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Using a general analytical continuation scheme for cluster dynamical mean-field calculations, we analyze
real-frequency self-energies, momentum-resolved spectral functions, and one-particle excitations of the metal-
lic and insulating phases of VO2. While for the former dynamical correlations and lifetime effects prevent a
description in terms of quasiparticles, the excitations of the latter allow for an effective bandstructure. We
construct an orbital dependent, but static one-particle potential that reproduces the essentials of the full many-
body spectrum. Yet, the ground state is well beyond a static one-particle description. The emerging picture
gives a nontrivial answer to the decade-old question of the nature of the insulator, which we characterize as a
“many-body Peierls” state, stressing the joint effect of lattice symmetry breaking and Coulomb correlations.

DOI: 10.1103/PhysRevB.78.115103 PACS number�s�: 71.27.�a, 71.15.Mb, 71.30.�h, 79.60.�i

I. INTRODUCTION

Describing electronic correlations is a challenge for mod-
ern condensed-matter physics. While weak correlations
slightly modify quasiparticle states, by broadening them with
lifetime effects and shifting their energies, strong enough
correlations can entirely invalidate the band picture by in-
ducing a Mott insulating state.

In a half-filled one-band model, an insulator is realized
above a critical ratio of interaction to bandwidth. Though
more complex scenarios exist in realistic multiband cases, a
common feature of compounds that undergo a metal-
insulator transition �MIT� upon the change of an external
parameter, such as temperature or pressure, is that the respec-
tive insulator feels stronger correlations than the metal, since
it is precisely their enhancement that drives the system insu-
lating.

In this paper we discuss a material where this rule of
thumb is inverted: We argue that in VO2 it is the insulator
that is less correlated, in the sense that bandlike excitations
are better defined and have longer lifetimes than in the metal.
Albeit, neither phase is well described by standard band-
structure techniques. Using an analytical continuation
scheme for quantum Monte Carlo solutions to dynamical
mean field theory �DMFT�,1,2 we discuss quasiparticle life-
times, k-resolved spectra �for comparison with future angle-
resolved photoemission experiments� and effective band-
structures. While dynamical effects are crucial in the metal,
the excitations of the insulator are well described within a
static picture; for the insulator we devise an effective one-
particle potential that captures the interacting excitation
spectrum. Still, the corresponding ground state is far from a
Slater determinant, leading us to introduce the concept of a
“many-body Peierls” insulator.

The MIT of VO2 has intrigued solid-state physicists for
decades.3–18 A high-temperature metallic rutile �R� phase
transforms at Tc=340 K into an insulating monoclinic struc-
ture �M1�, in which vanadium atoms pair up to form tilted
dimers along the c axis. The resistivity jumps up by two
orders of magnitude, yet no local moments form. Despite

extensive efforts, the mechanism of the transition is still un-
der debate.5,11,14–18 Two scenarios compete: In the Peierls
picture the structural aspect �unit-cell doubling� causes the
MIT, while in the Mott picture local correlations predomi-
nate.

VO2 has a d1 configuration and the crystal field splits the
3d manifold into t2g and empty eg

� components. The former
further split into eg

� and a1g orbitals, which overlap in
R-VO2, accounting for the metallic character. Still, the qua-
siparticle peak seen in photoemission �PES� �Refs. 15–17� is
much narrower than the Kohn-Sham spectrum of density-
functional theory �DFT� in the local-density approximation
�LDA�,11 and eminent satellite features evidenced in PES are
absent. In M1-VO2, the a1g form bonding/antibonding orbit-
als, due to the dimerization. As discussed by Goodenough,4

this also pushes up the eg
� relative to the a1g. Yet, the LDA

yields a metal.11 Nonlocal correlations beyond LDA were
shown to be essential.19–21 Indeed, recent Cluster DMFT
�CDMFT� calculations,19 in which a two-site vanadium
dimer constituted the DMFT impurity, opened a gap, agree-
ing well with PES and x-ray experiments.15–18,22–25

II. METHODS AND RESULTS

Starting from these LDA+CDMFT results19 for the Mat-
subara t2g Green’s function G�ı�n� we deduce the real-
frequency Green’s function G��� by the maximum entropy
method26 and a Kramers-Kronig transform. The self-energy
matrix ���� we obtain by numerical inversion of G���
=�k��+�−Hk−�����−1,1,2 with the LDA Hamiltonian H,
and the chemical potential �.

A. Rutile VO2

Figure 1 shows �a� the diagonal elements of the R-VO2
self-energy, and �b� the resulting k-resolved spectrum. Not-
withstanding minor details, the a1g and eg

� self-energies ex-
hibit a similar dynamical behavior. The real parts at zero
energy, R��0�, entailing relative shifts of quasiparticle
bands, are almost equal, congruent with the low changes in
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their occupations vis-à-vis LDA,19 and with the isotropy evi-
denced in experiment.27

Neglecting lifetime effects �i.e., I��0�, one-particle ex-
citations are given by the poles �k of G���: det��k+�
−Hk−R���k��=0. We shall refer to this as the quasiparticle
equation �QPE�.28 For static or absent R� this reduces to a
simple eigenvalue problem. In regions of low imaginary
parts of the self-energy, I�, the QPE solutions will give an
accurate description of the position of spectral weight and
constitute an effective bandstructure of the interacting sys-
tem. Yet, due to the frequency dependence, the number of
solutions is no longer bounded to the number of orbitals and
satellite structures may induce additional poles in Green’s
function.

Below �above� −0.5 �0.2� eV, the imaginary parts of the
self-energy—the inverse lifetime—of R-VO2 is considerable.

Due to our limited precision for I��0�, we have not at-
tempted a temperature dependent study to assess the experi-
mentally found bad metal behavior, but the resistivity ex-
ceeding the Ioffe-Regel-Mott limit29 indicates that even close
to the Fermi level, coherence is not fully reached. At low
energy, the QPE solutions �dots in Fig. 1�b�� closely follow
the spectral weight. Above 0.2 eV, regions of high intensity
appear, howbeit, the larger I� broadens the excitations, and
no coherent features emerge, though the positions of some eg

�

derived excitations are discernible. At high energies, both
positive and negative, distinctive features appear in I����
that are responsible for lower �upper� Hubbard bands, seen in
the spectrum at around −1.7 �2.5� eV. The upper Hubbard
band exhibits a pole structure that reminds of the low-energy
quasiparticle bandstructure, which is in line with observa-
tions that quasiparticle dispersions are generally reflected in
the dispersion of the Hubbard bands.30 Hence, an effective
band picture is limited to the close vicinity of the Fermi
level, and R-VO2 has to be considered as a strongly corre-
lated metal �the weight of the quasiparticle peak is of the
order of 0.6�. This is experimentally corroborated by the fact
that an increase in the lattice spacing by Nb-doping results in
a Mott insulator of rutile structure.7

B. Monoclinic VO2

1. The self-energy and its implications

The imaginary parts of the M1 a1g on site, and a1g−a1g
intradimer self-energies, Fig. 2�a�, strongly depend on fre-
quency and are larger than any element in R-VO2, usually a
hallmark of increased correlations. However, we shall argue
that correlations are in fact weaker than in the metal. Indeed,
the dimerization in M1 leads to strong intersite fluctuations,
evidenced by the significant intradimer a1g−a1g self-energy.
Figure 3 displays the M1-VO2 self-energy in the a1g
bonding/antibonding �b ,ab� basis, �b/ab=�a1g

��a1g−a1g
The

a1g �anti�bonding imaginary part is low and varies little with
frequency in the �un�occupied part of the spectrum, thus al-
lowing for coherent weight. In the opposite regions, the
imaginary parts reach huge values. The eg

� elements are flat,
and their imaginary parts tiny. This is a direct consequence
of the drastically reduced eg

� occupancy which drops to
merely 0.14. These almost empty orbitals feel only weak
correlations, and sharp bands are expected at all energies. A
first idea for the a1g excitations is obtained from the intersec-
tions �+�−	b/ab�k�=R�b/ab��� as depicted in Fig. 3�a�,
where the black stripes delimit the LDA a1g bandwidths. The
�anti�bonding band appears as the crossing of the �blue� red
solid line with the stripe at �positive� negative energy. Hence,
the �anti�bonding band emerges at �2.5� −0.75 eV. Still, the
antibonding band is much broadened since I�ab reaches
−1 eV.

2. Momentum-resolved spectral functions

To confirm the above analysis, we solved the QPE and
calculated the k-resolved spectrum �Fig. 4�a��. As expected,
reasonably coherent weight appears over nearly the entire
spectrum from −1 to +2 eV, whose position coincides with
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FIG. 1. �Color online� Rutile VO2: �a� self-energy ��−��. Real
�imaginary� parts are solid �dashed�. �b� spectral function A�k ,��
and solutions of the QPE �blue�. The LHB is the �yellow� region at
−1.7 eV, the broad upper Hubbard band appears �yellow� at
�2.5 eV.
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the QPE poles: The filled bands correspond to the a1g bond-
ing orbitals, while above the gap, the eg

� bands give rise to
sharp features. The antibonding a1g is not clearly distin-
guished since eg

� weight prevails in this range. The satellites
have faded; a mere shoulder at −1.5 eV reminds of the lower
Hubbard band.

3. Construction of an effective one-particle potential

Contrary to R-VO2, the number of solutions to the quasi-
particle equation equals the orbital dimension. Since, more-
over, the real parts of the M1-VO2 self-energy are almost
constant for relevant energies,31 we construct a static poten-
tial, 
, by evaluating the dynamical self-energy at the LDA
band centers �pole energies� for the eg

� �a1g�, see Fig. 3�a�.32

Figure 4�b� shows the bandstructure of Hk+
: The agree-
ment with the DMFT poles is excellent. We further calculate

the density of states �DOS� corresponding to the bandstruc-
ture of Hk+
. This quantity, displayed in Fig. 2�b�, thus
takes into account the shifts of the bands, but not their life-
times. The charge gap is correctly opened and the position of
spectral weight agrees well with the LDA+CDMFT spectral
function. Yet the missing information on life-time effects,
which are small but finite, causes excitations to be too
sharply defined. Our one-particle potential, albeit static, de-
pends on the orbital, and is thus nonlocal. We emphasize the
conceptual difference to the Kohn-Sham �KS� potential of
DFT; the latter generates an effective one-particle problem
with the ground-state density of the true system. The KS
energies and states are auxiliary quantities. Our one-particle
potential, 
, on the contrary, was designed to reproduce the
excitation spectrum of the interacting system. The eigenval-
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FIG. 2. �Color online� Monoclinic VO2: �a� Self-energy ��
−��, real �imaginary� parts are solid �dashed�. �b� Comparison of
the LDA DOS with the LDA+CDMFT spectrum and the DOS
when applying the static potential 
. See text for discussion.
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FIG. 3. �Color online� Self-energy ��−�� of M1-VO2 in the a1g

bonding/antibonding basis: �a� real parts. The black stripes delimit
the a1g LDA bandwidths, dashed horizontal lines indicate the values
of the static potential 
. �b� imaginary parts. Self-energy elements
are dotted in regions irrelevant for the spectrum.
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ues of Hk+
 are thus not artificial. Still, like in DFT, the
eigenstates are Slater determinants by construction, although
the true states are not. The crucial point for M1-VO2 is that
spectral properties are capturable with this effective one-
particle description. It is in this sense that M1-VO2 exhibits
only weak correlation effects. The weight of the bonding
excitation is Z= �1−��R�b�����=−0.7 eV

−1 �0.75, and thus
larger than the rutile quasiparticle weight �see above�.

C. Elucidating the coherence of M1 VO2

1. Model considerations

What is at the origin of this overall surprising coherence?
For the eg

� orbitals, this simply owes to their depletion. For
the nearly half-filled a1g orbitals the situation is more intri-
cate. It is a joint effect of charge transfer into the a1g bands,
and the bonding/antibonding splitting. Indeed, the filled
bonding band experiences only weak fluctuations, due to its
separation of several eV from the antibonding one. To sub-
stantiate these qualitative arguments, we resort to the follow-
ing model, which treats the solid as a collection of Hubbard
dimers:

H = − t�
l�

�cl1�
† cl2� + h.c.� − t� �

i=1,2

�l,l�	

cli�
† cl�i� + U�

il

nli↑nli↓.

�1�

Here, cli�
† �cli�� creates �destroys� an electron with spin � on

site i of the lth dimer. t is the intradimer, t� the interdimer
hopping, U the on-site Coulomb repulsion, and we assume
half-filling. First, we discuss the t�→0 limit, which is an
isolated dimer; the Hubbard molecule.

2. The Hubbard molecule

We choose t=0.7 eV, the LDA intradimer a1g−a1g hop-
ping, and U=4.0 eV �Ref. 19� for all evaluations. The
bonding/antibonding splitting, 
bab=−2t+
16t2+U2

=3.48 eV, gets enhanced with respect to the U=0 case. In
M1-VO2, the embedding into the solid, and the hybridization
with the eg

� reduce the splitting to �3 eV, as can be inferred
from the one-particle poles �Fig. 4�, consistent with
experiment.15 The ground state of the dimer is given by33

��0	= �4t / �c−U��� ↓ ↑	− � ↑ ↓	�+ �� ↑↓ 0	+ �0 ↑↓	� /a which
is intermediate to the Slater determinant �SD� �the four states
having equal weight�, and the Heitler-London �HL� limit
�double occupancies projected out�. With the VO2 param-
eters, the model dimer is close to the Heitler-London limit.6

The inset of Fig. 5�b� shows the projections of the ground
state onto the Slater determinant and the Heitler-London
state. The former, ��SD ��0	�2, equals the weight of the band-
derived features in the spectrum �for U�0 satellites appear�,
while the other measures the double occupancy �i�ni↑ni↓	
=1− ��HL ��0	�2. For U=4.0 eV the latter is largely sup-
pressed, as a consequence of the interaction: The N-particle
state is clearly not a Slater determinant. Still, the overlap
with the Slater determinant, and thus the coherent weight,
remains significant, i.e., one-particle excitations survive and
lifetimes are large. To do justice to the seemingly opposing
tendencies of correlation driven non-Slater-determinant be-
havior, coexisting with a bandlike spectrum, we introduce
the notion of a many-body Peierls state.

The charge transfer from the eg
� into the then almost half-

filled a1g orbitals, finds its origin in the effective reduction of
the local interaction in the bonding/antibonding configura-
tion. While for U=4 eV, �SD�H�SD	=2.0 eV in the Slater
determinant limit, it reduces to merely ��0�H��0	=0.91 eV
in the ground state. In fact, intersite fluctuations are an effi-
cient way to avoid the on-site Coulomb repulsion. In
M1-VO2, this effect manifests itself in a close cancellation of
the local and intersite self-energies in the �un�occupied parts
of the spectrum for the �anti�bonding a1g orbitals.

The gap opening in VO2 thus owes to two effects: The
self-energy enhancement of the a1g bonding/antibonding
splitting, and a charge transfer from the eg

� orbitals. The dif-
ference in R� corresponds to this depopulation, seen in
experiments27 and theoretical studies,14,19 and leads to the
separation of the a1g and eg

� at the Fermi level. The local
interactions thus amplify Goodenough’s scenario.

3. A solid of Hubbard dimers

Does the embedding of the dimer into the solid qualita-
tively alter our picture of the M1 phase? The model, Eq. �1�,
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FIG. 4. �Color online� M1-VO2: �a� spectral function A�k ,��.
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has been studied within CDMFT in Ref. 34, establishing a
rich phase diagram with a metal, Mott- and band-insulator
phase. Here, we argue that the above interpretation survives
the branching of the interdimer hopping. Moreover, we study
the essentials of the rutile to M1 MIT by scanning through
the degree of dimerization t at constant interaction strength
U and embedding, or interdimer hopping, t�. For the latter
we assume a semicircular density of states D���� of band-
width W=4t�. In M1-VO2, the t� for direct a1g-a1g hopping
is rather small, yet eg

� hybridizations lead to an effective D�

bandwidth of about 1 eV. We choose U=4t�, and an inverse
temperature =10 / t�. Figure 5�a� displays the orbital traced
local spectral function A���=Ab���+Aab��� �b,ab denoting

again the bonding/antibonding combinations. See also Fig. 3
in Ref. 34� and the bonding self-energy �b��� for different
intradimer hoppings t: In the absence of t, the result equals
by construction the single-site DMFT solution ��b=�ab�,
which, for our parameters, is a correlated metal, analog to
R-VO2. The spectral weight at the Fermi level is given by
Ab/ab�0�=D���t−R�b/ab�0��, with R�b/ab�0�= �R�ab�0�.
Thus a MIT occurs at t+R�ab�0�=2t�, when all spectral
weight has been shifted out of the bandwidth. Above t / t�

=0.5 we find a many-body Peierls phase corresponding to
M1-VO2. In Fig. 5�a� we have indicated again the graphical
QPE approach; the system evolves from three solutions per
orbital �Kondo resonance, lower and upper Hubbard band� at
t=0 to a single one at t / t�=0.6. Hence the peaks in the
insulator are not Hubbard satellites, but just shifted bands.
The embedding, t�, broadens the excitations and washes out
the satellites of the isolated dimer, like for M1-VO2. Still, as
a function of t, the coherence of the spectrum increases,
since the imaginary part of the �anti�bonding self-energy sub-
sides at the renormalized �anti�bonding excitation energies.
Our model thus captures the essence of the rutile to M1
transition, reproducing both, the dimerization induced in-
crease in coherence, and the shifting of excitations.

D. Addenda: The M2 phase

Under uniaxial pressure or Cr doping, VO2 develops the
insulating M2 phase7–9 in which every second vanadium
chain along the c axis consists of untilted dimers, whereas in
the others only the tilting occurs. We may now speculate that
the dimerized pairs in M2 form a1g Peierls singlets as in M1,
while the tilted pairs are in a Mott state. Hence, we interpret
the seminal work of Pouget and coworkers7–9 as the obser-
vation of a Mott to many-body Peierls transition taking place
on the tilted chains when going from M2 to M1. To illustrate
this, we solve again Eq. �1� for appropriate parameters. The
tilted M2 chains are akin to the rutile phase, yet with a re-
duced a1g bandwidth.11 Thus we now choose U=6t�, 
=10 / t�, and vary t. All solutions shown in Fig. 5�b� are
insulating, however, the diverging self-energy at vanishing
intradimer coupling �t=0, tilted “M2” chains� becomes regu-
larized with the bond enhancement �t�0, “M1”�. The imagi-
nary part of the self-energy gets flatter and the system thus
more coherent. The above is consistent with the finding of
�S=0�S=1 /2 for the �dimerized� tilted pairs in M2-VO2.7–9

III. CONCLUSIONS

While our results do not exclude surprises in the direct
vicinity of Tc,

35 the nature of insulating VO2 is shown to be
rather “bandlike” in the above sense. Our analytical continu-
ation scheme allowed us to explicitly calculate this band-
structure. The latter can also be derived from a static one-
particle potential. Yet, this does not imply a one-particle
picture for quantities other than the spectrum. Above all, the
ground state is not a Slater determinant. Hence, we qualify
M1-VO2 as a many-body Peierls phase. We argue that the
weakness of lifetime effects results from strong intersite fluc-
tuations that circumvent local interactions in an otherwise
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FIG. 5. �Color online� �a� spectral function �top�, real �middle�,
imaginary �bottom� bonding self-energy �b of the CDMFT solution
to Eq. �1� for U=4.0t�, =10 / t�, and varying intradimer hopping
t / t�. R�b���=−R�ab�−��, I�b���=I�ab�−�� by symmetry.
Dashed gray lines indicate the graphical QPE construction. �b�
Imaginary Matsubara self-energy, I�b�ı��=I�ab�ı��, for U=6t�,
=10 / t� and varying t. Inset: Projection of the Slater determinant
and Heitler London limit on the Hubbard molecule ground state
�t=0.7 eV, t�=0� vs U.
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strongly correlated solid. This is in striking contrast to the
strong dynamical correlations in the metal, which is domi-
nated by important lifetime effects and incoherent features.
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