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We develop a procedure for detecting Fermi liquid instabilities by extending the analysis of Pomeranchuk to
two-dimensional lattice systems. The method is very general and straightforward to apply, thus, provides a
powerful tool for the search of exotic phases. We test it by applying it to a lattice electron model with
interactions leading to s- and d-wave instabilities.
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I. INTRODUCTION

The Landau theory of the Fermi liquid �FL� is one of the
most important frameworks in understanding conventional
weak interacting metallic systems.1 The low-energy physics
of interacting fermions in three dimensions is usually de-
scribed by the Landau’s FL theory, whose central assumption
is the existence of single-particle fermionic excitations or
“quasiparticles,” with a long lifetime at very low energies. In
lower dimensions, however, the situation is much more in-
teresting; in one dimensional systems, the Landau’s quasipar-
ticles are typically unstable, giving rise to the so-called Lut-
tinger liquid. On the other hand, two-dimensional lattice
models are far more complicated to treat since conventional
perturbation theory breaks down for densities close to half
filling, where competing infrared divergences appear as a
consequence of Fermi-surface �FS� nesting and van Hove
singularities.

In Ref. 2 Pomeranchuk developed a method to diagnose
instabilities of the FL by “deforming” the FS and by studying
the resulting energy gain. In its original form, it applies to
systems with a three-dimensional spherical FS, but it can be
easily generalized to the two-dimensional continuum case.

The experimental observation of exotic phases in strongly
correlated systems has triggered an enormous effort from the
theoretical community to try to understand their microscopi-
cal origin. One possible route to detect instabilities of a FL is
the analysis done by Pomeranchuk. Due to that, the Pomer-
anchuk instability has been studied by several authors with
different techniques in the last few years3–12 and in particu-
lar, the instability of the FL toward the nematic phase was
investigated for several models.13–19

In this paper we develop a general method to trace such
instabilities in lattice models in a simple and rigorous way. It
allows for the study of systems that have an arbitrary shape
of the FS in the absence of interactions, thus, it becomes
applicable to models relevant to high-temperature supercon-
ductors, manganites, ruthenates, etc.,20–23 as long as one can
rely on a perturbative analysis. It can be applied in principle
to any lattice problem in a systematic way.

It should be stressed that within our method, an instability
could be detected by considering infinitesimal deformations.
This implies that we can detect those instabilities that lead to
continuous transitions.

We test our method within two examples: the attractive
Hubbard model and a model with forward-scattering interac-
tions that give rise to d-wave FS deformation �the so-called
“d-wave Pomeranchuk instability”�. These examples are cho-
sen due to their simplicity. In particular, the attractive Hub-
bard model provides an interesting test ground, although it
does not describe the rich physics of high-Tc superconduct-
ors.

This paper is organized as follows: Section II contains a
detailed derivation of the method, with the proof of our for-
mulas in Sec. II A, and a short-hand recipe for the applica-
tion of the results in Sec. II B. Then in Sec. III we apply the
method to a two-dimensional square lattice with the various
interactions studied in Ref. 14, the s-wave interaction being
studied in Sec. III B, while the d-wave instability in Sec.
III C. Finally, Sec. IV contains the conclusions and some
specific calculations are presented in the Appendix.

II. TWO-DIMENSIONAL POMERANCHUK INSTABILITY

A. Derivation of the method

In the theory of the Landau’s FL, the free dynamics at
zero temperature is determined by the dispersion relation
��k�. In terms of it, the FS is defined as the set of points in
momentum space satisfying the equation

� − ��k� = 0. �2.1�

In the ground state of the system, all single-particle states
inside the FS �−��k��0 are occupied, while those outside
the FS �−��k��0 are not. Excited states of the system are
built by moving some particles from the inner single-particle
states to the outer ones.

The energy of such excited state as a functional of the
change in the equilibrium distribution function can be writ-
ten as

E =� d2k„��k� − �…�n�k�

+
1

2
� d2k� d2k�f�k,k���n�k��n�k�� , �2.2�

where �n�k� is the change in the distribution function n�k�
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and we have assumed that only two-particle interactions are
present. The interaction function f�k ,k�� can be related to the
low-energy limit of the two-particle vertex.

Pomeranchuk criterion allows one to identify low-energy
excited states of the system that make Eq. �2.2� negative.
This signals an instability and the breakdown of the present
FL description. In what follows, we will carefully go through
all the steps needed to perform such analysis.

First let us define �associated with any given state of the
system� a smooth function g�k� such that it takes positive
values at occupied single-particle states and negative values
at unoccupied ones. Then at the frontier between these two
regions, we have the equation

g�k� = 0. �2.3�

For the ground state, such frontier coincides with the FS
allowing us to choose,

g�k� = � − ��k� . �2.4�

Under a variation �n�k� of the distribution function n�k�,
we get an excited state that can be described in terms of a
new function g��k�=g�k�+�g�k�. The frontier between occu-
pied and unoccupied single-particle states is now located at
points satisfying

g��k� = g�k� + �g�k� = 0. �2.5�

By an abuse of language we will call the solution of this
equation the deformed FS.

Since at T=0 we have �n�k�= �1, we can write

�n�k� = H�g��k�� − H�g�k�� , �2.6�

where H�x� is the unit step function defined by H�x�=1 if
x�0 and H�x�=0 if x�0. This can be replaced in Eq. �2.2�
to write the energy of the quasiparticles as a functional of
g�k� and g��k�, namely,

E =� d2k„��k� − �…„H�g��k�� − H�g�k��…

+
1

2
� d2k� d2k�f�k,k��„H�g��k�� − H�g�k��…„H�g��k���

− H�g�k���… . �2.7�

To go further, we have to take into account the constraint
imposed by the Luttinger theorem,24 or in other words, the
preservation of the area of the FS under the deformation,

� d2k�n�k� � 0. �2.8�

By using Eq. �2.6� this can be rewritten as a functional con-
straint on the functions g�k� and g��k�,

� d2kH�g��k�� =� d2kH�g�k�� . �2.9�

In two dimensions the constraint �2.9� can be easily
solved as follows. We first rename integration variables on
the right-hand side to k�. Next we assume that a change of
variables k�=k+�k�k� can take the right-hand side into the

form of the left-hand side. Writing g��k�=g�k�+�g�k�, we
get two unknown functions, namely, �g�k� and �k�k�, to-
gether with the equation

� d2kH�g�k� + �g�k�� =� d2k�1 + � j�ki�H�g„k + �k�k�…� ,

�2.10�

where i , j� �1,2	 label the orthogonal directions in momen-
tum space.

A particular class of solutions can then be obtained by
solving the following equations:

�1 + � j�ki� = 1,

g�k� + �g�k� = g„k + �k�k�… . �2.11�

The first line of Eq. �2.11� implies that the change of vari-
ables going from k� to k is an area preserving diffeomor-
phism. The second line, on the other hand, can be interpreted
as saying that the variation �g�k� is a translation of g�k� by
an amount of �k. To solve this equation one uses the identity
det�1+A�=exp(tr�log�1+A��) and expands the right-hand
side of this equation up to second order in A. Since the de-
terminant is quadratic in A, the resulting expression is exact.
It can then be solved to linear order by

�ki = � jk� j�

and then an iterative procedure can be used to get the full
solution,

�ki = �e�jk�j��k − 1�ki,

�g = �e�ij�i��j − 1�g . �2.12�

Where � is a free function parameterizing the deformation. If
we assume that the deformation of the FS is small, then
�g�k� is also small and we can parameterize it in terms of a
slowly varying �,

�ki 
 �ij� j� ,

�g 
 �ij� j��ig . �2.13�

In what follows, each specific form of � will characterize an
excited state and the sign of the resulting energy will give us
information about the instabilities.

Other solutions that could in turn lead to a larger instabil-
ity region may exist. In other words, our method is well
suited to detect instabilities but not to diagnose stability.

Now that we have solved the constraint, we go back to the
energy of the quasiparticles �2.7� and write it in terms of the
free unconstrained variable �. To simplify the resulting ex-
pression, we need to change variables to a more convenient
coordinate system in momentum space. We choose a special
set of variables,

g = g�kx,ky� ,

s = s�kx,ky� , �2.14�

where the new variable g varies in the direction transverse to
the unperturbed FS. The variable s varies in the longitudinal
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direction tangent to the FS, namely, it satisfies �is�ig=0.
Separating the energy �2.7� into a linear term and an in-

teraction term E=L+ I, we get for the linear part,

L =� d2k„��k� − �…„H�g + �g� − H�g�…

=� dsdgJ�s,g�„��s,g� − �…„H�g + �g� − H�g�…

=� ds�
−�g

0

dgJ�s,g�„��s,g� − �… , �2.15�

where J= ���kx ,ky� /��g ,s�� is the Jacobian of the transforma-
tion �2.14�. Expanding in powers of the integration variable g
around the unperturbed FS g=0, we get

L =� ds�
−�g

0

dg�ḡ�J�s, ḡ�„��s, ḡ� − �…�ḡ=0g + O��g2�

=
1

2
� ds�J�s, ḡ��g2�g=g�=0 + O��g3� , �2.16�

where in the second line we have integrated out the variable
g and made use of the fact that (��s ,g=0�−�)=0. In order to
replace the explicit form of �g �Eq. �2.13�� in the integrand
of Eq. �2.16�, we make use of the identity

�ij�ig� j� = �ij��ig�gg + �is�sg��� jg�g� + � js�s��

= ��ij�ig� js��s� � J−1�s� , �2.17�

where we have used the fact that �according to our defini-
tions� �gg=1 and �sg=0, the antisymmetry of the �ij tensor,
and the definition of the determinant. Now replacing in Eq.
�2.16� we get

L =
1

2
� ds�J−1�g,s���s��2�g=0. �2.18�

The calculus of I is analogous and gives

I =
1

2
� ds� ds��f�g,s;g�,s����s����s�����g=g�=0.

�2.19�

Adding the two contributions we finally have

E =
1

2
� ds� ds�„f�0,s;0,s�� + J−1�0,s���s − s��…

	 �s��0,s��s���0,s�� . �2.20�

As the functions ��0,s� characterizing the excited states are
arbitrary, we can equally work with functions 
�s�
=�s��g ,s� �g=0. In what follows we will be interested in ex-
cited states such that 
�s��L2�0,S�. Assuming that s makes
a complete turn around the FS when it runs from 0 to S, we
also need to impose periodicity in that interval.

Since the sign of E in Eq. �2.20� determines the stability
of the FL, from all the above we conclude that the stability
condition reads

E =� ds�� ds
�s��
1

2
„J−1�s���s − s�� + f�s,s��…
�s� � 0,

�2.21�

where have we defined

f�s,s�� = f�g,s;g�,s���g=g�=0,

J−1�s� = J−1�g,s��g=0. �2.22�

Note that the stability condition has two terms; the first of
which contains the information about the form of the FS via
J−1�s�, while the second encodes the specific form of the
interaction in f�s ,s��. There is a clear competition between
the interaction function in the second term of the integrand
and the first term that only depends on the geometry of the
unperturbed FS.

We see that E is a bilinear form, acting on the real func-
tions 
�s� parameterizing the deformations of the FS,

E = �
,
� , �2.23�

where

�u,v� =� ds�� dsu�s�
1

2
„f�s,s�� + J−1�s���s − s��…v�s�� .

�2.24�

The stability condition is then equivalent to asking this form
to be positive definite for any possible deformation, i.e.,

∀
:�
,
� � 0 �2.25�

In consequence, the natural way to diagnose an instability is
to diagonalize this bilinear form and to look for negative
eigenvalues.

We can expand the functions 
�s� in some basis of
L2�0,S� that we will denote ��i�s�	,


�s� = 

i

ai�i�s� , �2.26�

and then write

E = 

i1,i2

ai1
ai2

��i1
,�i2

� . �2.27�

The bilinear form �,� can be taken as a pseudoscalar prod-
uct, which is linear and symmetric but, in general, not posi-
tive definite. Only in the free case f�s ,s���0 the positivity is
ensured. If ��i�s�	 are taken to be orthogonal with respect to
this pseudoscalar product, then the functional �2.21� is given
by

E = 

i

ai
2�i

�, �2.28�

where �i
�= ��i ,�i� is the square pseudonorm of the orthogonal

functions. If �i
� has a negative value for some i, then by

choosing the corresponding ai
2=1 and aj

2=0 for j� i, we see
that the energy is negative denoting an instability. In this
case we say that we have an instability in the ith channel. In
other words, the stability condition has been mapped into
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∀i:�i
� � 0, �2.29�

with �i
� being taken as the stability parameters. If any of

these quantities is negative, then the FS is unstable.
We perform such diagonalization by choosing a basis on

L2�0,S� as a given set of functions �
i	 and then making use
of the Gram-Schmidt orthogonalization procedure to trans-
form it into an orthogonal basis ��i	. Note that, the bilinear
form being not necessarily positive definite, the new basis
cannot be normalized to 1 but to �1.

This is our main result. Our method to search for Pomer-
anchuk instabilities can be summarized in the recipe pre-
sented in Sec. II B.

B. Recipe

�i� Get the dispersion relation ��k� and the interaction func-
tion f�k ,k�� for the model under study.

�ii� Change the variables according to Eq. �2.14�. The vari-
able g is completely fixed by the dispersion relation accord-
ing to Eq. �2.4�. The choice of s is arbitrary except for the
constraint of being tangential to the FS ��is�ig=0�.25

�iii� Write the bilinear form E as in Eq. �2.21�.

�iv� Choose an arbitrary basis of functions �
i	 of L2�0,S�.

�v� Apply the Gram-Schmidt orthogonalization procedure,
verifying at each step whether ��i ,�i��0.

�vi� If for a given channel i one finds that ��i ,�i��0, the FS
is diagnosed to be unstable.

Note that since L2�0,S� is infinite dimensional, the present
method is not efficient to verify stability; at any step i, it may
always be the case that for some j, �i+j

� �0. Moreover, we
have not exhausted all the possible solutions of the constraint
�2.9� but only explored a subset of them.

III. INSTABILITIES IN THE SQUARE LATTICE

A. Contribution of the free Hamiltonian

We start considering free fermions in the square lattice
with a Hamiltonian given by

H0 = 
 „��k� − �…ck
†ck, �3.1�

where

��k� = − 2t�cos kx + cos ky� , �3.2�

where only hopping to nearest neighbors has been taken into
account. The FS is defined by

g�k� = � − ��k� = � + 2t�cos kx + cos ky� = 0, �3.3�

where � is the chemical potential. Notice that g�0 inside
the area bounded by the FS, negative outside it, and zero at
the FS.

Now we follow the recipe given in Sec. II B, changing
variables according to Eq. �2.14�,

g�kx,ky� = � + 2t�cos kx + cos ky� , �3.4�

s�kx,ky� = arctan� tan�ky/2�
tan�kx/2�� . �3.5�

It is straightforward to see that g and s are mutually orthogo-
nal variables. Using the following shorthand notation:


 = cos kx, �3.6�

� = cos ky , �3.7�

we can write

g = � + 2t�
 + �� ,

tan2�s� = �1 − �

1 + �
��1 + 


1 − 

� , �3.8�

and the Jacobian takes the form

J = t� 
� − 1


2 + �2 − 2
� . �3.9�

Notice that J�0. Writing 
 and � as functions of g and s we
have for the Jacobian evaluated at g=0,

J�g = 0,s� =
1

2t�1 − ����cos2�2s�
, �3.10�

with ����=1− � �
4t �

2. The limits for the variable s can be
taken as −��s��.

The inverse of the Jacobian J−1�s� can be expanded in
series of sin�ns� and cos�ns� and it is straightforward to show
that only the coefficients of cos�4ns� are nonvanishing. This
results in the following expansion:

J−1�s� = 

n

jn
�cos�4ns� , �3.11�

where the coefficients jn
� are fixed by the expansion. Some of

them are given in the Appendix. The simplicity of this ex-
pansion suggests to take the set �sin�ns� , cos�ns�	 as our
starting base in the Gram-Schmidt orthogonalization proce-
dure.

In Secs. III B and III C we will analyze, as an example of
application, the possible instabilities in this two-dimensional
fermion model when subjected to various interactions. In
particular we are interested in interactions of the form,14

f�k,k�� = �Constant��d�k�d�k��� , �3.12�

with

d�k� = 1, �s-wave� ,

d�k� = �cos kx + cos ky�, �extended s-wave� ,

d�k� = �cos kx − cos ky�, �d-wave dx2−y2� . �3.13�

B. s-wave Pomeranchuk instability

We first consider a constant interaction corresponding to
take14 d�k�=1 so that
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f�k,k�� = U0, �3.14�

with U0 being a constant measuring the strength of the inter-
action. This form of the interaction can be obtained by a
mean-field approximation or a first-order perturbative expan-
sion for the interaction function on the Hubbard model.26,27 It
should be noticed that this interaction preserves the full sym-
metry of the dispersion relation.

Using the product defined in Eq. �2.24� we can calculate
the first instability parameters.

�0
� = 2��U0� + j0

�� ,

�1,2
� = �j0

�,

�3
� = �� j0

� −
1

2
j1
�� ,

�4
� = �� j0

� +
1

2
j1
�� ,

�5,6
� = −

�

2

j1
�2

j0
� + j0

��� +
�

4
� j1

�

j0
��2� ,

�7
� = �� j0

� −
1

2
j2
�� ,

�8
� =

�2U0j1
�2

2��U0 + j0
��2 −

�j1
�2

�U0 + j0
�

+ j0
��� +

�j1
�2

2��U0 + j0
��2� +

�j2
�

2
,

] �3.15�

The stability parameters for the first channels are shown in
Fig. 1. For U0=0 all the �n

� are positive as expected. When
we increase the interaction, among the first 20 parameters,
only �0

�, �8
�, and �16

� change. For simplicity only these pa-
rameters are plotted for U0�0.

U0 = 0 U0 = −0.2

U0 = −0.27 U0 = −0.3

U0 = −0.35 U0 = −0.55

µ µ
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FIG. 1. �Color online� The instability parameters. For U0=0 we show the first ten parameters �i
� as a function of �. For other values of

the interaction, we show only the parameters corresponding to the three lower channels that show instabilities, namely, channels �0, �8, and
�16 �colors are identified in Fig. 2�. Notice that when we increase U0, the breakdown of the FL description under consideration occurs first
for the higher channels and closer to half filling.
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A sketch of the deformed Fermi surface �FS� for the first
three unstable channels is shown in Fig. 2. As it might be
expected, the channels showing instability are those that pre-
serve the symmetry of the total energy, which in the present
case corresponds to the symmetry of the dispersion relation.

With these first instability channels we can draw a quali-
tative phase diagram in the �� ,U0� space as in Fig. 2, where
the first instability zones are shown and a tentative global
phase diagram is drawn.

Note that, when the interaction is increased, the first in-
stability channel corresponds to the highest of the three
shown in the figure �e.g., �16

� �. This behavior is maintained
for channels �i

� with higher index i, and we assume that
generically these higher channels will show the instability
closer to half filling and for interactions arbitrarily small. On
the other hand, the higher the channel, the closer the insta-
bility region is to half filling. Extrapolating this behavior, we
see that the instabilities on the large-i channels take place
only very close to �=0.

The behavior for the extended s wave with a form factor
d�k�= �cos kx+cos ky�=
+� can be studied by writing d�k�
in terms of the variables g and s using the solutions of Eq.
�3.8� and by evaluating at g=0. We have d�s�= −�

2t and the
interaction function reads

f�s,s�� = U0� �

2t
�2

. �3.16�

Again f�s ,s�� is independent of the variables s and s� but
now dependent of the chemical potential �.

The corresponding instability parameters are obtained by
changing U0→U0� �

2t �
2 in Eq. �3.15� and the phase diagram

can then be inferred to be analogous to that of Fig. 2 but with
the vertical axes replaced by U0� �

2t �
2.

C. d-wave Pomeranchuk instability

Now we investigate the d-wave Fermi-surface deforma-
tion �dFSD� instability28 in the charge channel on a square

lattice. The forward-scattering interaction driving the dFSD
has the form14

f�k,k�� = − G d�k�d�k�� , �3.17�

with G�0 and d-wave form factors d�k�= �cos kx−cos ky�.
The above expression for this effective interaction was ob-
tained by Metzner et al.14 using functional renormalization-
group methods.

Notice that this interaction has a lower symmetry than the
dispersion relation. We hence expect that deformations lead-
ing to instabilities will break the symmetry of the FS while
preserving this lower one.

Using the short-hand notation �3.6� the interaction reads

f�s,s�� = − G�
 − ���
� − ��� �3.18�

and using the solution of Eq. �3.8� we have

d�s� =
2

cos�2s�� J−1�s�
2

− 1� . �3.19�

Notice that this interaction contains the Jacobian but its ori-
gin is totally independent of the treatment developed in Sec.
III B.

The form factor d�s� can be expanded in a series of the
form

d�s� = 

k=0

�

dk cos��4k + 2�s� , �3.20�

where the first coefficients of the expansion are presented in
the Appendix.

Performing the Gram-Schmidt orthogonalization as in
previous case, we find the �� parameters corresponding to
this interaction. The results are very similar and we will only
display here the first two parameters that show an instability
of the system, namely,

�4
� = − 2G�2d0

2 + �j0 +
�j1

2
, �3.21�

�12
� =

�

2g�4d0
2 − 2�2j0 + j1�

�j1
2 − 4j0

2 + 2j1j2 + j2
2 − j1j3

− 2j0�j1 + j3� + g�„2d1
0�2j0 + j1� − 8d0d1�j1 + j2�

+ 4d0
2�2j0 + j3�…� �3.22�

Again, by making use of this first instabilities we can
sketch the phase diagram corresponding to this interaction as
shown in Fig. 3. Similar to the previous case, as the interac-
tion grows, instabilities appear first in the higher channels.
The dashed line corresponds to the critical value of the in-
teraction found in Ref. 15 by means of a mean-field proce-
dure. Notice that the lowest channels cover most of the in-
stability zone. The phase diagram shown in Fig. 3 is
consistent with the results presented in Refs. 15 and 18.

As advanced, deformations of the FS leading to instabili-
ties break the symmetry of the original FS down to the sym-
metry of the total energy.

While our method detects continuous transitions, a first-
order one with a d-wave FS deformation was found by
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FIG. 2. �Color online� Phase diagram for f�s ,s��=U0. The re-
gions of instability for the first three unstable channels are dis-
played. For smaller interactions, higher channels are unstable closer
to half filling and extrapolate to the dotted curve. The shape of the
unstable FS deformations are displayed and one can observe that
only modes that preserve the symmetry of the total energy show
instabilities.
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mean-field treatments in Refs. 15 and 18. Indeed, we cannot
ensure that the FL is stable outside the instability region we
found, for example, with respect to discontinuous transitions.
This implies that the true instability region could be larger
than the one found with our method.

Unlike treatments using mean field, with the present for-
malism, it is possible to identify the region in the parameter
space where each channel presents a breakdown of the con-
sidered FL description.

IV. SUMMARY AND CONCLUSIONS

In this paper we have developed a general procedure for
detecting instabilities in two-dimensional lattice models. It is
an extension of the formalism of Landau-Pomeranchuk, in
particular, for lattice systems with an arbitrary-shaped FS
and allows one to describe the phase diagram of the system
as an alternative to the usual procedures. The steps are
simple and applicable to a wide variety of systems.

Complementary to other descriptions, our procedure per-
mits one to identify the instability on each channel indepen-
dently.

As a form of testing our procedure, we have analyzed the
stability of the FL in a square lattice for various interactions
already studied in the literature. The s-wave instability in the
electronic channel and the instability produced by d-wave
forward-scattering interactions were studied at T=0. The in-
stabilities corresponding to low channels produce a break-
down of the considered FL behavior for a wide range of
fillings, while those occurring for higher channels are closer
to half filling. Our results are in good agreement with those
obtained by different methods that were previously published
by other authors.

From the results obtained one observes that, generically,
instability channels preserve the symmetry of the total en-
ergy. Then, to increase the efficiency of the method, one
could order the initial basis starting with those functions
which preserve such symmetry.

Generalization to higher dimensions, spin-dependent in-
teractions, or finite temperature can be achieved by following
the same lines and the results will be presented elsewhere.29
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APPENDIX: ORTHOGONAL BASIS AND SERIES
EXPANSION

In this Appendix we present the coefficients in the expan-
sion of the functions used in this paper. For the Jacobian, the
series takes the form

J−1�s� = 

n

jn
�cos�4ns� , �A1�

where the first coefficients in the expansion are given by

j0
� =

4

�
E�1 −

�2

16
� ,

j1
� =

1

�
����E�1 −

16

�2� − 4E�1 −
�2

16
�

− ���
�

2 2F1�−
1

2
,
3

2
,2,1 −

16

�2�
+ 2�2F1�−

1

2
,
3

2
,2,1 −

�2

16
�� ,

j2
� =

4

�
�2E�1 −

�2

16
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1

2
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2
,2,1 −

�2

16
�
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1

2
,
5

2
,3,1 −

�2

16
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� =

− 8
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�E�1 −
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16
� + 4��92F1�−

1

2
,
3

2
,2,1 −

�2

16
�

− 182F1�−
1

2
,
5

2
,3,1 −

�2

16
�

+ 102F1�−
1

2
,
7

2
,4,1 −

�2

16
��� , �A2�

where E�m� is the complete elliptic integral
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FIG. 3. �Color online� Phase diagram for the d-wave interaction.
The first three unstable channels are shown together with the cor-
responding deformed FSs. The dashed line corresponds to the value
for the interaction parameter studied in Ref. 15 within a mean-field
treatment. Again, one observes that the symmetry of the deforma-
tions are those of the total energy.
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E�m� = �
0

�/2
�1 − m sin2�t�dt , �A3�

and 2F1�a ,b ;c ;z� is the hypergeometric function

2F1�a,b;c;z� =
��c�

��b���− b + c��0

1

tb−1�1 − t�c−b−1�1 − tz�−adt .

�A4�

The form factor for the d-wave forward-scattering inter-
action can be expanded as follows:

d�s� = 

k=0

�

dk cos„�4k + 2�s… , �A5�

with

d0
� =

− 4�� − 2E�1 −
�2

16
��

�
,

d1
� =

4

�
�� − 6E�1 −

�2

16
� + 2�2F1�−

1

2
,
3

2
,2,1 − �2

16�� ,

d2
� =

− 4

�
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�2

16
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1

2
,
3

2
,2,1 −

�2

16
�

− 6�2F1�−
1

2
,
5

2
,3,1 −

�2

16
�� ,

d3
� =

4

�
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�2

16
� + ��1 + 282F1�−

1

2
,
3

2
,2,1 −

�2
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�
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1

2
,
5

2
,3,1 −

�2

16
�

+ 202F1�−
1

2
,
7

2
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16
��� ,

The orthogonal basis ��i	 depends of course on the spe-
cific form of the interaction, but in all the cases studied here,
it satisfy the following properties: �i� The functions are either
linear combinations of sin�s� or of 0 separately. There are no
mixtures of sin and cos. �ii� All the functions are reduced to
the expressions corresponding to the free case in the limit
when the interaction parameter is sent to zero.
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