Infrared absorption or reflectivity and Raman spectros-
copy provide powerful tools to study the crystalline quality

of new materials. They measure essentially the phonons at �
because of crystal momentum conservation in a perfect crys-
tal. However, if the presence of defects relaxes this conser-
vation rule, the spectra rather correspond to density of pho-
non states integrated over the Brillouin zone. Therefore it is
important to study the phonons at � as well as the density of
states.

1. Phonons at �

The phonons at the center of the Brillouin zone, the �
point, are classified according to the irreducible representa-
tions of the point group C2v. For a full discussion of the
symmetry, see Peshek et al.15 We briefly remark here that the
irreducible representations a1, b1, and b2 correspond to
modes with the same symmetry as a vector along z, x, and y,
respectively, where these are chosen along the c, a, and b
axes of the crystal. These modes are infrared active and also
are subject to an LO-TO splitting. That is, a static electric
field in the x direction will affect the b1 modes, and hence if
we approach the � point from the x direction, the b1

LO mode
will be obtained. If we approach � from the y or z direction,
the b1

TO mode is obtained. For directions in between these
orthogonal directions, a mixed mode will be obtained with a
splitting in proportion to the x component of the wave vector.
Similar considerations apply to the other infrared-active
modes. The a2 modes are antisymmetric under both mirror
planes but symmetric under the twofold rotation along the c
axis. They are not infrared active but Raman active. Since
there are 16 atoms in the cell, there are in total 48 modes at

TABLE II. Bulk moduli and their pressure derivative of
Zn-IV-N2 compounds.

Compound B �GPa� B�

ZnSiN2 228 4.4

ZnGeN2 197 4.4

ZnSnN2 184 4.8

TABLE III. Atomic positions �reduced coordinates� in the unit
cell.

Compounds Atoms x y z

ZnSiN2 Zn 0.501 −0.003 −0.055

Si 0 0.0123 0

NSi
a 0.027 0.028 0.343

NZn 0.278 0.469 0.407

ZnGeN2 Zn 0.5 0.0 0.0

Ge 0.0 0.0 0.0

NGe 0.017 0.019 0.356

NZn 0.268 0.484 0.395

ZnSnN2 Zn 0.5 −0.001 0

Sn 0 0.011 0

NSn 0.027 0.028 0.344

NZn 0.278 0.474 0.406

TABLE IV. Average bond lengths �in Å� in Zn-IV-N2

compounds.

Compound Zn-N IV-N

ZnSiN2 2.06 1.75

ZnGeN2 2.02 1.83

ZnSnN2 2.05 2.00
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any wave vector not counting the different limits that can be
obtained at �. It turns out that there are 12 modes of each
symmetry. The lowest TO modes of a1, b1, and b2 symme-
tries at � correspond to a uniform translation of the crystal
and have zero frequency.

Since the phonon frequencies at � for ZnSiN2 and
ZnGeN2 were already given in Ref. 16 and 14, respectively,
we here only give the values for ZnSnN2 in Table V. In
subsequent sections we present spectra related to these
modes for all three materials for easy comparison.

2. Infrared spectra and related quantities

One of the most widely used methods to probe phonons is
infrared absorption. The oscillator strength function of the
infrared-active phonon mode is calculated from22

Sn,�� = 
�
	

Z	,��
� Un�	,��
2

, �1�

with Z	,��
� =V� P� /��	��q=0� the Born effective charge ten-

sor components, Un�	 ,�� the eigenvector for mode n, in
which 	 labels the atom, and � the Cartesian directions. P� is
the polarization, V the volume of the unit cell, �	 the position
of the 	th atom, and q=0 indicates that a collective displace-
ment of atoms is considered, the displacement being the
same in every unit cell. The Born effective charges, also
known as dynamic effective charges,33 are associated with
lattice vibration and are different from the static effective
charges, which are related with the static transfer of charge
form cation to anion in the formation of an ionic crystal
compared to the free atoms. While both are in effect a mea-
sure of ionicity or polarity of the bonds, the dynamic effec-
tive charges are directly measurable through the LO-TO
splitting. The orthorhombic symmetry of the system makes
Z	.��

� diagonal and hence also the oscillator strength func-
tion. The Born effective charges are given in Table VI. Their
sum over atoms for each direction satisfies the neutrality
charge neutrality sum rule. For a1, b1, and b2 modes, only z,
x, and y components, respectively, of the oscillator strength
are nonzero and only these modes contribute to the corre-
sponding effective charge tensor element.

Table VI shows that the Born effective charges of the
group-IV element and the nitrogen associated with it is larger
in ZnSiN2 and ZnSnN2 than in ZnGeN2 for each of the di-
agonal components. This trend is the same as for AlN, GaN,
and InN,30 where also the lowest dynamic charges are found
for GaN. We did not observe any clear trend for the dynamic
effective charge associated with Zn and its counterpart nitro-
gen. The average values for cations and anions are compa-
rable to those in the corresponding III nitrides.

In terms of these oscillator strengths, the dielectric func-
tion is given by


����� = 
��
� +

4

V
�

n

Sn,��

�n
2 − �2 − i�n�

, �2�

where �n and �n are the mode frequencies and damping
factors, respectively. The high-frequency dielectric tensor,
i.e., at frequencies below the band gap but well above the
phonon modes, is given in Table VII. The value obtained in
the static limit �→0 including the phonon contributions is
also given.

TABLE V. Phonon frequencies in ZnSnN2 at the � point in cm−1.

a2 b1T b1L b2T b2L a1T a1L

109 134 135 107 107 108 108

127 153 153 131 131 124 124

130 178 180 155 159 146 147

153 203 211 191 191 163 167

185 224 224 237 238 206 206

235 368 401 355 355 344 359

338 429 435 370 440 359 389

424 516 539 496 525 527 477

483 541 579 560 562 528 554

543 673 708 675 692 666 666

668 713 720 700 739 677 716

713

TABLE VI. Born effective charge tensors.

Compound Zn IV NIV NZn

Zxx

ZnSiN2 1.807 3.193 −2.519 −2.480

ZnGeN2 1.809 3.159 −2.493 −2.475

ZnSnN2 1.943 3.243 −2.612 −2.574

Zyy

ZnSiN2 1.785 3.345 −2.259 −2.870

ZnGeN2 1.760 3.319 −2.275 −2.133

ZnSnN2 1.912 3.368 −2.444 −2.836

Zzz

ZnSiN2 2.064 3.334 −2.991 −2.407

ZnGeN2 2.028 3.329 −2.919 −2.447

ZnSnN2 2.251 3.474 −3.077 −2.650
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The dielectric tensor components are seen to be increasing
from ZnSiN2 to ZnSnN2. This is mostly because of the de-
creasing band gap, which is related primarily to the lower
s-like conduction-band states of the group-IV cation. The
higher the atomic number Z the more the s-like states feel the
nucleus, and hence these states move down relative to the
anion p-like states making up the valence band. A similar
trend is observed in case of III-N such as AlN, GaN, and
InN. By taking the square root of the high-frequency dielec-
tric constants, we obtain the indices of refraction, given sepa-
rately for convenience in Table VIII.

The peaks of the imaginary part of the frequency depen-
dent dielectric function in the infrared range Im�
���� corre-
spond to the transverse optical modes, while the poles of the
real part, Re�
����, or the peaks in Im�−
−1���� �the loss
function� correspond to the longitudinal optical phonon
modes. These calculated spectra are shown in Fig. 1.

The trend of decreasing phonon frequencies with increas-
ing atomic number of the group-IV element is clear for all
modes. In part this trend is related to the mass of group-IV
ion. However, the high-frequency modes primarily involve N
atoms and the trend therefore also reflects the trend of de-
creasing bond strength, which in turn is related to the in-
crease in IV-N bond lengths.

Next, we discuss the separation of the modes into folded
acoustic and optical modes. In wurtzite we have six modes in
the “optical range” and three folded acoustic modes. Of these
six high-frequency modes, only three are optically active: the
doubly degenerate E1 and nondegenerate A1 modes. The
present materials have a four times larger unit cell, so the six
modes in the optical range will give rise to 24 modes. Since
all modes are equally divided over the four symmetries, we
expect six modes of each optically active symmetry or a total
of 18 modes. The lower five modes of each optically active
symmetry are expected to have weak oscillator strengths be-
cause they correspond to folded acoustic type modes and are
expected to occur in a well separated wave number range.
This expectation is confirmed for ZnGeN2 and ZnSnN2 but
not in ZnSiN2. First of all, we do not see a separate range of
five low-frequency modes in ZnSiN2. This overlap of the
folded acoustic and optic ranges is interesting but not en-
tirely unexpected considering that also in AlN, the gap be-
tween acoustic and optical ranges is already quite small. The
modes near the top of the acoustic range correspond to
modes that are folded from the Brillouin-zone boundary in
the parent compound and hence have primarily cation vibra-
tion character. The stretching out of this region is thus related
to the lighter mass of the IV atom. Second, we can see that in
ZnGeN2 there is barely any spectral intensity at all below
400 cm−1, corresponding to the five low-frequency modes.
In ZnSiN2 we can see a low-frequency peak near 300 cm−1

for the three symmetries. Interestingly this peak is also vis-
ible in ZnSnN2 where it lies below 200 cm−1 although it is
rather weak for the b2 symmetry. So, one of the acoustic
range phonons appears to have a moderately strong oscillator
strength. Interestingly, this is stronger in the two materials
with the larger Born effective charges, which is indicative of
a higher ionicity. The higher six modes of each symmetry are
seen to be the strongest and to also have the large LO-TO
splitting as expected.

At present the only experimental information we have on
these spectra is for the b1 symmetry modes in ZnSiN2.17 It
was discussed in Ref. 16. Fairly good although not perfect
agreement was obtained in terms of both frequencies and
oscillator strengths.

The a2 modes are not visible in infrared spectroscopy. We
show them in Fig. 2 for completeness’ sake.

3. Raman Spectra

Another popular spectroscopy used to study phonons is
Raman scattering. In first-order Raman spectroscopy, one ob-
tains again essential information on the q=0 phonons. How-
ever, other selection rules apply. In the present case, all
modes are Raman active. However, which mode is active
depends on the scattering geometry. A detailed discussion is
provided in Ref. 15. The Raman intensity is proportional to
�ei ·�

m ·eo�2, where ei and eo are the incident and scattered
light polarization vectors and � is the second-rank Raman
susceptibility tensor for mode m given by

���
m = �V�

	�

����

��	�

um�	�� , �3�

where um�	�� is the eigenvector of mth mode. As can be
seen it involves the derivatives of the susceptibility versus
atomic displacements dotted into the mode’s eigenvector. We
can thus view it as the derivative of the susceptibility versus
the amplitude of a collective atomic displacement pattern
with the symmetry of mode m. The product representation of
the irreducible representations of the incoming and outgoing
polarization vectors must contain the irreducible representa-
tion of the vibrational mode in order to give a nonzero value.

TABLE VII. High-frequency and static dielectric tensor components.

Compound 
xx
� 
yy

� 
zz
� 
xx

0 
yy
0 
zz

0

ZnSiN2 4.842 4.867 5.290 8.704 9.278 10.015

ZnGeN2 5.166 5.239 5.725 9.222 9.276 10.610

ZnSnN2 5.853 5.931 7.239 11.151 11.895 15.088

TABLE VIII. Indices of refraction.

Compound nxx nyy nzz

ZnSiN2 2.200 2.206 2.300

ZnGeN2 2.273 2.289 2.393

ZnSnN2 2.419 2.435 2.690
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In this case, this means the Raman susceptibility tensor
has the following form depending on the mode’s symmetry.
For a1 symmetry we have

a1:�a · ·

· b ·

· · c
 , �4�

which means that incident and scattered light must have par-
allel polarization but different values will be obtained for the
x, y, and z directions. The scattering geometry is fully speci-
fied by giving ki�eieo�ko. If the wave vectors ki and ko are
parallel to a vector corresponding to the mode’s irreducible
symmetry, then the longitudinal modes are excited, otherwise
the transverse ones. For example, z�xx�z̄ measures the a ten-
sor component of the longitudinal a1L modes because a1 cor-
responds to z while x�yy�x̄ will measure the b component of
the a1T modes. The remaining modes correspond to off-
diagonal matrix elements of the Raman tensor as follows:

a2:� · d ·

d · ·

· · ·
, b1:� · · e

· · ·

e · ·
, b2:� · · ·

· · f

· f ·
 . �5�

The spectra corresponding to the transverse modes are shown
in Figs. 3–6 using a fixed linewidth broadening of each
mode. We organize the figures by symmetry mode and com-
pare the different materials in each plot. We may note that
the intensity of the a1 components is an order of magnitude
stronger than the other modes. They also appear significantly
stronger in ZnGeN2 than in the other materials. Experimental
data are available only for ZnGeN2 and were presented in
Ref. 15. Good agreement was obtained in particular for the
c=�zz component of the a1T modes. It was also found that
the polarization dependence of these spectra is a sensitive
measure of the crystalline quality and ordering in the mate-
rial. Table IX provides the nonzero Raman tensor compo-
nents for each mode and would allow the reader to recon-
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FIG. 1. �Color online� Infrared absorption spectra related to the
modes at � for Zn-IV-N2 compounds. The solid black lines give the
Im�
����, the dashed red lines give the loss function Im�−
−1����.
The three panels in each plot are for the group-IV elements Si, Ge,
and Sn from top to bottom. The different plots correspond to the
different infrared-active symmetries. The arrows at the top of each
panel give the individual modes: shorter and longer arrows repre-
sent transverse and longitudinal phonon modes, respectively. Note
that only 11 phonon modes are shown visible as the lowest one is
the zero-frequency acoustic phonon mode. The spectra are calcu-
lated using Eq. �2� with a damping factor chosen between
5–30 cm−1 with increasing width for higher frequency modes, as
suggested by the experimental data for ZnSiN2 �Ref. 16�.
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FIG. 2. �Color online� Comparison of the a2 phonon modes of
Zn-IV-N2 compounds. The height of the arrows is chosen
arbitrarily.
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struct simulated spectra for longitudinal modes and for other
choices of the broadening factor. Comparing the equivalent
symmetry modes in the different materials shows that the
spectra are quite different. For example for ZnGeN2 the
strongest Raman peak is the a1T peak at about 620 cm−1 in
the zz component of the tensor. This same type of peak can
be seen in ZnSnN2 at slightly lower frequency. In ZnSiN2,
however, the strongest peak corresponds to a totally different
mode near 300 cm−1. Generally speaking, we can see more
similarities between the spectra for ZnGeN2 and ZnSnN2.
The Raman spectra show less clear trends than the infrared
spectra.

4. Density of phonon states and phonon-dispersion curves

The density of phonon states integrated over the whole
Brillouin zone is a quantity of fundamental interest because
it determines several thermodynamic quantities. Further-

more, it also may prove useful in the interpretation of Raman
spectra. In case of disordered materials or nanocrystalline
materials, the crystal momentum conservation rules are not
obeyed and the spectra have a closer resemblance to the den-
sity of states although some parts of the spectra could still
have different weight than others. Also, second-order Raman
spectroscopy often has a strong resemblance to density of
states if pure harmonics dominate rather than sum frequen-
cies of different modes.

The full phonon-dispersion curves along symmetry lines
in the Brillouin zone in this material, which has a large unit
cell and hence small zone, are rather complex because of the
many foldings compared to the underlying wurtzite Brillouin
zone. However, they are useful to compare with the density
of states. Measurement of these phonon band structures re-
quires neutron diffraction or high-resolution inelastic x-ray
scattering and is only possible on large enough single crys-
tals of high quality, which are not yet available for these
materials.

The phonon dispersions along symmetry lines and the
corresponding densities of states are shown in Figs. 7–9 for
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TABLE IX. Raman tensor components for each of the modes.

Modes ZnSiN2 ZnGeN2 ZnSnN2

xx yy zz xx yy zz xx yy zz

a1 −1.22 10−5 1.13 10−4 1.13 10−4 5.92 10−5 −2.06 10−4 −2.06 10−4 3.05 10−4 −3.86 10−4 −3.79 10−5

3.13 10−4 −1.04 10−4 −1.04 10−4 8.32 10−5 −5.15 10−4 −5.15 10−4 −4.65 10−5 1.13 10−5 4.38 10−5

7.09 10−4 6.01 10−4 6.01 10−4 −2.19 10−4 −1.14 10−3 −1.14 10−3 2.49 10−4 7.23 10−5 −1.22 10−5

−7.15 10−4 9.40 10−4 9.40 10−4 3.97 10−4 5.30 10−4 5.30 10−4 2.93 10−4 1.22 10−4 5.54 10−4

1.70 10−4 −3.51 10−4 −3.51 10−4 3.27 10−4 2.21 10−4 2.21 10−4 3.80 10−4 1.39 10−4 7.13 10−4

−9.72 10−4 −3.24 10−4 −3.24 10−4 −5.74 10−5 1.34 10−3 1.34 10−3 −3.11 10−4 −7.23 10−4 −3.27 10−4

1.88 10−4 −6.01 10−4 −6.01 10−4 −4.39 10−5 −8.77 10−4 −8.77 10−4 −5.15 10−4 1.82 10−3 1.21 10−3

−1.48 10−3 2.24 10−4 2.24 10−4 −5.96 10−5 4.67 10−4 4.67 10−4 1.23 10−3 2.83 10−3 −1.60 10−4

−6.03 10−5 −6.21 10−4 −6.21 10−4 −6.33 10−3 −3.75 10−3 −3.75 10−3 −6.97 10−3 −6.77 10−3 −6.72 10−3

1.16 10−3 1.21 10−3 1.21 10−3 −1.88 10−3 −2.18 10−4 −2.18 10−4 4.71 10−3 −2.11 10−4 −3.07 10−4-
−1.59 10−3 −5.13 10−4 −5.13 10−4 1.91 10−3 4.72 10−4 4.72 10−4 −2.94 10−4 −1.34 10−4 −1.13 10−3

xz=zx xz=zx xz=zx

b1 −7.46 10−5 −1.95 10−5 −2.04 10−5

−1.72 10−4 2.40 10−4 1.48 10−4

−3.76 10−5 8.36 10−5 −1.33 10−4

−2.89 10−4 −6.31 10−4 −6.57 10−4

−2.18 10−4 1.50 10−4 −2.39 10−4

2.53 10−4 −4.76 10−4 −7.29 10−4

3.17 10−4 −1.03 10−4 −4.41 10−4

−8.34 10−4 2.10 10−4 4.68 10−4

1.24 10−3 2.82 10−4 −2.06 10−4

6.06 10−4 1.52 10−4 2.48 10−4

3.89 10−4 −7.65 10−5 3.86 10−4

yz=zy yz=zy yz=zy

b2 8.88 10−6 −5.89 10−5 5.99 10−5

7.52 10−5 3.07 10−4 1.88 10−4

2.92 10−4 −2.36 10−4 8.65 10−6

−3.35 10−5 −3.97 10−5 1.23 10−4

7.54 10−5 −1.56 10−4 −9.95 10−5

−6.22 10−4 3.48 10−4 −5.0 10−5

−3.91 10−4 −7.45 10−4 1.40 10−3

−5.73 10−4 −4.24 10−4 1.34 10−4

−9.04 10−4 8.37 10−4 −4.95 10−4

−1.54 10−5 −8.92 10−4 −1.23 10−3

4.89 10−4 3.37 10−4 7.50 10−5

xy=yx xy=yx xy=yx

a2 3.35 10−4 4.53 10−4 7.67 10−4

6.23 10−5 2.03 10−4 1.43 10−4

3.62 10−4 −2.72 10−4 1.78 10−4

4.20 10−5 6.04 10−4 −4.13 10−4

−1.13 10−3 −3.30 10−4 −5.88 10−5

−4.06 10−4 −6.66 10−4 −3.69 10−4

7.95 10−4 6.39 10−4 6.64 10−4

−1.05 10−4 3.25 10−4 1.12 10−4

−1.99 10−6 −1.54 10−3 −1.85 10−3

7.70 10−4 5.13 10−4 4.94 10−4

1.53 10−6 −1.28 10−3 −2.49 10−3

−1.13 10−4 8.71 10−4 5.98 10−4

TULA R. PAUDEL AND WALTER R. L. LAMBRECHT PHYSICAL REVIEW B 78, 115204 �2008�

115204-8



ZnSiN2, ZnGeN2, and ZnSnN2, respectively. For an easier
comparison of the densities of states in the different materi-
als, we collected them in Fig. 10.

The phonon-dispersion curves show some discontinuities
at �. This is related to the nonanalytic behavior. We actually
replace the modes at � with the correct ones for the wave
vector approaching � in the direction shown, as discussed
earlier. However, the mesh used for deriving the short-range
force constants by Fourier transform is rather coarse, only a
2�2�2 mesh. The phonons along the q points along the
symmetry lines are obtained by Fourier transforming back
these short-range force constants and adding the analytical
form of the q→0 behavior. If the mesh is too coarse, this
procedure may overestimate the contribution of the nonana-
lytical terms and hence overestimate the LO-TO splitting
near �. Furthermore, the phonons at � were adjusted by in-
suring the sum rules on the effective charges.22 Thus, we
caution that the phonon curves may not be as accurate as the
values at the � point. However, a finer Fourier transform
mesh was too demanding for our currently available com-
puter resources. The main purpose of showing the phonon
dispersions here is to show their relation to the density of
states and to show the overall topology. The small inaccura-
cies near � may thus be ignored.

We can see that the spectra have some similarities but also
marked differences in the overall distribution of the phonons
over the energy range. In ZnSnN2 four separate branches
separated by gaps can be distinguished. In ZnGeN2, the
lower “folded acoustic” band is considerably stretched to
higher frequencies and the middle two bands have just
touched. In ZnSiN2 we see again that the acoustic and optical
ranges have merged into one broad band.

As a rough guide, we can describe the nature of the vi-
brations as follows. The top of the acoustic bands corre-
sponds to folded Brillouin-zone-edge modes dominated by
the heaviest atoms, which would be Sn and Ge in ZnSnN2
and ZnGeN2, respectively, but Zn in ZnSiN2. In ZnGeN2 and
ZnSnN2, a total of 24 bands occur in this folded acoustic
range. But for ZnSiN2 there is only one peak in the DOS in
this region and there are only 11 bands in this purely acoustic
region. So clearly, the acoustic modes corresponding to Si
motion are merged with the optic band. Returning to
ZnGeN2 and ZnSnN2 two main peaks occur in what we
could call the transverse optic region. They are clearly sepa-
rated in ZnSnN2. Inspection of some of the eigenvectors in-
dicates that the lower peak may be dominated by Zn-N
bonds and the upper region by Ge-N or Sn-N bonds. In fact,
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FIG. 7. �Color online� Phonon dispersions and density of states
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the Zn-N bonds are longer and thus give weaker force con-
stants, leading to lower frequencies. The highest modes cor-
respond to the longitudinal branch and again are seen to be
split in two peaks. For ZnSiN2 it is more difficult to interpret
the peaks. We caution however that all the modes show
rather complex behavior. They are rather complex combina-
tions of various types of bond stretches, bond bendings, etc.
Some show predominant motion in the z direction, while
others are dominated by intralayer bond stretches. In reality
they are all rather mixed up.

We can also see that in ZnSiN2 there is a strong peak at
300 cm−1, which overlaps with the predicted TO peak in this
range �see Fig. 1�. As discussed in more detail in Ref. 16,
this means that phonon-phonon scattering between the zone-
center and zone-boundary modes may lead to a short phonon
lifetime for such modes, and this may explain why such
modes have not been observed. For ZnSnN2 where these
anomalously low TO modes occur at about 200 cm−1, we
also see that there will be a similar situation of overlap with
a strong peak in density of states.

5. Thermodynamical Properties

As is well known, the contribution of the phonons to the
thermodynamic quantities, such as the Helmholtz free energy
�F, the energy �E=����F� /�, the specific heat at constant
volume �Cv=��E /�T, and the entropy �S= ��E−�F� /T as
a functions of temperature can all be expressed in terms of
the density of states. Here �= �kBT�−1 with kB as Boltzmann’s
constant. Following Lee et al.,34 we define the density of
states normalized as follows:

g��� =
1

3nN
�
q,l

��� − �l�q�� , �6�

in terms of the mode frequencies �l�q� and where n and N
represents the number of atoms per unit cell and total num-
ber of the unit cells in the crystal. One obtains, per cell,

�F = 3nkBT�
0

�m

ln�2 sinh
��

2kBT
�g���d� ,

�E = 3n
�

2
�

0

�m

� coth� ��

2kBT
�g���d� ,

�Cv = 3nkB�
0

�m � ��

2kBT
�2

csch2� ��

2kBT
�g���d� , �7�

in which �m is the maximum phonon frequency. These quan-
tities as a function of temperature are shown in Figs. 11 and
12.

The variation in the free energy and internal energy with
temperature is smaller in the case of ZnSiN2, even though
numerically the free energy and hence internal energy are the
largest. Consequently the specific heat is smallest in case of
ZnSiN2. A similar trend is observed comparing with the
specific-heat data of InN, GaN, and AlN by Davydov et al.,35

Nipko et al.,36 and Kosshchenko et al.37 The specific-heat
capacity approaches its classical value of 24.942 J /mol K at

high temperature and reaches it approximately at 855 K in
ZnSnN2, 1019 K in ZnGeN2, and 1133 in ZnSiN2.

At zero temperature, we obtain the zero-point energy

�F0 = �E0 = 3nN�
0

�m ��

2
g���d� . �8�

The calculated zero-point energies of ZnSiN2, ZnGeN2, and
ZnSnN2 are 8.5, 7.6, and 6.1 kJ/mol, respectively.

IV. CONCLUSIONS

A comprehensive study of the ground-state structural
properties and phonon related quantities in the Zn-IV-N2
compounds was presented. These include �1� phonon modes
at �, including the LO-TO splittings; �2� Im�
���� corre-
sponding to TO modes and Im�−
−1���� corresponding to
LO modes as observable in infrared absorption or reflectiv-
ity; �3� calculated first-order Raman spectra including the
Raman tensor matrix elements for each of the symmetry ir-
reducible representations as measurable in different polariza-
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FIG. 11. �Color online� Helmholtz free energy and total energy
�inset� of Zn-IV-N2 compounds plotted against temperature.
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tion geometries; �4� full phonon band dispersions along sym-
metry lines of the Brillouin zone; �5� phonon densities of
states; and �6� integrated contributions of the phonons to the
thermodynamic quantities such as Helmholtz free energy, av-
erage energy, specific heat, and entropy. Furthermore, quan-
tities related to static long-range electric-field perturbations
such as �1� Born effective charges and �2� high-frequency
and static dielectric constants were also presented. Our dis-
cussion of structural properties includes lattice parameters,
atomic positions in the cell, bond lengths, and bulk moduli.

The overall trends observed in the series are the expected
ones: the lattice constants increase and the bonding weakens
as we go from low to high atomic number Z for the IV
element. Correspondingly, the phonon frequencies decrease.
However, there are remarkable differences in the way the
phonons are spread over mainly folded acoustic and mainly
optic character frequency ranges. In particular, in ZnSiN2
these ranges overlap so that it becomes difficult to assign a
pure acoustic and pure optic region. We also find from the
Born charges and other indications that ZnSnN2 and ZnSiN2
are somewhat more ionic in character than ZnGeN2. This
trend is the same as the corresponding trend in AlN, GaN,
and InN, where GaN is the least ionic.

Most of the results presented here are predictions. Only a
few experimental investigations exist: an infrared reflectivity
study16,17 of ZnSiN2 that measured only the modes of one
symmetry �the b1 modes� and a Raman study15 of ZnGeN2
that only gave a complete assignment of the a1T modes and
some partial information on b2T and densities of states. These
were separately discussed in the citations indicated.

Although these materials are closely related to the III ni-
trides, their phonon related spectra are significantly more
complex and cannot be understood simply in terms of fold-
ing of the modes in wurtzite plus small perturbations. The
bimodal bond-length distribution and the complexity of hav-
ing two types of cation masses significantly perturbs the
phonons, which obtain an interesting mixed character with
phonons spread out over much wider ranges than in the III
nitrides.
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