
Linear density response function within the time-dependent exact-exchange approximation

Maria Hellgren and Ulf von Barth
Mathematical Physics, Institute of Physics, Lund University, Sölvegatan 14A, S-22362 Lund, Sweden

�Received 22 April 2008; revised manuscript received 1 July 2008; published 9 September 2008�

We have calculated the frequency-dependent exact-exchange �EXX� kernel of time-dependent �TD� density-
functional theory employing our recently proposed computational method based on cubic splines. With this
kernel we have calculated the linear density response function and obtained static polarizabilites, van der Waals
coefficients, and correlation energies for all spherical spin-compensated atoms up to argon. Some discrete
excitation energies have also been calculated for Be and Ne. As might be expected, the results of the TDEXX
approximation are close to those of TD Hartree-Fock theory. In addition, correlation energies obtained by
integrating over the strength of the Coulomb interaction turn out to be highly accurate.
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I. INTRODUCTION

The present paper is one in a series of papers1–4 reporting
on work with the overall aim of finding computationally ef-
ficient but still accurate ways of calculating excited-state
properties of systems in which excitonic effects play an im-
portant role. Traditionally, such effects have been studied by
solving approximate versions of the Bethe-Salpeter equation
in which the particle-hole interaction is taken to be a statis-
tically screened Coulomb potential.5 Unfortunately, such ab
initio methods are computationally very demanding espe-
cially in low-symmetry systems such as nanostructures and
large molecules. During the last decade, time-dependent
density-functional theory6–8 �TDDFT� has emerged as a
competing technique due to its computational efficiency and
better scaling with the size of the system. In recent years, the
use of TDDFT has virtually “exploded” within theoretical
chemistry. On the other hand, within TDDFT, the limitations
are rather caused by our rudimentary knowledge of the
“mysterious” exchange-correlation �XC� kernel fxc, into
which all effects beyond the random phase approximation
�RPA� are transferred.

In most applications of TDDFT one resorts to an XC ker-
nel constructed from some ground-state XC potential evalu-
ated at the instantaneous electron density. In this way, the
non-locality in time �memory effects� leading to a frequency-
dependent XC kernel, is neglected. These are the so-called
adiabatic approximations and the simplest example is the
adiabatic local-density approximation �ALDA� derived from
the ground-state local-density approximation. In fact, any ap-
proximate functional within ground-state density-functional
theory �DFT� can yield an adiabatic approximation within
TDDFT. Although such approximations have been shown to
provide good estimates of many physical quantities, there are
qualitative features which cannot be accounted for. For the
description of, e.g., excitation energies with multiple-particle
character, the kernel is expected to have a strong frequency
dependence.9

Alternative approaches based on many-body perturbation
theory �MBPT� to generate new and more advanced kernels
have been proposed by some authors.2,10–13 Up to now, how-
ever, the performance of such kernels in describing excited-
state as well as ground-state properties has been the subject

of little investigation, especially in finite systems.
The simplest approximation derived from MBPT is the

time-dependent exact-exchange �TDEXX� approximation. It
can be obtained from a stationary action principle by retain-
ing only the exchange part of the XC part of the total action,
i.e., terms up to first order in the Coulomb interaction. The
exact-exchange �EXX� kernel fx is frequency dependent and
therefore fundamentally differs from the adiabatic approxi-
mations. Because the EXX kernel can also be derived from
our2 variational approach to the many-body problem, as is
done here, it automatically possesses conserving properties
which means, e.g., that the resulting linear density response
function will obey the f-sum rule. Furthermore, the corre-
sponding EXX potential of ground-state DFT has already
been thoroughly studied and shown to share many properties
of the exact XC potential such as, e.g., the correct −1 /r
asymptotic decay and the derivative discontinuity with re-
spect to particle number.

Implementations of the TDEXX approximation have so
far been limited to the calculation of the total energy and the
plasmon dispersion relation of the electron gas,3 the optical-
absorption spectrum of bulk silicon,14 and, recently, van der
Waals coefficients and polarizabilities for some simple atoms
and molecules.15 The adiabatic TDEXX and the exact
TDEXX of a two-electron system �which turns out to be
frequency independent� known as the Petersilka–Gossman–
Gross �PGG� approximation have also been used in the cal-
culation of atomic and molecular transition frequencies.16–18

In the nonlinear regime the TDEXX approximation has most
recently been applied to the problem of electron dynamics in
a quantum well.19

In this paper, we calculate the linear density response
function using the fully frequency-dependent EXX kernel for
all spherical spin-compensated atoms up to argon and present
results on correlation energies, van der Waals coefficients,
static polarizabilities, and a few discrete excitation energies
for beryllium and neon. The correlation energies, calculated
from the Hellman-Feynman theorem applied to the strength
of the Coulomb interaction, turn out to be very accurate,
whereas polarizabilities and van der Waals coefficients are
similar in quality to the rather poor results of time-dependent
Hartree-Fock �TDHF� theory.

The paper is organized as follows. In Sec. II we sketch the
derivation of the relevant equations and discuss the TDEXX
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approximation in comparison to TDHF. We also give a short
description of the computational methods. In Sec. III we
present our results and compare them with other approxima-
tions and exact results. Some attention is given to the kernel
itself and we provide evidence of the f-sum rule being
obeyed by studying the large � behavior of both fx and the
dynamical polarizability.

As mentioned above, the fact that the TDEXX approxi-
mation obeys the f-sum rule follows from the possibility to
derive it from the variational and conserving approach to
MBPT. In the Appendix we show, however, the details on
how the defining equations lead to the f-sum rule. This is
rather illuminating and demonstrates the necessity for using
the correct local exchange potential from the linearized
Sham Schlüter �LSS� equation in the evaluation of the fx
kernel in order to have the sum rule fulfilled.

Finally, in Sec. IV, we draw our conclusions and an-
nounce a forthcoming publication on spectral properties.

II. THEORY AND COMPUTATIONAL DETAILS

A. General formulation

Within TDDFT the electronic linear density response
function � is given by

� = �s + �s�v + fxc�� , �1�

where �s is the Kohn-Sham �KS� linear density response
function, v is the Coulomb interaction and fxc is the XC
kernel defined as the functional derivative of the XC poten-
tial vxc,

fxc =
�vxc

�n
. �2�

It has been shown in previous publications2,4 that various
consistent and, in particular, conserving approximations to
vxc and fxc can be obtained from the Klein action functional20

by choosing physically reasonable approximations to the de-
fining � functional.21 The stationary property of the Klein
functional with respect to Green functions generated by local
potentials leads directly to the linearized Sham Schlüter22

equation

� �s�1,2�vxc�2�d2 =� �s�2,3���3,2;1�d2d3, �3�

where the self-energy �s is � derivable and expressible in
only the KS Green function Gs and the Coulomb interaction.
The quantity � is the functional derivative of Gs with respect
to the KS potential V,

i��3,2;1� =
�Gs�3,2�

�V�1�
= Gs�3,1�Gs�1,2� .

The equation for the corresponding kernel fxc is obtained by
varying Eq. �3� with respect to V. The result is

� �s�1,2�fxc�2,3��s�3,4�d2d3

=� ��s�2,3�
�V�4�

��3,2;1�d2d3

+� ��1,2;4���2,3�Gs�3,1�d2d3

+� Gs�1,2���2,3���3,1;4�d2d3, �4�

where ��2,3�=�s�2,3�−vxc�2���2,3�. Due to the variational
property of the Klein functional and the � derivability of the
self-energy, the kernel fxc obtained from Eq. �4� will result in
a response function �Eq. �1�� which is particle conserving. In
the linear regime this means, e.g., that it must obey the f-sum
rule.

In this work we are interested in studying the so-called
TDEXX approximation which is derived at the TDHF level
of MBPT. The self-energy is then given by

�s
x�2,3� = iv�2,3�Gs�2,3� , �5�

and its variation with respect to V becomes

��s
x�2,3�

�V�4�
= − v�2,3���2,3;4� . �6�

The resulting equation for the EXX kernel fx is represented
diagrammatically in Fig. 1. Notice that the obtained fx is
often referred to as the kernel of the time-dependent opti-
mized effective potential �TDOEP� method. It has been de-
rived several times before by other people starting with
Sharp and Horton23 in the fifties and continuing with Talman
and Shadwick24 in the sixties. The resulting response func-
tion has been derived by Rajagopal,25 Holas et al.,26 Lem-
mens et al.,27,28 and more recently by Gross29 to mention a
few. Our way of deriving the same approximation has the
advantage of demonstrating the conserving properties of the
approximation. These properties are also inherent in the
original TDHF approximation. Below we will make further
comparisons between TDHF and TDEXX, illustrating their
similarities and differences.

B. TDEXX as compared to TDHF

The quantity to be determined in the TDHF equation is
the three-point function �2=�G /�Vext, where Vext is the ex-
ternal potential and G is the HF Green function given by the
solution of the Dyson equation,

FIG. 1. Diagrammatic representation of Eq. �4� with the self-
energy in the Hartree-Fock approximation.
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G = G0 + G0�HF�G�G , �7�

where G0 is the noninteracting Green function containing
just the external �nuclear� potential and �HF=VH+�x with
VH being the Hartree potential. By varying the Dyson equa-
tion with respect to the external potential we arrive at the
equation for �2, usually referred to as the TDHF equation

�2�1,3;2� = G�1,2�G�2,3�

+� d4567G�1,4�G�5,3�
��HF�4,5�
�G�6,7�

�2�6,7;2� .

�8�

The linear density response function can then be obtained as
�TDHF�1,2�=−i�2�1,1 ;2�. In Fig. 2, on the first row, �TDHF

is depicted diagrammatically with terms up to second order
in the explicit dependence on the Coulomb interaction. There
is, of course, also a dependence on v through G, which is
summed up to infinite order in the interaction strength
through Eq. �7�.

Instead of working with G0 as our zeroth order Green
function we can choose to work with the KS Green function
Gs. This Green function can also be found through a Dyson-
like equation

Gs = G0 + G0�VH�Gs� + vx�Gs��Gs. �9�

By inverting Eqs. �7� and �9� we find again the equation for
G but with Gs as the zeroth order Green function

G = Gs + Gs��HF�G� − VH�Gs� − vx�Gs��G . �10�

Iterating to first order gives us

G�1� = Gs + Gs��x�Gs� − vx�Gs��Gs. �11�

The strictly first-order diagrams �in terms of Gs� for �TDHF

can now be identified �see the second row in Fig. 2� and we
see that they are identical to the first-order terms of � in the
TDEXX approximation �see Eq. �1� and Fig. 1�. Thus, we
can conclude that, to first order in v, TDHF and TDEXX are
the same. Notice that, in principle, this conclusion is inde-
pendent of the choice of Gs and vx as long as they are related
via Eq. �9�. But, by using the self-consistent EXX potential
the corresponding density is optimized to exactly reproduce
the HF density up to first order, thus minimizing the contri-
bution of the approximate higher order terms in �. However,
using any other reasonable vx the corresponding � in
TDEXX is still expected to be rather close to the response
function of TDHF. Indeed, as we shall see later �Sec. III F�,

using the EXX potential, the LDA potential or the exact XC
potential leads to very similar response functions. The higher
order terms of the TDEXX series can thus be interpreted as
an approximation to the corresponding higher order diagrams
of TDHF, where the frequency-independent four-point kernel
of Eq. �8�, i.e., ��x /�G, is simulated by the frequency-
dependent two-point kernel fx. The trick to approximate the
beyond first-order terms in the series of the TDHF response
in terms of the zeroth and first order terms such that the
whole series can be summed as a geometric one has been
suggested before.26 The full TDHF series can be written or-
der by order as

�TDHF = �0�1 + �0
−1�1 + �0

−1�2 + ¯�

�
�0

1 − �0
−1�1

= �0 + �1 + �1�0
−1�1 + ¯ .

If �0=�s this is just the TDEXX series.
As shown in the Appendix it is essential to derive the

potential vx from the LSS in order to have the f-sum rule
obeyed. Self-consistency is, however, not necessary. Choos-
ing any density there is a local one-body potential which, in
a noninteracting system, generates that density as well as
one-electron orbitals with corresponding eigenvalues. The
LSS within EXX �Eq. �3�� then gives a potential vx which,
together with these orbitals and eigenvalues, yields an fx
from Eq. �4�. In this way, both vx and fx are well defined
functionals of the starting density. If the density is given by
the EXX we have self-consistency, and the resulting fx is the
one presented here. If we instead start with a better density,
much closer to the exact one, the corresponding eigenvalue
differences will be much closer to real particle-hole excita-
tion energies4 and we will obtain an fx which will still obey
the f-sum rule while giving rise to an optical spectrum with
a continuum starting in almost the correct place because the
highest occupied exact DF eigenvalue equals the negative of
the ionization potential.30 This topic is further discussed to-
gether with numerical results in Sec. III F.

C. Numerical method

The numerical implementation of the TDEXX approxima-
tion starts with a calculation of the self-consistent ground-
state potential vx from Eq. �3�. This potential determines the
KS system from which Gs and �s are calculated and inserted
into Eq. �4�. The kernel is then obtained through multiplica-

FIG. 2. The linear density response function in TDHF. The first row shows a diagrammatic expansion using the HF Green function. The
second row shows an expansion in terms of the KS Green function. All diagrams up to first order are drawn and seen to be the same as the
first-order terms of � in TDEXX.
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tion by the inverse of �s both from the left and the right.
Finally, to obtain the full response function � a RPA-like
equation needs to be solved, Eq. �1�. Since fx is frequency
dependent all steps after the calculation of the potential need
to be repeated at every frequency. Notice also that, due to the
spherical symmetry of our studied systems, Eq. �1� separates
into several decoupled equations, one for each angular-
momentum channel.

We have chosen a basis set implementation using cubic
splines as radial basis functions. This basis set has shown to
be ideally suited for solving the LSS equation,4 an equation
known to be numerically unstable when using other methods
and basis functions.31–35 We have here found that cubic
splines also provide an efficient method for solving the equa-
tion for fx. In retrospect this might not be surprising since
this equation has similarities to the LSS equation.

A detailed description of the construction of our basis set
can be found in Ref. 4 and a general discussion of B splines
in electronic structure calculations can be found in Refs. 36
and 37. Here, we will only list the advantages of using these
basis functions. 1� To start with, they are local functions.
This gives us a great amount of flexibility in choosing the
distribution of splines. Where high accuracy is needed, like
in our case close to the nucleus, the density of splines can be
chosen arbitrarily high without loosing accuracy in other re-
gions. 2� Another important property of the splines is that
there is no risk of instabilities due to overcompleteness be-
cause of the strong localization of the splines. 3� Since every
spline only overlaps with its three nearest neighbors all ma-
trices will be band diagonal, reducing the amount of storage
needed and allowing for the use of efficient diagonalization
algorithms. 4� Once a mesh distribution �e.g., a power law or
an exponential distribution� and a maximum radius are set
there is only one numerical parameter to vary, i.e., the num-
ber N of cubic splines. 5� The basis set is complete. The
results should thus converge to the exact results as N→	. 6�
We have shown that the product of two orbitals can be re-
expanded in the same basis set without increasing the num-
ber of basis functions. All two-particle functions, like for
instance response functions, thus become matrices of the
same order as one-particle propagators. 7� A cubic spline is
composed of cubic polynomials and hence all integrals can
be solved exactly, either analytically or, and actually faster
by, using simple Gaussian quadrature.

The work to calculate the density response function
within just the RPA �without exchange� is just about as ex-
tensive as that required to obtain the response function from
any so-called adiabatic or frequency-independent approxima-
tion. The calculation of the exchange kernel fx of the EXX
involves sums over two continua for every frequency. An
ordinary RPA calculation using N basis functions requires for
every frequency const
N3 operations because of the neces-
sity to invert an N
N matrix. Including also an exchange-
correlation kernel requires for each frequency a double sum
over the continuum, i.e., const
N2 operations plus two ad-
ditional matrix inversions. This increases the prefactor of the
N3 dependence on the number N of included splines. The
prefactor also depends heavily on the number of occupied
states but, for large N, including the exchange kernel does
not constitute a qualitative difference compared to an ordi-

nary RPA calculation as far as the calculational effort is con-
cerned.

To get an accurate description of both the occupied and
the first few unoccupied orbitals we used a cubic distribution
of mesh points in all our calculations. The results were con-
verged with 	40 splines for He and with 	60 splines for Ar.

III. RESULTS

In this section we present our results on static polarizabil-
ities, van der Waals coefficients and correlation energies for
all spin-compensated spherical atoms up to Ar and some dis-
crete excitation energies for Be and Ne. If not indicated all
results are obtained with the self-consistent EXX Green
function. The convergence criterion for the EXX potential
was set to 
n�k��r�−n�k−1��r�
�10−7.

A. Static polarizabilities

The static polarizability is defined according to

��0� = −� z��r,r�,� = 0�z�drdr�. �12�

For a system with spherical symmetry only the angular-
momentum channel L=1 of � contributes. The small polar-
izabilities of the noble gas atoms as compared to the alkali
earth atoms are due to the large gap in the excitation spec-
trum. On the contrary, Be and Mg have a near degeneracy in
the HOMO-LUMO gap causing very large polarizabilities.

In Table I we compare ��0� calculated in TDEXX with
��0� calculated in RPA, TDHF, and from the KS response
function, �s. Calculating the static polarizability from the KS
response function provides a reasonable estimate, albeit too
large compared to the true static polarizability of noble gas
atoms. In Be and Mg the error is much larger and leads to an
overestimation by a factor of 2. Including interaction effects
at the level of RPA reduces the KS results for all atoms.
However, the RPA polarizabilities are consistently too low as
compared to more accurate values. Introducing exchange ef-
fects at the level of TDEXX increases ��0� again leading to
an appreciable improvement for the noble gas atoms but the
error for Be and Mg remains roughly the same but with a
different sign.

TABLE I. Static polarizabilities for some different atoms calcu-
lated in TDEXX, TDHF, RPA, and from the KS system. �a.u.�

Atom KS RPA TDEXX TDHF Litt.c

He 1.487 1.199 1.322 1.322a 1.38

Ne 2.838 2.234 2.372 2.377a 2.67

Ar 16.965 9.883 10.737 10.758a 11.08

Be 81.385 33.489 45.648 45.62b 37.8

Mg 140.26 60.262 81.658 81.60b 71.53

aFrom Ref. 38.
bFrom Ref. 39.
cFrom Ref. 40.
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The TDEXX polarizabilities are seen to be very close to
those of TDHF. This is not surprising as TDDFT within the
EXX can be considered as a variational solution to the inte-
gral equation of TDHF theory. For a two-electron system
such as He, TDEXX is actually identical to TDHF.

B. van der Waals coefficients

The van der Waals coefficient, or C6 coefficient, between
ions A and B is given by the formula

C6 =
3


�

0

	

�A�i���B�i��d� , �13�

where �A�i�� is the dynamic polarizability of ion A calcu-
lated at imaginary frequencies. In Table II the C6 coefficients
in the TDEXX approximation are presented and compared to
the values of the KS system, values calculated in the RPA
and the TDHF approximation, as well as accurate values
found in the literature. Although TDEXX significantly im-
prove over the RPA for He, Ne, and Ar the C6 coefficients
remain too small. The results for Mg and Be in TDEXX are
too large and give no improvement over RPA in an absolute
sense. The TDEXX values are again seen to be in good
agreement with the full TDHF results. This was also noted in
Ref. 15 for He, Ne, and Ar.

C. Correlation energies

Using the standard trick based on the Hellman-Feynman
theorem to integrate the interaction energy with respect to
the strength of the Coulomb interaction the correlation en-
ergy becomes

Ec = − �
0

1

d��
0

	 d�

2
Tr�v����i�� − �s�i���� . �14�

In Eq. �14� we have used the short hand notation Trfg
=�drdr�f�r ,r��g�r� ,r� for any two-point functions f and g
and defined the response function

�� =
�s

1 − ��v + fxc
� ��s

,

where fxc
� is the XC kernel of a system of electrons interact-

ing through the rescaled Coulomb potential �v. From this

expression the simplest approximation is obtained by setting
fxc=0, leading to the formula for the RPA correlation energy.
A fully self-consistent calculation of this approximation was
performed in Ref. 4 for all spin-compensated spherical atoms
up to Ar. With fxc= fx a cancellation between Hartree and
exchange terms is expected to occur, improving the largely
overestimated RPA values. We have here, for the first time,
performed such a calculation. The results are presented in
Table III and compared with those in the RPA and the MP2
approximation31 as well as results from accurate
configuration-interaction �CI� calculations.45 As expected,
the TDEXX results are very accurate. A diagrammatic analy-
sis �see Fig. 3� shows that with this kernel the correlation
energy will, apart from the RPA or bubble series of diagrams,
also contain the important second-order exchange diagram
�included in the MP2 approximation� as well as an infinite
series of terms simulating the higher order exchange dia-
grams.

D. f-sum rule and EXX kernel

In the Appendix we prove that the f-sum rule, a conse-
quence of particle conservation, is valid in the TDEXX ap-
proximation by showing that the coefficient of the 1 /�2 term
in the large � expansion of � is the same as in the expansion
of �s. Thus, by expressing the dynamical polarizability, Eq.
�12�, as

��i�� = �
q

fq

�2 + �q
2 , �15�

where q= �k ,�� is a particle-hole index, �q is an excitation
energy, and fq is the corresponding oscillator strength, the
sum over all oscillator strengths must equal the number of
particles

TABLE II. van der Waals coefficients calculated in different
approximations. �a.u.�

Atom KS RPA TDEXX TDHF Litt.

He 1.664 1.171 1.375 1.375 1.458c

Ne 7.492 5.003 5.506 5.524a 6.383c

Ar 128 54.23 61.88 61.88a 64.30c

Be 660 179 283 284b 214d

Mg 1723 482 765 758e 627d

aFrom Ref. 15.
bFrom Ref. 41.
cFrom Ref. 42.
dFrom Ref. 43.
eFrom Ref. 44.

TABLE III. Correlation energies calculated within different ap-
proximations and compared to accurate CI calculations. The corre-
lation energy is here defined as the total energy minus the HF en-
ergy. In the last column also the Hartree-Fock total energies are
tabulated. �a.u.�

Atom TDEXX RPA MP2a CIb HFb

He 0.044 0.083 0.047 0.0420 2.8617

Ne 0.389 0.596 0.480 0.3905 128.5471

Ar 0.721 1.091 0.844 0.7225 526.8175

Be 0.102 0.181 0.124 0.0943 14.5730

Mg 0.445 0.681 0.514 0.4383 199.6146

aFrom Ref. 31.
bFrom Ref. 45.

FIG. 3. Diagrams contained in the correlation energy functional,
Eq. �14�, with fxc= fx.
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�
q

fq = N .

As a test of our numerical accuracy this result was checked.
We multiplied ��i�� by �2 and studied the large � values of
this function. Indeed, within high accuracy ��10−4�, the re-
sults converged to N for all atoms.

In Fig. 4 we have plotted �2��i�� for He. The kernel fx
was calculated using either the Green function Gs and the
exchange potential vx of the EXX or the same quantities
within LDA. The f-sum rule is not expected to be obeyed in
the latter case. And this is, indeed, what is observed. It
should be noticed, however, that the violation is minor
�	0.8%�.

The quantity �sfx�s must decay as 1 /�4 �see the Appen-
dix�. As a consequence, fx cannot diverge �as it does, e.g., in
a model system, see Ref. 46� and must approach a constant
as �→	. Another way to check the f-sum rule and to test
our calculations is thus to study the large � behavior of fx.
To do this we first notice that the kernel only enters in the
form of matrix elements of the Fq functions:

fx
qq���� =� Fq�r�fxc�r,r�,��Fq��r��drdr�,

where Fq is a KS excitation function, i.e., a product of the
occupied KS orbital �k and the unoccupied KS orbital ��.
Now, since the excitation functions alone integrates to zero
the kernel is unique only up to the addition of two arbitrary

functions, g1�� ,r� and g2�� ,r��. The quantity fx
qq� is unique

though and in Fig. 5 we have plotted this quantity for Be at
imaginary frequencies and different L. The frequency depen-
dence is very weak at low frequencies but becomes more
pronounced for higher frequencies. This justifies the use of
the adiabatic approximation for low energies. At large � ev-

ery matrix elements fx
qq��i�� is seen to approach a constant.

This is again demonstrated for one matrix element in the
inset of Fig. 4.

E. Excitation energies

The poles of the exact linear density response function
correspond to the particle conserving excitation energies of
the system. Thus, any approximate � yields an approximate
set of excitation energies. �s contains the excitation energies
of the KS system and in many cases they give a good ap-
proximation to the discrete part of the spectrum. Neverthe-
less, �s is a noninteracting response function and as such
lacks many features of the full many body �.

With an adiabatic kernel, Eq. �1� can be rewritten as an
eigenvalue problem where the eigenvalues correspond to the
poles of �.47 Due to the frequency dependence of the XC
kernel of the EXX this technique to obtain the excitation
energies cannot be applied in a straight-forward way. In the
present work we have chosen to work with localized basis
functions which causes Im � as a function of frequency to
consist of a series of sharp delta functions. And this behavior
is independent of whether the frequency lies in the con-
tinuum or in the discrete part of the spectrum. In order to
obtain something which can be plotted we arbitrarily add a
small positive imaginary part to the real frequency and ob-
tain the discrete excitation energies from the positions of the
resulting huge peaks in Im �.

In Table IV we present the first few discrete excitation
energies of Be and Ne and compare them to experimental
values and to the ones obtained in RPA, TDHF, and the KS
system �here, meaning the differences between the KS one-
electron eigenvalues�. In the case of Be the KS values are too
low. The RPA improves over the KS results but proceeding
to the TDEXX makes them, somewhat worse. It is interest-
ing to observe how close the results of the TDEXX are to
those of the TDHF. In the case of Ne we have observed a
qualitatively different behavior. The KS eigenvalue differ-
ences are larger than the experimental values. As in the case
of Be, the RPA tends to increase the excitation energies
yielding, for Ne, an even larger discrepancy. The inclusion of
exchange effects does not lower the RPA results, as in the Be
case, but rather increase them. Although TDEXX and TDHF
push the RPA excitation energies in the same direction the
actual values are not as close as for Be.

0 20 40 60 80 100

1.92

1.96

2

0 50 100 150 200-0.04

-0.02

0

FIG. 4. �Color online� The main figure shows �2��i�� for He
calculated at different Green functions. The inset shows fx

qq with
L=1 and q=2s→2p for Be. The large � behavior in both plots
clearly indicates that the f-sum rule is obeyed in our calculations.

1 10 100
-0.04

-0.02

0

0.02

0.04

FIG. 5. �Color online� The quantity fx
qq for Be is plotted for

different L at imaginary frequencies. There are two curves with L
=1. In the lower, q corresponds to the 2s→2p transition and in the
upper to the 1s→2p transition.
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The oscillator strengths for the discrete excitation energies
can be extracted from the height of the peaks in the optical
spectrum. As an example, we obtain 1.379 for the lowest
transition of Be. This can be compared to the TDHF value of
1.378.41

F. Sensitivity to the ground-state KS approximation

As noticed by others,17 it is crucial to have good KS tran-
sitions as a starting point when calculating the discrete exci-
tation energies. With the exact KS potential48 for Ne the
2p→3s transition in the KS system becomes 0.612, an al-
ready very good approximation to the true value �0.619�. The
transition frequencies we have obtained are thus expected to
be improved by using a ground-state potential better than
that of EXX. When we improve the ground-state density and
the corresponding orbitals and eigenvalues we still calculate
vx from the LSS in order not to violate the sum rule as
discussed in Sec. II B.

We have used the exact densities of Umrigar et al.48 and
found the static polarizabilities 1.35 and 40.5 for He and Be,
respectively. There is, thus, a significant improvement, par-
ticularly in the case of Be. This shows that the largest error is
actually caused by a poor description of the ground state
within the EXX. With the very accurate densities by Umrigar
et al. the transition 2s→2p in Be becomes 0.182 and the
2p→3s transition in Ne becomes 0.631. The transition fre-
quencies are thus also largely improved by using an accurate
KS ground state.

By also using the accurate XC potentials by Umrigar et
al. in Eq. �4� for generating fx we violate the f-sum rule but,
in this way, as discussed in Sec. II B, we obtain a response
function which to first order in the Coulomb interaction is
identical to that of TDHF. We, therefore, expect the results to
revert to our original results from TDEXX which are close to
those of TDHF. Indeed, we now obtain the static polarizabil-
ities 1.323 and 45.76 for He and Be, compared to our previ-
ous results 1.322 and 45.65, respectively. Using instead the
LDA potential for generating fx we obtain 1.343 and 45.23
for the same quantities, again demonstrating the closeness to
the TDHF.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have calculated the linear density re-
sponse function of the TDEXX approximation for all spin-
compensated spherical atoms up to Ar. For the properties
studied in this work, i.e., static polarizabilities, van der Waals
coefficients and the low-lying excitation energies, the results
show that TDEXX is a good approximation to TDHF.

TDEXX only takes into account exchange effects in the
response of the system to external perturbations. For noble
gas atoms the static polarizabilities and van der Waals coef-
ficients still turn out to be in rather good agreement with the
experimental values. The relative error is about 5% for He,
13% for Ne, and 3% for Ar. On the other hand for alkali
earth atoms the results are not as satisfactory, the relative
error being around 26% for Be and 18% for Mg. For these
systems it is thus necessary to include correlation effects in
order to get an accurate description of the above properties.
The low-lying excitation energies are accurate to within 10%
for both Be and Ne. We show here, however, that signifi-
cantly better excitation energies as well as static polarizabil-
ities can be obtained by using a more accurate exchange-
correlation potential for the ground state.

We have also calculated the total energies from the Hell-
man Feynman theorem applied to the strength of the Cou-
lomb interaction. The results are in excellent agreement with
accurate CI calculations. This is probably due to the fact that
the fluctuation-dissipation formula at the level of TDEXX
accounts for several correlation diagrams as, for instance, the
important second-order exchange diagram.

Finally, we have examined the behavior of kernel fx along
the imaginary frequency axis and found it to be both weakly
and slowly dependent on �. It is, however, not without struc-
ture indicating a more complex behavior on the real axis as
compared to that resulting from simple poles. Indeed, we
have seen that the kernel has both single and double poles on
the real axis. The weak frequency dependence at the imagi-
nary axis suggests that the adiabatic, i.e., frequency-
independent approximations to the EXX approximation,
might not be such a bad idea at least not as far as total
energies are concerned. The experience from the electron
gas, however, strongly contradicts this conjecture.50

In most cases of approximations within DFT and TDDFT
it is very difficult to see through what kind of physical pro-
cesses are actually incorporated into that particular approxi-
mation. In our case, basing our approximations on
�-derivable theories within MBPT, we can say with confi-
dence that a description of double excitations is way above
the EXX. Such a description would require an fxc based at
least on the time-dependent GW approximation51 which, by
the way, probably would yield much better van der Waals
coefficients. But again we refer this discussion to a future
publication.
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TABLE IV. The first few discrete excitation energies for Be and
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Transition KS RPA TDEXX TDHFa Exp.b

Be

2s→2p 0.1312 0.2032 0.1764 0.1764 0.1940

2s→3p 0.2412 0.2547 0.2470 0.2471 0.2742

2s→4p 0.2731 0.2777 0.2749 0.2750 0.3063

2s→5p 0.2868 0.2889 0.2877 0.2878 0.3195

Ne

2p→3s 0.6585 0.6675 0.6803 0.6739 0.6190

2p→4s 0.7793 0.7812 0.7827 0.7818 0.7268

2p→5s 0.8134 0.8141 0.8147 0.8139 0.7593

aFrom Refs. 41 and 49
bAdopted from Refs. 41 and 49.
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APPENDIX: f-SUM RULE

In Ref. 2 we demonstrated that every fxc of TDDFT ob-
tained from the variational formulation of that work obeys
particle conservation, which amounts to the f-sum rule in the
linear limit.

In this Appendix we will demonstrate how the f-sum rule
explicitly comes out of the construction of the kernel fx of
the EXX approximation within TDDFT. Among other vir-
tues, this detailed derivation demonstrates the crucial impor-
tance of using the LSS equation when constructing the kernel
fx in order to have the sum rule fulfilled. From Eq. �1� we see
that the total density response function � can be written as

� = �1 − �v + fx��s�−1�s.

Since the ground-state KS theory gives the correct density it
follows that �s obeys the f-sum rule. Given the Lehmann
representations for the response functions � and �s this en-
sures that the coefficient of the 1 /�2 term of the large �
expansion of �s has the correct value. If the full response
function � is also to obey the f-sum rule there must, obvi-
ously, be no contribution to the 1 /�2 coefficient from the
denominator which thus must tend to unity at large �. A
sufficient condition for this is that fx�s vanishes as 1 /�2 in
this limit. From Fig. 1 we see that the quantity which is
actually calculated from the diagrams is �sfx�s which thus
should decay as 1 /�4 given the 1 /�2 of dependence of �s in
this limit. In order to see that this is indeed the case we
explicitly examine the large frequency behavior of the differ-
ent contributions to �sfx�s. As seen from Fig. 1 this quantity
has contributions from five Feynman diagrams of which
those proportional to the exchange potential vx are most eas-
ily combined with one each of the two self-energy diagrams.
The contribution from one of the diagrams with self-energy
insertions is

S1�r,r�;�� = 2i� d��

2
Gs�r1,r;���Gs�r�,r2;���


 Gs�r,r�;� + �����r1,r2� ,

where �=v�r ,r���knk�k�r��k
��r��+vx�r���r−r�� and nk is 1

for occupied states and zero otherwise. Due to time-reversal
symmetry the noninteracting Green functions are symmetric
in there spatial arguments. It is then easily seen that the
contributions from the remaining two diagrams with self-
energy insertions are obtained by adding to S1��� above the
result S1�−��. Consequently, the sum of all diagrams with
self-energy insertions is an even function of �. Carrying out
the frequency integrations we obtain

S1�r,r�;z� = �
k1k2k3

k2
�
k3��k1
�r��k1

� �r���k2
�r��k3

� �r��



2

�k3
− �k2

� nk1
− nk3

z + �k1
− �k3

−
nk1

− nk2

z + �k1
− �k2

� .

Here, the functions �k�r� are the KS orbitals with eigenvalue

�k and we have switched from time-ordered quantities to
retarded ones by everywhere replacing �− i� by �+ i�. The
quantity z is a complex frequency in the upper half plane.

When z→	 the contribution appears to behave as 1 /z but
we remind the reader that we should add a similar expression
with z replaced by −z. Then, the leading order becomes A /z2

with the coefficient

A = 4 �
k1k2k3

k2
�
k3��k1
�r��k1

� �r���k2
�r��k3

� �r��


 ��nk1
− nk3

���k3
− �k1

�

�k3
− �k2

−
�nk1

− nk2
���k2

− �k1
�

�k3
− �k2

� ,

where we have multiplied by 2 to account for the remaining
two self-energy-like diagrams �S1�−���. We can regroup the
terms and write A=A1+A2 where

A1 = 4 �
k1k2k3

k2
�
k3��k1
�r��k1

� �r���k2
�r��k3

� �r��


 �nk1
− nk3

�

A2 = 4 �
k1k2k3

k2
�
k3��k1
�r��k1

� �r���k2
�r��k3

� �r��


 �nk3
− nk2

�
�k1

− �k2

�k3
− �k2

.

Let us now define the one-particle density matrix by

n�r,r�� = 2�
k

nk�k�r��k
��r��

and use the completeness of the KS orbitals. We obtain

A1 = ��r − r��� d3r3v�r − r3�
n�r3,r�
2 − v�r − r��
n�r,r��
2

�A1�

and see that the diagrams containing vx do not contribute to
leading order in the large frequency limit.

In order to manipulate the A2 coefficient we use the fact
that the KS orbitals obey the KS equation

�−
1

2
�2 + V�r���k�r� = �k�k�r� ,

where V�r� is the full KS potential. Because of the difference
�k1

−�k2
, the terms involving the potential will vanish and we

obtain

A2 = 2 �
k1k2k3

k2
�
k3��k1

� �r���k3

� �r��
nk3

− nk2

�k3
− �k2


 ��k1
�r��2�k2

�r� − �k2
�r��2�k1

�r�� .

Now, using

�1�
2�2 − �2�

2�1 = 2 � ��1 � �2� − �2��1�2�

and the completeness we can write A2 as
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A2 = 2 � ���r − r�� � f�r�� − 2�2���r − r��f�r�� ,

where

f�r� = �
k2k3

k2
�
k3��k2
�r��k3

� �r�
nk3

− nk2

�k3
− �k2

.

This is because, by symmetry,

�f�r� = 2�
k2k3

k2
�
k3��k3

� �r� � �k2
�r�

nk3
− nk2

�k3
− �k2

.

But, f�r�=0 is the LSS equation defining vx and we have
shown that A2=0.

Let us now study the remaining fifth diagram—the vertex
diagram—in the high-frequency limit. The contribution RV
from this diagram is

RV�r,r�;�� = 2� d3r1d3r2� d�1

2
� d�2

2


 Gs�r,r1;�1 + ��Gs�r1,r�;�2 + ��


 v�r1,r2�Gs�r�,r2;�2�Gs�r2,r;�1� .

Carrying out the frequency integrals and converting to the
retarded propagator in the upper half plane ��→z with
Im z�0� gives

RV�r,r�;�� = − 2�
k1k2

�
k1�k2�

�k1
�r��k2

� �r��k1�
� �r���k2�

�r��


 k1k2�
v
k1�k2�
�nk1

− nk2
��nk1�

− nk2�
�

�z + �k2
− �k1

��z + �k2�
− �k1�

�
.

Here, the standard Coulomb integral is given by

k1k2�
v
k1�k2� =� d3rd3r��k1

� �r��k2�
� �r��v�r − r��


 �k1�
�r��k2

�r�� .

In the high-frequency limit, to leading order, this becomes
B /�2 where the coefficient B is given by

B = − 2�
k1k2

�
k1�k2�

�k1
�r��k2

� �r��k1�
� �r���k2�

�r��


 k1k2�
v
k1�k2��nk1
− nk2

��nk1�
− nk2�

� .

Using again the completeness and the definition of the den-
sity matrix n�r ,r�� we obtain

B = − ��r − r��� d3r3v�r − r3�
n�r3,r�
2 + v�r − r��
n�r,r��
2.

This is just the coefficient A, Eq. �A1�, with the opposite
sign. Consequently, the 1 /z2 contribution from the vertex
diagram exactly cancels the same term from the self-energy
contributions meaning that �sfx�s decays as 1 /z4 at large
frequencies. And this provides an explicit proof of the f-sum
rule in the EXX approximation.

Finally we note that this result means that the exchange
kernel should have a very weak dependence on frequency at
large frequencies.
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